Getting started

Load packages

In this lab, we will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro labs, openintro.

Let’s load the packages.

library(tidyverse)
library(openintro)

The data

data(nycflights)
names(nycflights)
##  [1] "year"      "month"     "day"       "dep_time"  "dep_delay" "arr_time" 
##  [7] "arr_delay" "carrier"   "tailnum"   "flight"    "origin"    "dest"     
## [13] "air_time"  "distance"  "hour"      "minute"
glimpse(nycflights)
## Rows: 32,735
## Columns: 16
## $ year      <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month     <int> 6, 5, 12, 5, 7, 1, 12, 8, 9, 4, 6, 11, 4, 3, 10, 1, 2, 8, 10…
## $ day       <int> 30, 7, 8, 14, 21, 1, 9, 13, 26, 30, 17, 22, 26, 25, 21, 23, …
## $ dep_time  <int> 940, 1657, 859, 1841, 1102, 1817, 1259, 1920, 725, 1323, 940…
## $ dep_delay <dbl> 15, -3, -1, -4, -3, -3, 14, 85, -10, 62, 5, 5, -2, 115, -4, …
## $ arr_time  <int> 1216, 2104, 1238, 2122, 1230, 2008, 1617, 2032, 1027, 1549, …
## $ arr_delay <dbl> -4, 10, 11, -34, -8, 3, 22, 71, -8, 60, -4, -2, 22, 91, -6, …
## $ carrier   <chr> "VX", "DL", "DL", "DL", "9E", "AA", "WN", "B6", "AA", "EV", …
## $ tailnum   <chr> "N626VA", "N3760C", "N712TW", "N914DL", "N823AY", "N3AXAA", …
## $ flight    <int> 407, 329, 422, 2391, 3652, 353, 1428, 1407, 2279, 4162, 20, …
## $ origin    <chr> "JFK", "JFK", "JFK", "JFK", "LGA", "LGA", "EWR", "JFK", "LGA…
## $ dest      <chr> "LAX", "SJU", "LAX", "TPA", "ORF", "ORD", "HOU", "IAD", "MIA…
## $ air_time  <dbl> 313, 216, 376, 135, 50, 138, 240, 48, 148, 110, 50, 161, 87,…
## $ distance  <dbl> 2475, 1598, 2475, 1005, 296, 733, 1411, 228, 1096, 820, 264,…
## $ hour      <dbl> 9, 16, 8, 18, 11, 18, 12, 19, 7, 13, 9, 13, 8, 20, 12, 20, 6…
## $ minute    <dbl> 40, 57, 59, 41, 2, 17, 59, 20, 25, 23, 40, 20, 9, 54, 17, 24…

Departure delays

Let’s start by examing the distribution of departure delays of all flights with a histogram.

ggplot(data = nycflights, aes(x = dep_delay)) +
  geom_histogram()

ggplot(data = nycflights, aes(x = dep_delay)) +
  geom_histogram(binwidth = 15)

ggplot(data = nycflights, aes(x = dep_delay)) +
  geom_histogram(binwidth = 150)

  1. Look carefully at these three histograms. How do they compare? Are features revealed in one that are obscured in another?

Looking through the three histograms you can compare the shape of the charts. In the three histograms you can see each one has a different bin width. When you look into the binwidth and decrease the n you can see the distribution is center around 0-15. Even when binwidth is higher to around 30 or so. The distrubtion is around 0-15. Each histogram show data is skewing to the left where the shape is towards the left side.

lax_flights <- nycflights %>%
  filter(dest == "LAX")
ggplot(data = lax_flights, aes(x = dep_delay)) +
  geom_histogram()

lax_flights %>%
  summarise(mean_dd   = mean(dep_delay), 
            median_dd = median(dep_delay), 
            n         = n())
## # A tibble: 1 × 3
##   mean_dd median_dd     n
##     <dbl>     <dbl> <int>
## 1    9.78        -1  1583

You can also filter based on multiple criteria. Suppose you are interested in flights headed to San Francisco (SFO) in February:

sfo_feb_flights <- nycflights %>%
  filter(dest == "SFO", month == 2)
glimpse(sfo_feb_flights)
## Rows: 68
## Columns: 16
## $ year      <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month     <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ day       <int> 18, 3, 15, 18, 24, 25, 7, 15, 13, 8, 11, 13, 25, 20, 12, 27,…
## $ dep_time  <int> 1527, 613, 955, 1928, 1340, 1415, 1032, 1805, 1056, 656, 191…
## $ dep_delay <dbl> 57, 14, -5, 15, 2, -10, 1, 20, -4, -4, 40, -2, -1, -6, -7, 2…
## $ arr_time  <int> 1903, 1008, 1313, 2239, 1644, 1737, 1352, 2122, 1412, 1039, …
## $ arr_delay <dbl> 48, 38, -28, -6, -21, -13, -10, 2, -13, -6, 2, -5, -30, -22,…
## $ carrier   <chr> "DL", "UA", "DL", "UA", "UA", "UA", "B6", "AA", "UA", "DL", …
## $ tailnum   <chr> "N711ZX", "N502UA", "N717TW", "N24212", "N76269", "N532UA", …
## $ flight    <int> 1322, 691, 1765, 1214, 1111, 394, 641, 177, 642, 1865, 272, …
## $ origin    <chr> "JFK", "JFK", "JFK", "EWR", "EWR", "JFK", "JFK", "JFK", "JFK…
## $ dest      <chr> "SFO", "SFO", "SFO", "SFO", "SFO", "SFO", "SFO", "SFO", "SFO…
## $ air_time  <dbl> 358, 367, 338, 353, 341, 355, 359, 338, 347, 361, 332, 351, …
## $ distance  <dbl> 2586, 2586, 2586, 2565, 2565, 2586, 2586, 2586, 2586, 2586, …
## $ hour      <dbl> 15, 6, 9, 19, 13, 14, 10, 18, 10, 6, 19, 8, 10, 18, 7, 17, 1…
## $ minute    <dbl> 27, 13, 55, 28, 40, 15, 32, 5, 56, 56, 10, 33, 48, 49, 23, 2…
  1. Create a new data frame that includes flights headed to SFO in February,and save this data frame as sfo_feb_flights. How many flights meet these criteria?

There are 68 flights that meet these criteria.

3.Describe the distribution of the arrival delays of these flights using a histogram and appropriate summary statistics. Hint: The summary statistics you use should depend on the shape of the distribution.

Another useful technique is quickly calculating summary statistics for various groups in your data frame. For example, we can modify the above command using the group_by function to get the same summary stats for each origin airport:

ggplot(data = sfo_feb_flights, aes(x = arr_delay)) +
  geom_histogram(binwidth=10)

sfo_feb_flights %>%
  summarise(mean_ad = mean(arr_delay), median_ad = median(arr_delay), iqr_ad = IQR(arr_delay), n_flights = n())
## # A tibble: 1 × 4
##   mean_ad median_ad iqr_ad n_flights
##     <dbl>     <dbl>  <dbl>     <int>
## 1    -4.5       -11   23.2        68
  1. Calculate the median and interquartile range for arr_delays of flights inin the sfo_feb_flights data frame, grouped by carrier. Which carrier has the most variable arrival delays?

The carriers DL and UA are tied for having the most variable arrival delays because their interquartile ranges are tied for the highest around 22. This can suggest that there is a greatest variation around the delays for 50% fo their data.

nycflights %>%
  group_by(month) %>%
  summarise(mean_dd = mean(dep_delay)) %>%
  arrange(desc(mean_dd))
## # A tibble: 12 × 2
##    month mean_dd
##    <int>   <dbl>
##  1     7   20.8 
##  2     6   20.4 
##  3    12   17.4 
##  4     4   14.6 
##  5     3   13.5 
##  6     5   13.3 
##  7     8   12.6 
##  8     2   10.7 
##  9     1   10.2 
## 10     9    6.87
## 11    11    6.10
## 12    10    5.88
sfo_feb_flights %>%
  group_by(carrier) %>%
  summarise(median_ad = median(arr_delay), iqr_ad = IQR(arr_delay), n_flights = n())
## # A tibble: 5 × 4
##   carrier median_ad iqr_ad n_flights
##   <chr>       <dbl>  <dbl>     <int>
## 1 AA            5     17.5        10
## 2 B6          -10.5   12.2         6
## 3 DL          -15     22          19
## 4 UA          -10     22          21
## 5 VX          -22.5   21.2        12
  1. Suppose you really dislike departure delays and you want to schedule your travel in a month that minimizes your potential departure delay leaving NYC. One option is to choose the month with the lowest mean departure delay.Another option is to choose the month with the lowest median departure delay. What are the pros and cons of these two choices?

The option to choose the month with the lowest mean departure delay would be shows how the data is distributed and that some of the skewed data is outliers.

nycflights <- nycflights %>%
  mutate(dep_type = ifelse(dep_delay < 5, "on time", "delayed"))
nycflights %>%
  group_by(origin) %>%
  summarise(ot_dep_rate = sum(dep_type == "on time") / n()) %>%
  arrange(desc(ot_dep_rate))
## # A tibble: 3 × 2
##   origin ot_dep_rate
##   <chr>        <dbl>
## 1 LGA          0.728
## 2 JFK          0.694
## 3 EWR          0.637
  1. If you were selecting an airport simply based on on time departure percentage, which NYC airport would you choose to fly out of?

LGA has the best time departure with a percentage of 72.8%.

ggplot(data = nycflights, aes(x = origin, fill = dep_type)) +
  geom_bar()

More Practice

  1. Mutate the data frame so that it includes a new variable that contains the average speed, avg_speed traveled by the plane for each flight (in mph). Hint: Average speed can be calculated as distance divided by number of hours of travel, and note that air_time is given in minutes.
nycflights <- nycflights %>%
  mutate(avg_speed = 60*(distance / air_time))

glimpse(nycflights)
## Rows: 32,735
## Columns: 18
## $ year      <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month     <int> 6, 5, 12, 5, 7, 1, 12, 8, 9, 4, 6, 11, 4, 3, 10, 1, 2, 8, 10…
## $ day       <int> 30, 7, 8, 14, 21, 1, 9, 13, 26, 30, 17, 22, 26, 25, 21, 23, …
## $ dep_time  <int> 940, 1657, 859, 1841, 1102, 1817, 1259, 1920, 725, 1323, 940…
## $ dep_delay <dbl> 15, -3, -1, -4, -3, -3, 14, 85, -10, 62, 5, 5, -2, 115, -4, …
## $ arr_time  <int> 1216, 2104, 1238, 2122, 1230, 2008, 1617, 2032, 1027, 1549, …
## $ arr_delay <dbl> -4, 10, 11, -34, -8, 3, 22, 71, -8, 60, -4, -2, 22, 91, -6, …
## $ carrier   <chr> "VX", "DL", "DL", "DL", "9E", "AA", "WN", "B6", "AA", "EV", …
## $ tailnum   <chr> "N626VA", "N3760C", "N712TW", "N914DL", "N823AY", "N3AXAA", …
## $ flight    <int> 407, 329, 422, 2391, 3652, 353, 1428, 1407, 2279, 4162, 20, …
## $ origin    <chr> "JFK", "JFK", "JFK", "JFK", "LGA", "LGA", "EWR", "JFK", "LGA…
## $ dest      <chr> "LAX", "SJU", "LAX", "TPA", "ORF", "ORD", "HOU", "IAD", "MIA…
## $ air_time  <dbl> 313, 216, 376, 135, 50, 138, 240, 48, 148, 110, 50, 161, 87,…
## $ distance  <dbl> 2475, 1598, 2475, 1005, 296, 733, 1411, 228, 1096, 820, 264,…
## $ hour      <dbl> 9, 16, 8, 18, 11, 18, 12, 19, 7, 13, 9, 13, 8, 20, 12, 20, 6…
## $ minute    <dbl> 40, 57, 59, 41, 2, 17, 59, 20, 25, 23, 40, 20, 9, 54, 17, 24…
## $ dep_type  <chr> "delayed", "on time", "on time", "on time", "on time", "on t…
## $ avg_speed <dbl> 474.4409, 443.8889, 394.9468, 446.6667, 355.2000, 318.6957, …
  1. Make a scatterplot of avg_speed vs. distance. Describe the relationship between average speed and distance. Hint: Use geom_point().
ggplot(data = nycflights, aes(x = distance, y = avg_speed)) + geom_point()

  1. Replicate the following plot. Hint: The data frame plotted only contains flights from American Airlines, Delta Airlines, and United Airlines, and the points are colored by carrier. Once you replicate the plot, determine (roughly) what the cutoff point is for departure delays where you can still expect to get to your destination on time.