Library

library(tidyverse)
library(kableExtra)
library(ggplot2)
library(ggthemes)
library(stringr)
library(reshape2)
library(mice)
library(nortest)
library(DescTools)
library(caret)
library(rpart)
library(rpart.plot)
library(ROCit)
library(PRROC)
library(ROCR)
library(vip)

Data

Authors UNAIR

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.3
df_authors_ok <- read_xlsx("C:/Users/user/Documents/UNAIR.xlsx")
df_authors_ok <- df_authors_ok %>%  select(-c(X)) #Menghilangkan indeks

#struktur data sebelum formating
str(df_authors_ok)
## tibble [2,342 x 30] (S3: tbl_df/tbl/data.frame)
##  $ SINTA_ID                     : num [1:2342] 5976435 256055 257455 6733821 5992105 ...
##  $ Nama                         : chr [1:2342] "MOH. YASIN" "FERRY EFENDI" "AH. YUSUF" "ARIF NUR MUHAMMAD ANSORI" ...
##  $ Universitas                  : chr [1:2342] "Universitas Airlangga" "Universitas Airlangga" "Universitas Airlangga" "Universitas Airlangga" ...
##  $ Kode_Prodi                   : num [1:2342] 45201 14001 14001 NA 11110 ...
##  $ Departemen                   : chr [1:2342] "S1 - Fisika" "S3 - Keperawatan" "S3 - Keperawatan" "Unknown" ...
##  $ Jenjang.x                    : chr [1:2342] "S1" "S3" "S3" "Unknown" ...
##  $ Program_Studi.x              : chr [1:2342] "Fisika" "Keperawatan" "Keperawatan" NA ...
##  $ SINTA_Score_Overall          : num [1:2342] 5142 4277 2859 1994 3028 ...
##  $ SINTA_Score_3Yr              : num [1:2342] 2278 2172 2037 1709 1684 ...
##  $ Affil_Score                  : num [1:2342] 0 0 0 0 0 0 0 0 0 0 ...
##  $ Affil_Score_3Yr              : num [1:2342] 0 0 0 0 0 0 0 0 0 0 ...
##  $ Scopus_Artikel               : num [1:2342] 236 122 71 105 137 116 87 110 93 129 ...
##  $ Scopus_Citation              : num [1:2342] 1376 702 194 656 873 ...
##  $ Scopus_H_Index               : num [1:2342] 18 15 7 15 17 10 14 19 19 15 ...
##  $ GScholar_Artikel             : num [1:2342] 326 257 443 151 0 425 142 208 127 201 ...
##  $ GScholar_Citation            : num [1:2342] 1933 4269 1982 980 0 ...
##  $ GScholar_H_Index             : num [1:2342] 22 25 20 16 0 21 15 22 15 19 ...
##  $ WOS_Artikel                  : num [1:2342] 0 55 12 0 0 0 17 76 0 0 ...
##  $ WOS_Citation                 : num [1:2342] 0 344 50 0 0 0 129 849 0 0 ...
##  $ WOS_H_Index                  : num [1:2342] NA 11 4 NA 0 NA 6 17 NA NA ...
##  $ index                        : num [1:2342] 45 196 196 NA 177 196 67 107 NA 77 ...
##  $ Program_Studi                : chr [1:2342] "Fisika" "Keperawatan" "Keperawatan" NA ...
##  $ Status                       : chr [1:2342] "Aktif" "Aktif" "Aktif" NA ...
##  $ Level                        : chr [1:2342] "S1" "S3" "S3" NA ...
##  $ Akreditasi                   : chr [1:2342] "Unggul" "B" "B" NA ...
##  $ Jumlah_Dosen_Penghitung_Rasio: num [1:2342] 65 14 14 NA 13 14 55 82 NA 55 ...
##  $ Jumlah_Dosen_NIDN            : num [1:2342] 21 7 7 NA 6 7 20 9 NA 11 ...
##  $ Jumlah_Dosen_NIDK            : num [1:2342] 0 0 0 NA 0 0 0 22 NA 0 ...
##  $ Jumlah_Dosen_Total           : num [1:2342] 21 7 7 NA 6 7 20 31 NA 11 ...
##  $ Jumlah_Mahasiswa             : num [1:2342] 360 97 97 NA 20 97 442 181 NA 334 ...

Data Formatting

df_authors_ok$Level <- as.factor(df_authors_ok$Level)
df_authors_ok$Program_Studi <- as.factor(df_authors_ok$Program_Studi)
df_authors_ok$Status <- as.factor(df_authors_ok$Status)
df_authors_ok$Akreditasi  <- as.factor(df_authors_ok$Akreditasi)
#struktur data setelah formating
glimpse(df_authors_ok[,c("Level", "Program_Studi", "Status", "Akreditasi")])
## Rows: 2,342
## Columns: 4
## $ Level         <fct> S1, S3, S3, NA, S2, S3, S1, Sp-1, NA, S1, S1, S1, Sp-1, ~
## $ Program_Studi <fct> Fisika, Keperawatan, Keperawatan, NA, Vaksinologi dan Im~
## $ Status        <fct> Aktif, Aktif, Aktif, NA, Aktif, Aktif, Aktif, Aktif, NA,~
## $ Akreditasi    <fct> Unggul, B, B, NA, Unggul, B, Unggul, A, NA, A, A, A, A, ~

Re-Level Factor

levels(df_authors_ok$Level) #level awal
## [1] "D3"      "D4"      "Profesi" "S1"      "S2"      "S3"      "Sp-1"   
## [8] "Sp-2"
df_authors_ok$Level <- factor(df_authors_ok$Level,levels(df_authors_ok$Level)[c(1,2,5,6,3,4)]) #re-level
levels(df_authors_ok$Level) #setelah re-level
## [1] "D3"      "D4"      "S2"      "S3"      "Profesi" "S1"
levels(df_authors_ok$Akreditasi)
## [1] "-"           "A"           "B"           "Baik"        "Baik Sekali"
## [6] "Unggul"

Rumpun Ilmu dari Prodi

#Membentuk rumpun ilmu berdasarkan kode prodi 2 digit
df_rumpun <- df_authors_ok %>% 
  select(Kode_Prodi,Program_Studi)  %>% 
  group_by(Kode_Prodi,Program_Studi) %>%
  summarize() %>% 
  mutate(Kode_Prodi_2Digit = substr(Kode_Prodi,1,2)) %>%
  na.omit()
## `summarise()` has grouped output by 'Kode_Prodi'. You can override using the
## `.groups` argument.
df_rumpun
## # A tibble: 174 x 3
## # Groups:   Kode_Prodi [174]
##    Kode_Prodi Program_Studi                   Kode_Prodi_2Digit
##         <dbl> <fct>                           <chr>            
##  1      11001 Ilmu Kedokteran                 11               
##  2      11101 Ilmu Kedokteran Dasar           11               
##  3      11103 Ilmu Kedokteran Klinik          11               
##  4      11104 Ilmu Kedokteran Tropis          11               
##  5      11105 Imunologi                       11               
##  6      11110 Vaksinologi dan Imunoterapetika 11               
##  7      11122 Ilmu Kesehatan Olah Raga        11               
##  8      11123 Teknik Biomedis                 11               
##  9      11124 Ilmu Forensik                   11               
## 10      11201 Kedokteran                      11               
## # ... with 164 more rows
#Membentuk rumpun ilmu berdasarkan kode prodi 2 digit
df_rumpun <- df_rumpun %>% 
  mutate(Rumpun_Ilmu = case_when(Kode_Prodi_2Digit %in% c(11:15,48) ~ "Kesehatan",
                                 Kode_Prodi_2Digit %in% c(20,21,22,25,26,30,31,56) ~ "Teknik",
                                 Kode_Prodi_2Digit %in% c(44,45,46,47,49,51,55,57) ~ "MIPA",
                                 Kode_Prodi_2Digit==54 ~ "Perikanan, Kelautan, Fakultas Kedokteran Hewan",
                                 Kode_Prodi_2Digit %in% c(60:63,93) ~ "Ekonomi",
                                 Kode_Prodi_2Digit %in% c(64,67,68,69,70,71,73) ~ "Ilmu Sosial dan Ilmu Politik",
                                 Kode_Prodi_2Digit==74 ~ "Hukum",
                                 Kode_Prodi_2Digit %in% c(79:82) ~ "Ilmu dan Budaya",
                                 Kode_Prodi_2Digit %in% c(83:90,94) ~ "Pendidikan",
                                 Kode_Prodi_2Digit==93 ~ "Pariwisata",
                                 Kode_Prodi_2Digit==95 ~ "Lingkungan"
                                 ))
df_rumpun
## # A tibble: 174 x 4
## # Groups:   Kode_Prodi [174]
##    Kode_Prodi Program_Studi                   Kode_Prodi_2Digit Rumpun_Ilmu
##         <dbl> <fct>                           <chr>             <chr>      
##  1      11001 Ilmu Kedokteran                 11                Kesehatan  
##  2      11101 Ilmu Kedokteran Dasar           11                Kesehatan  
##  3      11103 Ilmu Kedokteran Klinik          11                Kesehatan  
##  4      11104 Ilmu Kedokteran Tropis          11                Kesehatan  
##  5      11105 Imunologi                       11                Kesehatan  
##  6      11110 Vaksinologi dan Imunoterapetika 11                Kesehatan  
##  7      11122 Ilmu Kesehatan Olah Raga        11                Kesehatan  
##  8      11123 Teknik Biomedis                 11                Kesehatan  
##  9      11124 Ilmu Forensik                   11                Kesehatan  
## 10      11201 Kedokteran                      11                Kesehatan  
## # ... with 164 more rows
#dataframe rumpun ilmu yang akan digunakan untuk di merge dengan data awal
df_rumpun_oke <- df_rumpun %>% select(Kode_Prodi,Rumpun_Ilmu)

Analisis

#struktur data
glimpse(df_authors_ok)
## Rows: 2,342
## Columns: 30
## $ SINTA_ID                      <dbl> 5976435, 256055, 257455, 6733821, 599210~
## $ Nama                          <chr> "MOH. YASIN", "FERRY EFENDI", "AH. YUSUF~
## $ Universitas                   <chr> "Universitas Airlangga", "Universitas Ai~
## $ Kode_Prodi                    <dbl> 45201, 14001, 14001, NA, 11110, 14001, 4~
## $ Departemen                    <chr> "S1 - Fisika", "S3 - Keperawatan", "S3 -~
## $ Jenjang.x                     <chr> "S1", "S3", "S3", "Unknown", "S2", "S3",~
## $ Program_Studi.x               <chr> "Fisika", "Keperawatan", "Keperawatan", ~
## $ SINTA_Score_Overall           <dbl> 5142, 4277, 2859, 1994, 3028, 2748, 2573~
## $ SINTA_Score_3Yr               <dbl> 2278, 2172, 2037, 1709, 1684, 1673, 1663~
## $ Affil_Score                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ Affil_Score_3Yr               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ Scopus_Artikel                <dbl> 236, 122, 71, 105, 137, 116, 87, 110, 93~
## $ Scopus_Citation               <dbl> 1376, 702, 194, 656, 873, 359, 660, 966,~
## $ Scopus_H_Index                <dbl> 18, 15, 7, 15, 17, 10, 14, 19, 19, 15, 1~
## $ GScholar_Artikel              <dbl> 326, 257, 443, 151, 0, 425, 142, 208, 12~
## $ GScholar_Citation             <dbl> 1933, 4269, 1982, 980, 0, 3592, 833, 151~
## $ GScholar_H_Index              <dbl> 22, 25, 20, 16, 0, 21, 15, 22, 15, 19, 1~
## $ WOS_Artikel                   <dbl> 0, 55, 12, 0, 0, 0, 17, 76, 0, 0, 18, 36~
## $ WOS_Citation                  <dbl> 0, 344, 50, 0, 0, 0, 129, 849, 0, 0, 60,~
## $ WOS_H_Index                   <dbl> NA, 11, 4, NA, 0, NA, 6, 17, NA, NA, 4, ~
## $ index                         <dbl> 45, 196, 196, NA, 177, 196, 67, 107, NA,~
## $ Program_Studi                 <fct> Fisika, Keperawatan, Keperawatan, NA, Va~
## $ Status                        <fct> Aktif, Aktif, Aktif, NA, Aktif, Aktif, A~
## $ Level                         <fct> S1, S3, S3, NA, S2, S3, S1, NA, NA, S1, ~
## $ Akreditasi                    <fct> Unggul, B, B, NA, Unggul, B, Unggul, A, ~
## $ Jumlah_Dosen_Penghitung_Rasio <dbl> 65, 14, 14, NA, 13, 14, 55, 82, NA, 55, ~
## $ Jumlah_Dosen_NIDN             <dbl> 21, 7, 7, NA, 6, 7, 20, 9, NA, 11, 13, 1~
## $ Jumlah_Dosen_NIDK             <dbl> 0, 0, 0, NA, 0, 0, 0, 22, NA, 0, 0, 0, 0~
## $ Jumlah_Dosen_Total            <dbl> 21, 7, 7, NA, 6, 7, 20, 31, NA, 11, 13, ~
## $ Jumlah_Mahasiswa              <dbl> 360, 97, 97, NA, 20, 97, 442, 181, NA, 3~

Data

Unit Observasi = Authors

y = SINTA_Score_3Yr yang dikategorisasi menjadi tinggi dan rendah

x1 = Rumpun Ilmu (Ganjil 2021)

x2 = Level (Ganjil 2021)

x3 = Akreditasi (Ganjil 2021)

x4 = Total Jumlah Dosen (Ganjil 2021)

x5 = Jumlah Mahasiswa (Ganjil 2021)

x6 = Rasio Dosen per Mahasiswa (Ganjil 2021)

data_1 <- df_authors_ok %>%  
  left_join(df_rumpun_oke, by="Kode_Prodi") %>%  
  select(SINTA_Score_3Yr,Program_Studi,Rumpun_Ilmu,Level,Akreditasi,Jumlah_Dosen_Total,Jumlah_Mahasiswa) %>% 
  mutate(Rasio_Dosen_per_Mahasiswa = df_authors_ok$Jumlah_Dosen_Penghitung_Rasio/df_authors_ok$Jumlah_Mahasiswa,
         y = ifelse(SINTA_Score_3Yr>=219,"1","0")) #kelas 1:SINTA_Score_3Yr yang tinggi
data_1$y <- as.factor(data_1$y)
data_1$Rumpun_Ilmu <- as.factor(data_1$Rumpun_Ilmu)
str(data_1)
## tibble [2,342 x 9] (S3: tbl_df/tbl/data.frame)
##  $ SINTA_Score_3Yr          : num [1:2342] 2278 2172 2037 1709 1684 ...
##  $ Program_Studi            : Factor w/ 151 levels "Administrasi Dan Kebijakan Kesehatan",..: 30 83 83 NA 151 83 96 62 NA 143 ...
##  $ Rumpun_Ilmu              : Factor w/ 9 levels "Ekonomi","Hukum",..: 7 5 5 NA 5 5 7 5 NA 9 ...
##  $ Level                    : Factor w/ 6 levels "D3","D4","S2",..: 6 4 4 NA 3 4 6 NA NA 6 ...
##  $ Akreditasi               : Factor w/ 6 levels "-","A","B","Baik",..: 6 3 3 NA 6 3 6 2 NA 2 ...
##  $ Jumlah_Dosen_Total       : num [1:2342] 21 7 7 NA 6 7 20 31 NA 11 ...
##  $ Jumlah_Mahasiswa         : num [1:2342] 360 97 97 NA 20 97 442 181 NA 334 ...
##  $ Rasio_Dosen_per_Mahasiswa: num [1:2342] 0.181 0.144 0.144 NA 0.65 ...
##  $ y                        : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
#Cek missing values
md.pattern(data_1,rotate.names = TRUE)

##      SINTA_Score_3Yr y Program_Studi Rumpun_Ilmu Akreditasi Jumlah_Dosen_Total
## 1481               1 1             1           1          1                  1
## 347                1 1             1           1          1                  1
## 9                  1 1             1           1          1                  1
## 3                  1 1             1           1          1                  1
## 502                1 1             0           0          0                  0
##                    0 0           502         502        502                502
##      Jumlah_Mahasiswa Rasio_Dosen_per_Mahasiswa Level     
## 1481                1                         1     1    0
## 347                 1                         1     0    1
## 9                   1                         0     1    1
## 3                   1                         0     0    2
## 502                 0                         0     0    7
##                   502                       514   852 3876
data_1 <- data_1 %>% filter(!is.na(Program_Studi),!is.na(Level),!is.na(Akreditasi),!is.na(Jumlah_Mahasiswa),!is.na(Jumlah_Dosen_Total),
                            Rasio_Dosen_per_Mahasiswa!=Inf)
head(data_1) #data yang akan digunakan
## # A tibble: 6 x 9
##   SINTA_Score_3Yr Program_~1 Rumpu~2 Level Akred~3 Jumla~4 Jumla~5 Rasio~6 y    
##             <dbl> <fct>      <fct>   <fct> <fct>     <dbl>   <dbl>   <dbl> <fct>
## 1            2278 Fisika     MIPA    S1    Unggul       21     360   0.181 1    
## 2            2172 Keperawat~ Keseha~ S3    B             7      97   0.144 1    
## 3            2037 Keperawat~ Keseha~ S3    B             7      97   0.144 1    
## 4            1684 Vaksinolo~ Keseha~ S2    Unggul        6      20   0.65  1    
## 5            1673 Keperawat~ Keseha~ S3    B             7      97   0.144 1    
## 6            1663 Matematika MIPA    S1    Unggul       20     442   0.124 1    
## # ... with abbreviated variable names 1: Program_Studi, 2: Rumpun_Ilmu,
## #   3: Akreditasi, 4: Jumlah_Dosen_Total, 5: Jumlah_Mahasiswa,
## #   6: Rasio_Dosen_per_Mahasiswa

EDA Data

Peubah Respon (y)

#format data yang dibutuhkan
data_chart <- data_1 %>% 
  group_by(y) %>%  
  summarize(value=n()) %>%
  mutate(prop = round(value / sum(value) *100, digits = 2))

#pie chart: Sebaran Authors Berdasarkan Kategori SINTA_Score_3Yr
library(dplyr)                                       
library(ggplot2)                                     
library(scales)
## Warning: package 'scales' was built under R version 4.1.3
## 
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
## 
##     discard
## The following object is masked from 'package:readr':
## 
##     col_factor
mycols <- c("#0073C2FF", "#EFC000FF")
ggplot(data_chart, aes(x="", y=prop, fill=y)) +
  geom_bar(stat="identity", width=1, color="orange") +
  coord_polar("y", start=0) +
  labs(title= "Proporsi Authors Menurut Kategori SINTA_Score_3Yr",
       subtitle = "Universitas Airlangga") +
  theme_void() 

Peubah Prediktor (X) Numerik

#Density Jumlah_Dosen_Total
ggplot(data_1, aes(x=Jumlah_Dosen_Total)) +
  geom_histogram(fill="orange", color="#e9ecef", alpha=0.8, bins=15)+
  theme_light() +
  labs(x="Jumlah_Dosen_Total",
       y="Density",
       title= "Sebaran Jumlah_Dosen_Total",
       subtitle = "Universitas Airlangga") 

#Density Jumlah_Mahasiswa
ggplot(data_1, aes(x=Jumlah_Mahasiswa)) +
  geom_histogram(fill="orange", color="#e9ecef", alpha=0.8, bins=15)+
  theme_light() +
  labs(x="Jumlah_Mahasiswa",
       y="Density",
       title= "Sebaran Jumlah_Mahasiswa",
       subtitle = "Universitas Airlangga") 

#Density Rasio_Dosen_per_Mahasiswa
ggplot(data_1, aes(x=Rasio_Dosen_per_Mahasiswa)) +
  geom_histogram(fill="orange", color="#e9ecef", alpha=0.8, bins=20)+
  theme_light() +
  labs(x="Rasio_Dosen_per_Mahasiswa",
       y="Density",
       title= "Sebaran Rasio_Dosen_per_Mahasiswa",
       subtitle = "Universitas Airlangga") 

### Peubah Prediktor (X) Kategorik

# Akreditasi
data_bar_chart = data_1 %>%  
  group_by(Akreditasi)%>% 
  summarize(Jumlah=n())

ggplot(data_bar_chart, aes(x=Akreditasi, y=Jumlah)) + 
  geom_bar(stat = "identity",fill = "orange",color="black") +
  theme_light() +
  labs(x="",
       y="",
       title= "",
       subtitle = "Akreditasi Prodi Universitas Airlangga") +
  coord_flip()

# Level
data_bar_chart = data_1 %>%  
  group_by(Level)%>% 
  summarize(Jumlah=n())

ggplot(data_bar_chart, aes(x=Level, y=Jumlah)) + 
  geom_bar(stat = "identity",fill ="orange",color="steelblue") +
  theme_light() +
  labs(x="",
       y="",
       title= "",
       subtitle = "Level Prodi Universitas Airlangga") +
  coord_flip()

# Rumpun Ilmu
data_bar_chart = data_1 %>%  
  group_by(Rumpun_Ilmu)%>% 
  summarize(Jumlah=n())

ggplot(data_bar_chart, aes(x=(Rumpun_Ilmu), y=Jumlah)) + 
  geom_bar(stat = "identity",fill = "orange",color="steelblue") +
  theme_light() +
  labs(x="",
       y="",
       title= "",
       subtitle = "Rumpun Ilmu Jurusan Universitas Airlangga") +
  coord_flip()

Hubungan Peubah Prediktor dengan Peubah Respon

# Akreditasi & y
percentData <- data_1 %>% 
  group_by(Akreditasi) %>% 
  count(y) %>% 
  mutate(ratio=scales::percent(n/sum(n)))
ggplot(data_1,aes(x=factor(Akreditasi),fill=y,))+
    geom_bar(position="fill")+
    scale_fill_manual(values=c("orange", "chocolate"))+ 
    geom_text(data=percentData, aes(y=n,label=ratio), color="white",position=position_fill(vjust=0.5))+
    labs( 
       y = "Sinta Score", 
       x = "Akreditasi", 
       subtitle = "UNAIR",
       title = "Proporsi Peubah Respon Menurut Akreditasi")

# Level & y
percentData <- data_1 %>% 
  group_by(Level) %>% 
  count(y) %>% 
  mutate(ratio=scales::percent(n/sum(n)))
ggplot(data_1,aes(x=factor(Level),fill=y,))+
    geom_bar(position="fill")+
    scale_fill_manual(values=c("orange", "chocolate"))+ 
    geom_text(data=percentData, aes(y=n,label=ratio), color="white",position=position_fill(vjust=0.5))+
    labs( 
       y = "Sinta Score", 
       x = "Level", 
       subtitle = "UNAIR",
       title = "Proporsi Peubah Respon Menurut Level")

# Rumpun_Ilmu & y
percentData <- data_1 %>% 
  group_by(Rumpun_Ilmu) %>% 
  count(y) %>% 
  mutate(ratio=scales::percent(n/sum(n)))
ggplot(data_1,aes(x=factor(Rumpun_Ilmu),fill=y,))+
    geom_bar(position="fill")+
    scale_fill_manual(values=c("orange", "chocolate"))+ 
    geom_text(data=percentData, aes(y=n,label=ratio), color="white",position=position_fill(vjust=0.5))+
    labs( 
       y = "", 
       x = "Rumpun_Ilmu", 
       subtitle = "UNAIR",
       title = "Proporsi Peubah Respon Menurut Rumpun Ilmu")

# Jumlah_Mahasiswa & y

#Boxplot by kategori
ggplot(data_1, aes(y=y,x=Jumlah_Mahasiswa,fill=Jumlah_Mahasiswa,alpha=Jumlah_Mahasiswa)) + 
  geom_boxplot(fill="darkorange1",  alpha=0.8) +
  theme_light() +
  labs(x="Jumlah_Mahasiswa",
       y="y",
       title= "Sebaran Jumlah Mahasiswa Menurut Peubah Respon",
       subtitle = "Universitas Airlangga") 

# Jumlah_Dosen_Total & y

#Boxplot by kategori
ggplot(data_1, aes(y=y,x=Jumlah_Dosen_Total,fill=Jumlah_Dosen_Total,alpha=Jumlah_Dosen_Total)) + 
  geom_boxplot(fill="darkorange1",  alpha=0.8) +
  theme_light() +
  labs(x="Jumlah_Dosen_Total",
       y="y",
       title= "Sebaran Jumlah Dosen Total Menurut Peubah Respon",
       subtitle = "Universitas Airlangga") 

# Rasio_Dosen_per_Mahasiswa & y

#Boxplot by kategori
ggplot(data_1, aes(y=y,x=Rasio_Dosen_per_Mahasiswa,fill=Rasio_Dosen_per_Mahasiswa,alpha=Rasio_Dosen_per_Mahasiswa)) + 
  geom_boxplot(fill="darkorange1",  alpha=0.8) +
  theme_light() +
  labs(x="Rasio_Dosen_per_Mahasiswa",
       y="y",
       title= "Sebaran Rasio Dosen per Mahasiswa Menurut Peubah Respon",
       subtitle = "Universitas Airlangga") 

Data Model

#data yang akan digunakan untuk model
data_sinta <- data_1 %>% select(-c(SINTA_Score_3Yr,Program_Studi))
str(data_sinta)
## tibble [1,481 x 7] (S3: tbl_df/tbl/data.frame)
##  $ Rumpun_Ilmu              : Factor w/ 9 levels "Ekonomi","Hukum",..: 7 5 5 5 5 7 9 7 9 1 ...
##  $ Level                    : Factor w/ 6 levels "D3","D4","S2",..: 6 4 4 3 4 6 6 6 6 6 ...
##  $ Akreditasi               : Factor w/ 6 levels "-","A","B","Baik",..: 6 3 3 6 3 6 2 2 2 2 ...
##  $ Jumlah_Dosen_Total       : num [1:1481] 21 7 7 6 7 20 11 13 11 18 ...
##  $ Jumlah_Mahasiswa         : num [1:1481] 360 97 97 20 97 ...
##  $ Rasio_Dosen_per_Mahasiswa: num [1:1481] 0.181 0.144 0.144 0.65 0.144 ...
##  $ y                        : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...

Splitting Data

set.seed(478)
in.train <- createDataPartition(as.factor(data_sinta$y),p=0.7,list=F) #partisi data
data_sinta_train <- data_sinta[in.train,] #data training utk modelling
data_sinta_test<- data_sinta[-in.train,] #data testing utk evaluasi model

#proporsi kelas peubah respon pada data
round(prop.table(table(data_sinta_train$y)), digits = 4)
## 
##      0      1 
## 0.7351 0.2649
round(prop.table(table(data_sinta_test$y)), digits = 4)
## 
##      0      1 
## 0.7359 0.2641

Regresi Logistik

Semua Peubah

model_reglog_1 <- glm(y~., data_sinta_train, family=binomial())
summary(model_reglog_1)
## 
## Call:
## glm(formula = y ~ ., family = binomial(), data = data_sinta_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8781  -0.7597  -0.5122   0.7744   2.9265  
## 
## Coefficients:
##                                                             Estimate Std. Error
## (Intercept)                                               -3.062e+00  6.574e-01
## Rumpun_IlmuHukum                                          -2.453e+00  8.072e-01
## Rumpun_IlmuIlmu dan Budaya                                -2.126e+00  1.047e+00
## Rumpun_IlmuIlmu Sosial dan Ilmu Politik                   -3.977e-01  4.130e-01
## Rumpun_IlmuKesehatan                                       1.279e+00  3.029e-01
## Rumpun_IlmuLingkungan                                     -1.675e+01  1.297e+03
## Rumpun_IlmuMIPA                                            1.847e+00  4.068e-01
## Rumpun_IlmuPerikanan, Kelautan, Fakultas Kedokteran Hewan  1.320e+00  3.258e-01
## Rumpun_IlmuTeknik                                          2.285e+00  7.108e-01
## LevelD4                                                   -1.551e+01  6.477e+02
## LevelS2                                                    2.131e+00  4.612e-01
## LevelS3                                                    3.094e+00  5.352e-01
## LevelProfesi                                               9.088e-01  5.218e-01
## LevelS1                                                    9.360e-01  4.935e-01
## AkreditasiA                                               -2.728e-01  4.966e-01
## AkreditasiB                                                1.213e-01  5.818e-01
## AkreditasiBaik                                             4.915e-01  8.063e-01
## AkreditasiBaik Sekali                                     -2.636e-01  9.298e-01
## AkreditasiUnggul                                           1.289e-01  5.004e-01
## Jumlah_Dosen_Total                                        -1.706e-02  7.936e-03
## Jumlah_Mahasiswa                                           8.198e-04  5.377e-04
## Rasio_Dosen_per_Mahasiswa                                  4.912e-02  4.566e-01
##                                                           z value Pr(>|z|)    
## (Intercept)                                                -4.658 3.19e-06 ***
## Rumpun_IlmuHukum                                           -3.039  0.00237 ** 
## Rumpun_IlmuIlmu dan Budaya                                 -2.030  0.04231 *  
## Rumpun_IlmuIlmu Sosial dan Ilmu Politik                    -0.963  0.33557    
## Rumpun_IlmuKesehatan                                        4.224 2.40e-05 ***
## Rumpun_IlmuLingkungan                                      -0.013  0.98970    
## Rumpun_IlmuMIPA                                             4.542 5.58e-06 ***
## Rumpun_IlmuPerikanan, Kelautan, Fakultas Kedokteran Hewan   4.053 5.06e-05 ***
## Rumpun_IlmuTeknik                                           3.214  0.00131 ** 
## LevelD4                                                    -0.024  0.98089    
## LevelS2                                                     4.620 3.84e-06 ***
## LevelS3                                                     5.781 7.41e-09 ***
## LevelProfesi                                                1.742  0.08155 .  
## LevelS1                                                     1.897  0.05788 .  
## AkreditasiA                                                -0.549  0.58282    
## AkreditasiB                                                 0.208  0.83486    
## AkreditasiBaik                                              0.610  0.54218    
## AkreditasiBaik Sekali                                      -0.283  0.77682    
## AkreditasiUnggul                                            0.258  0.79668    
## Jumlah_Dosen_Total                                         -2.150  0.03153 *  
## Jumlah_Mahasiswa                                            1.525  0.12736    
## Rasio_Dosen_per_Mahasiswa                                   0.108  0.91435    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1200.25  on 1037  degrees of freedom
## Residual deviance:  966.89  on 1016  degrees of freedom
## AIC: 1010.9
## 
## Number of Fisher Scoring iterations: 16
# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_reglog_1, data_sinta_train, type = "response")
prediksi_data_train <- as.factor(ifelse(prediksi_prob_data_train > 0.5,"1","0"))
prediksi_data_train
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
##    1    1    1    0    0    0    0    0    1    0    0    0    0    1    1    1 
##   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32 
##    1    0    1    1    1    0    0    1    1    1    0    1    0    1    1    0 
##   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48 
##    1    1    0    1    0    0    1    1    0    0    1    1    0    1    0    0 
##   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64 
##    0    0    0    1    1    0    1    0    0    1    1    0    1    0    1    0 
##   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80 
##    1    0    1    1    0    1    1    1    0    0    1    1    0    1    0    0 
##   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96 
##    1    0    0    1    0    1    1    1    0    0    0    0    1    1    0    1 
##   97   98   99  100  101  102  103  104  105  106  107  108  109  110  111  112 
##    0    0    0    0    1    1    0    0    1    0    0    0    0    1    0    0 
##  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128 
##    0    0    0    0    1    0    0    1    0    0    0    0    1    0    0    0 
##  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144 
##    0    1    1    0    0    1    1    0    0    0    0    0    0    0    0    0 
##  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160 
##    0    0    0    0    0    0    0    0    0    0    0    1    0    0    1    1 
##  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176 
##    0    0    0    0    0    1    0    1    0    0    1    0    0    0    1    0 
##  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192 
##    0    0    0    0    0    0    0    0    0    0    0    0    1    0    1    0 
##  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208 
##    0    1    0    0    0    0    1    0    0    0    0    0    1    0    1    1 
##  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224 
##    0    1    0    1    0    0    0    1    0    0    0    1    0    0    1    0 
##  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240 
##    0    0    0    0    0    0    0    0    0    1    1    0    0    0    1    0 
##  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256 
##    1    0    1    0    0    0    0    0    0    0    0    1    0    1    0    0 
##  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272 
##    1    0    0    0    0    1    0    1    0    0    1    0    0    0    0    0 
##  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288 
##    0    1    0    0    1    0    0    1    0    1    0    0    1    0    1    0 
##  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304 
##    1    0    1    0    1    0    0    0    0    0    0    0    0    0    1    0 
##  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320 
##    0    0    1    1    0    0    1    0    0    0    0    0    0    0    0    0 
##  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336 
##    1    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0 
##  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352 
##    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    1 
##  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368 
##    1    0    0    0    0    0    1    0    0    0    0    0    1    0    0    0 
##  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384 
##    0    0    0    0    0    0    0    0    0    1    0    0    0    1    0    1 
##  385  386  387  388  389  390  391  392  393  394  395  396  397  398  399  400 
##    0    0    0    1    0    0    0    0    0    0    1    0    0    0    0    0 
##  401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416 
##    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432 
##    0    1    0    1    1    0    1    0    0    0    0    0    0    0    0    0 
##  433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0 
##  449  450  451  452  453  454  455  456  457  458  459  460  461  462  463  464 
##    0    0    0    1    0    0    0    0    0    0    0    0    0    0    1    1 
##  465  466  467  468  469  470  471  472  473  474  475  476  477  478  479  480 
##    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0 
##  481  482  483  484  485  486  487  488  489  490  491  492  493  494  495  496 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  497  498  499  500  501  502  503  504  505  506  507  508  509  510  511  512 
##    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0 
##  513  514  515  516  517  518  519  520  521  522  523  524  525  526  527  528 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  529  530  531  532  533  534  535  536  537  538  539  540  541  542  543  544 
##    0    0    0    0    0    0    0    0    0    0    1    1    1    1    0    0 
##  545  546  547  548  549  550  551  552  553  554  555  556  557  558  559  560 
##    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0 
##  561  562  563  564  565  566  567  568  569  570  571  572  573  574  575  576 
##    1    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  577  578  579  580  581  582  583  584  585  586  587  588  589  590  591  592 
##    0    0    1    0    0    0    0    0    0    0    0    0    0    1    0    0 
##  593  594  595  596  597  598  599  600  601  602  603  604  605  606  607  608 
##    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0 
##  609  610  611  612  613  614  615  616  617  618  619  620  621  622  623  624 
##    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0 
##  625  626  627  628  629  630  631  632  633  634  635  636  637  638  639  640 
##    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0 
##  641  642  643  644  645  646  647  648  649  650  651  652  653  654  655  656 
##    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  657  658  659  660  661  662  663  664  665  666  667  668  669  670  671  672 
##    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  673  674  675  676  677  678  679  680  681  682  683  684  685  686  687  688 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  689  690  691  692  693  694  695  696  697  698  699  700  701  702  703  704 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  705  706  707  708  709  710  711  712  713  714  715  716  717  718  719  720 
##    0    0    0    0    0    0    0    0    0    0    0    1    0    1    0    0 
##  721  722  723  724  725  726  727  728  729  730  731  732  733  734  735  736 
##    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0 
##  737  738  739  740  741  742  743  744  745  746  747  748  749  750  751  752 
##    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0 
##  753  754  755  756  757  758  759  760  761  762  763  764  765  766  767  768 
##    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0 
##  769  770  771  772  773  774  775  776  777  778  779  780  781  782  783  784 
##    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0 
##  785  786  787  788  789  790  791  792  793  794  795  796  797  798  799  800 
##    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0 
##  801  802  803  804  805  806  807  808  809  810  811  812  813  814  815  816 
##    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0 
##  817  818  819  820  821  822  823  824  825  826  827  828  829  830  831  832 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  833  834  835  836  837  838  839  840  841  842  843  844  845  846  847  848 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  849  850  851  852  853  854  855  856  857  858  859  860  861  862  863  864 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  865  866  867  868  869  870  871  872  873  874  875  876  877  878  879  880 
##    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0 
##  881  882  883  884  885  886  887  888  889  890  891  892  893  894  895  896 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  897  898  899  900  901  902  903  904  905  906  907  908  909  910  911  912 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  913  914  915  916  917  918  919  920  921  922  923  924  925  926  927  928 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  929  930  931  932  933  934  935  936  937  938  939  940  941  942  943  944 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  945  946  947  948  949  950  951  952  953  954  955  956  957  958  959  960 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  961  962  963  964  965  966  967  968  969  970  971  972  973  974  975  976 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  977  978  979  980  981  982  983  984  985  986  987  988  989  990  991  992 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  993  994  995  996  997  998  999 1000 1001 1002 1003 1004 1005 1006 1007 1008 
##    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0 
## 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
## 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 
##    0    0    0    0    0    0    0    0    0    0    1    0    0    0 
## Levels: 0 1
eval_reglog_1_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_reglog_1_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 702 184
##          1  61  91
##                                           
##                Accuracy : 0.764           
##                  95% CI : (0.7369, 0.7895)
##     No Information Rate : 0.7351          
##     P-Value [Acc > NIR] : 0.01812         
##                                           
##                   Kappa : 0.2928          
##                                           
##  Mcnemar's Test P-Value : 6.477e-15       
##                                           
##             Sensitivity : 0.33091         
##             Specificity : 0.92005         
##          Pos Pred Value : 0.59868         
##          Neg Pred Value : 0.79233         
##              Prevalence : 0.26493         
##          Detection Rate : 0.08767         
##    Detection Prevalence : 0.14644         
##       Balanced Accuracy : 0.62548         
##                                           
##        'Positive' Class : 1               
## 

Sensitivity: kemampuan model dalam memprediksi kelas positif

Specificity: kemampuan model dalam memprediksi kelas negatif

# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_reglog_1, data_sinta_test, type = "response")
prediksi_data_test <- as.factor(ifelse(prediksi_prob_data_test > 0.5,"1","0"))
prediksi_data_test
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
##   0   1   0   0   1   1   1   1   0   0   0   0   0   0   0   0   0   1   1   0 
##  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40 
##   1   1   0   1   0   1   1   0   0   0   0   0   0   0   0   1   1   1   0   0 
##  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 
##   1   0   0   0   1   0   1   1   0   1   0   1   0   0   1   0   0   0   1   0 
##  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
##   0   0   1   0   1   0   0   0   0   1   0   0   0   1   0   1   0   0   1   0 
##  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0 
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 
##   0   1   1   0   0   0   0   0   1   0   0   0   0   0   0   0   0   1   1   0 
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 
##   0   1   0   0   1   1   1   0   1   0   1   0   1   0   0   0   0   0   0   0 
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 
##   0   0   1   0   0   0   0   0   0   1   0   0   0   0   1   0   0   0   0   0 
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
##   0   0   0   0   0   0   0   0   1   1   0   0   1   0   0   1   0   0   0   0 
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 
##   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
##   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
## 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0 
## 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 
##   0   0   0   1   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0 
## 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 
##   0   0   0   0   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0 
## 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 
##   0   0   0   0   0   0   0   0   0   0   0   0   1   0   1   0   0   0   0   0 
## 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0 
## 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
## 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0 
## 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 
##   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   1   0   0 
## 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
## 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0 
## 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 
##   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
## 441 442 443 
##   0   0   0 
## Levels: 0 1
eval_reglog_1 <- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_reglog_1
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 296  84
##          1  30  33
##                                           
##                Accuracy : 0.7427          
##                  95% CI : (0.6993, 0.7828)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.3969          
##                                           
##                   Kappa : 0.223           
##                                           
##  Mcnemar's Test P-Value : 6.909e-07       
##                                           
##             Sensitivity : 0.28205         
##             Specificity : 0.90798         
##          Pos Pred Value : 0.52381         
##          Neg Pred Value : 0.77895         
##              Prevalence : 0.26411         
##          Detection Rate : 0.07449         
##    Detection Prevalence : 0.14221         
##       Balanced Accuracy : 0.59501         
##                                           
##        'Positive' Class : 1               
## 

Performa model pada data training dan data testing perlu diperhatikan untuk mengetahui adanya overfiting/underfiting

Overfiting terjadi ketika performa model pada data training jauh lebih tinggi jika dibandingkan dengan performa model pada data testing (mempelajari data terlalu baik)

Underfiting terjadi ketika performa model pada data testing jauh lebih tinggi jika dibandingkan dengan performa model pada data training (tidak mempelajari data dengan baik)

#fungsi utk membentuk plot ROC
rocplot=function(pred,truth, ...){
  predob=ROCR::prediction(pred,truth)
  perf=ROCR::performance(predob,"tpr","fpr")
  auc=ROCR::performance(predob,"auc")@y.values
  plot(perf,main = auc)
  
}
#ROC data training
rocplot(prediksi_prob_data_train,data_sinta_train$y) 

#ROC data testing
rocplot(prediksi_prob_data_test,data_sinta_test$y)

#variable importance
vip(model_reglog_1,num_features = 50,)

Seleksi Peubah

model_reglog_2 <- glm(y~Level+Jumlah_Mahasiswa , data_sinta, family=binomial())
summary(model_reglog_2)
## 
## Call:
## glm(formula = y ~ Level + Jumlah_Mahasiswa, family = binomial(), 
##     data = data_sinta)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2297  -0.8519  -0.6143   1.1454   2.8187  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -1.7618942  0.3258366  -5.407 6.40e-08 ***
## LevelD4          -1.8610915  1.0609162  -1.754 0.079391 .  
## LevelS2           1.3125667  0.3435387   3.821 0.000133 ***
## LevelS3           1.9160774  0.3746660   5.114 3.15e-07 ***
## LevelProfesi      0.7439566  0.4006039   1.857 0.063299 .  
## LevelS1           1.4455213  0.3527444   4.098 4.17e-05 ***
## Jumlah_Mahasiswa -0.0011051  0.0002356  -4.691 2.72e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1711.7  on 1480  degrees of freedom
## Residual deviance: 1604.5  on 1474  degrees of freedom
## AIC: 1618.5
## 
## Number of Fisher Scoring iterations: 6
# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_reglog_2, data_sinta_train, type = "response")
prediksi_data_train <- as.factor(ifelse(prediksi_prob_data_train > 0.5,"1","0"))
eval_reglog_2_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_reglog_2_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 748 253
##          1  15  22
##                                          
##                Accuracy : 0.7418         
##                  95% CI : (0.714, 0.7682)
##     No Information Rate : 0.7351         
##     P-Value [Acc > NIR] : 0.3254         
##                                          
##                   Kappa : 0.0834         
##                                          
##  Mcnemar's Test P-Value : <2e-16         
##                                          
##             Sensitivity : 0.08000        
##             Specificity : 0.98034        
##          Pos Pred Value : 0.59459        
##          Neg Pred Value : 0.74725        
##              Prevalence : 0.26493        
##          Detection Rate : 0.02119        
##    Detection Prevalence : 0.03565        
##       Balanced Accuracy : 0.53017        
##                                          
##        'Positive' Class : 1              
## 
rocplot(prediksi_prob_data_train,data_sinta_train$y) 

# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_reglog_2, data_sinta_test, type = "response")
prediksi_data_test <- as.factor(ifelse(prediksi_prob_data_test > 0.5,"1","0"))
eval_reglog_2 <- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_reglog_2
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 318 108
##          1   8   9
##                                           
##                Accuracy : 0.7381          
##                  95% CI : (0.6946, 0.7785)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.4819          
##                                           
##                   Kappa : 0.0722          
##                                           
##  Mcnemar's Test P-Value : <2e-16          
##                                           
##             Sensitivity : 0.07692         
##             Specificity : 0.97546         
##          Pos Pred Value : 0.52941         
##          Neg Pred Value : 0.74648         
##              Prevalence : 0.26411         
##          Detection Rate : 0.02032         
##    Detection Prevalence : 0.03837         
##       Balanced Accuracy : 0.52619         
##                                           
##        'Positive' Class : 1               
## 
rocplot(prediksi_prob_data_test,data_sinta_test$y)

vip(model_reglog_2, num_features = 100)

Classification Tree

Model 1 Default

Model dengan hyperparameter minsplit dan cp default

model_tree_1 <- rpart(y ~., data = data_sinta_train, method = "class",
               control=rpart.control(minsplit = 20, cp=0))
rpart.plot(model_tree_1, extra = 4)

# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_tree_1, data_sinta_train, type = "prob")
prediksi_data_train <- predict(model_tree_1, newdata=data_sinta_train, type = "class") 
eval_tree_1_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_tree_1_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 718 159
##          1  45 116
##                                          
##                Accuracy : 0.8035         
##                  95% CI : (0.778, 0.8272)
##     No Information Rate : 0.7351         
##     P-Value [Acc > NIR] : 1.610e-07      
##                                          
##                   Kappa : 0.4183         
##                                          
##  Mcnemar's Test P-Value : 2.541e-15      
##                                          
##             Sensitivity : 0.4218         
##             Specificity : 0.9410         
##          Pos Pred Value : 0.7205         
##          Neg Pred Value : 0.8187         
##              Prevalence : 0.2649         
##          Detection Rate : 0.1118         
##    Detection Prevalence : 0.1551         
##       Balanced Accuracy : 0.6814         
##                                          
##        'Positive' Class : 1              
## 
rocplot(prediksi_prob_data_train[,2],data_sinta_train$y) 

# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_tree_1, data_sinta_test, type = "prob")
prediksi_data_test <- predict(model_tree_1, newdata=data_sinta_test, type = "class") 
eval_tree_1 <- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_tree_1
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 295  82
##          1  31  35
##                                           
##                Accuracy : 0.7449          
##                  95% CI : (0.7016, 0.7849)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.3558          
##                                           
##                   Kappa : 0.2372          
##                                           
##  Mcnemar's Test P-Value : 2.556e-06       
##                                           
##             Sensitivity : 0.29915         
##             Specificity : 0.90491         
##          Pos Pred Value : 0.53030         
##          Neg Pred Value : 0.78249         
##              Prevalence : 0.26411         
##          Detection Rate : 0.07901         
##    Detection Prevalence : 0.14898         
##       Balanced Accuracy : 0.60203         
##                                           
##        'Positive' Class : 1               
## 
rocplot(prediksi_prob_data_test[,2],data_sinta_test$y)

vip(model_tree_1, num_features = 50)

Model 2

Model dengan hyperparameter minsplit dan cp yang ditentukan sendiri (minsplit=10 dan cp=0)

model_tree_2 <- rpart(y ~., data = data_sinta_train, method = "class",
               control=rpart.control(minsplit = 100, cp=0))
rpart.plot(model_tree_2)

# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_tree_2, data_sinta_train, type = "prob")
prediksi_data_train <- predict(model_tree_2, newdata=data_sinta_train, type = "class") 
eval_tree_2_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_tree_2_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 720 156
##          1  43 119
##                                          
##                Accuracy : 0.8083         
##                  95% CI : (0.783, 0.8318)
##     No Information Rate : 0.7351         
##     P-Value [Acc > NIR] : 2.045e-08      
##                                          
##                   Kappa : 0.4333         
##                                          
##  Mcnemar's Test P-Value : 2.030e-15      
##                                          
##             Sensitivity : 0.4327         
##             Specificity : 0.9436         
##          Pos Pred Value : 0.7346         
##          Neg Pred Value : 0.8219         
##              Prevalence : 0.2649         
##          Detection Rate : 0.1146         
##    Detection Prevalence : 0.1561         
##       Balanced Accuracy : 0.6882         
##                                          
##        'Positive' Class : 1              
## 
ROC_model_tree_2_train <- rocit(score=prediksi_prob_data_train[,2], class=data_sinta_train$y)
plot(ROC_model_tree_2_train)

ROC_model_tree_2_train$AUC
## [1] 0.818127
# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_tree_2, data_sinta_test, type = "prob")
prediksi_data_test <- predict(model_tree_2, newdata=data_sinta_test, type = "class") 
eval_tree_2 <- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_tree_2
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 296  81
##          1  30  36
##                                           
##                Accuracy : 0.7494          
##                  95% CI : (0.7064, 0.7891)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.2786          
##                                           
##                   Kappa : 0.2507          
##                                           
##  Mcnemar's Test P-Value : 2.077e-06       
##                                           
##             Sensitivity : 0.30769         
##             Specificity : 0.90798         
##          Pos Pred Value : 0.54545         
##          Neg Pred Value : 0.78515         
##              Prevalence : 0.26411         
##          Detection Rate : 0.08126         
##    Detection Prevalence : 0.14898         
##       Balanced Accuracy : 0.60783         
##                                           
##        'Positive' Class : 1               
## 
ROC_model_tree_2 <- rocit(score=prediksi_prob_data_test[,2], class=data_sinta_test$y)
plot(ROC_model_tree_2)

ROC_model_tree_2$AUC
## [1] 0.755899
vip(model_tree_2, num_features = 50)

Model 3 Tuning Minsplit

Model dengan hyperparameter minsplit optimum

#mencari minsplit optimum
set.seed(478)
akurasi.semua <- NULL

for(ulangan in 1:100){
  acak <- createDataPartition(data_sinta$y, p=0.7, list=FALSE)
  data_sinta_train <- data_sinta[acak,]
  data_sinta_test <- data_sinta[-acak,]

  for (k in 1:30){
  pohon <- rpart(y ~ ., 
                 data=data_sinta_train,
                 method='class',
                 control=rpart.control(minsplit = k, cp=0))
  prediksi.prob <- predict(pohon, data_sinta_test)
  prediksi <- ifelse(prediksi.prob > 0.5, "1", "0")[,2]
  akurasi <- mean(prediksi == data_sinta_test$y)
  akurasi.semua <- rbind(akurasi.semua, c(k, akurasi))
  }
}
mean.akurasi <- tapply(akurasi.semua[,2], akurasi.semua[,1], mean)
plot(names(mean.akurasi),mean.akurasi, type="b", xlab="minsplit", ylab="rata-rata akurasi data testing")

model_tree_3 <- rpart(y ~., data = data_sinta_train, method = "class",
               control=rpart.control(minsplit = 21, cp=0))
rpart.plot(model_tree_3, extra=4)

# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_tree_3, data_sinta_train, type = "prob")
prediksi_data_train <- predict(model_tree_3, newdata=data_sinta_train, type = "class") 
eval_tree_3_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_tree_3_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 708 150
##          1  55 125
##                                          
##                Accuracy : 0.8025         
##                  95% CI : (0.777, 0.8263)
##     No Information Rate : 0.7351         
##     P-Value [Acc > NIR] : 2.390e-07      
##                                          
##                   Kappa : 0.43           
##                                          
##  Mcnemar's Test P-Value : 5.195e-11      
##                                          
##             Sensitivity : 0.4545         
##             Specificity : 0.9279         
##          Pos Pred Value : 0.6944         
##          Neg Pred Value : 0.8252         
##              Prevalence : 0.2649         
##          Detection Rate : 0.1204         
##    Detection Prevalence : 0.1734         
##       Balanced Accuracy : 0.6912         
##                                          
##        'Positive' Class : 1              
## 
# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_tree_3, data_sinta_test, type = "prob")
prediksi_data_test <- predict(model_tree_3, newdata=data_sinta_test, type = "class") 
eval_tree_3 <- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_tree_3
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 290  67
##          1  36  50
##                                           
##                Accuracy : 0.7675          
##                  95% CI : (0.7253, 0.8061)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.071438        
##                                           
##                   Kappa : 0.3463          
##                                           
##  Mcnemar's Test P-Value : 0.003117        
##                                           
##             Sensitivity : 0.4274          
##             Specificity : 0.8896          
##          Pos Pred Value : 0.5814          
##          Neg Pred Value : 0.8123          
##              Prevalence : 0.2641          
##          Detection Rate : 0.1129          
##    Detection Prevalence : 0.1941          
##       Balanced Accuracy : 0.6585          
##                                           
##        'Positive' Class : 1               
## 
vip(model_tree_3, num_features = 50)

Model 4 Opsi CP

Model dengan hyperparameter cp optimum

set.seed(478)
model_tree_4 <- rpart(y ~ ., data=data_sinta_train,
               method='class',
               control=rpart.control(minsplit = 20, cp=0))
printcp(model_tree_4)
## 
## Classification tree:
## rpart(formula = y ~ ., data = data_sinta_train, method = "class", 
##     control = rpart.control(minsplit = 20, cp = 0))
## 
## Variables actually used in tree construction:
## [1] Akreditasi                Jumlah_Dosen_Total       
## [3] Jumlah_Mahasiswa          Level                    
## [5] Rasio_Dosen_per_Mahasiswa Rumpun_Ilmu              
## 
## Root node error: 275/1038 = 0.26493
## 
## n= 1038 
## 
##          CP nsplit rel error  xerror     xstd
## 1 0.0254545      0   1.00000 1.00000 0.051701
## 2 0.0109091      6   0.84364 1.00727 0.051820
## 3 0.0090909      8   0.82182 0.91273 0.050164
## 4 0.0084848     10   0.80364 0.90545 0.050027
## 5 0.0054545     13   0.77818 0.93818 0.050632
## 6 0.0036364     18   0.74909 0.93455 0.050566
## 7 0.0000000     19   0.74545 0.96727 0.051147
model_tree_4 <- rpart(y ~ ., data=data_sinta_train,
               method='class',
               control=rpart.control(minsplit = 20, cp=0.0084848))
rpart.plot(model_tree_4)

# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_tree_4, data_sinta_train, type = "prob")
prediksi_data_train <- predict(model_tree_4, newdata=data_sinta_train, type = "class") 
eval_tree_4_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_tree_4_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 718 169
##          1  45 106
##                                           
##                Accuracy : 0.7938          
##                  95% CI : (0.7679, 0.8181)
##     No Information Rate : 0.7351          
##     P-Value [Acc > NIR] : 6.425e-06       
##                                           
##                   Kappa : 0.3815          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
##                                           
##             Sensitivity : 0.3855          
##             Specificity : 0.9410          
##          Pos Pred Value : 0.7020          
##          Neg Pred Value : 0.8095          
##              Prevalence : 0.2649          
##          Detection Rate : 0.1021          
##    Detection Prevalence : 0.1455          
##       Balanced Accuracy : 0.6632          
##                                           
##        'Positive' Class : 1               
## 
ROC_model_tree_4_train <- rocit(score=prediksi_prob_data_train[,2], class=data_sinta_train$y)
plot(ROC_model_tree_4_train)

ROC_model_tree_4_train$AUC
## [1] 0.7814536
# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_tree_4, data_sinta_test, type = "prob")
prediksi_data_test <- predict(model_tree_4, newdata=data_sinta_test, type = "class") 
eval_tree_4 <- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_tree_4
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 292  73
##          1  34  44
##                                           
##                Accuracy : 0.7585          
##                  95% CI : (0.7158, 0.7976)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.1528340       
##                                           
##                   Kappa : 0.3043          
##                                           
##  Mcnemar's Test P-Value : 0.0002392       
##                                           
##             Sensitivity : 0.37607         
##             Specificity : 0.89571         
##          Pos Pred Value : 0.56410         
##          Neg Pred Value : 0.80000         
##              Prevalence : 0.26411         
##          Detection Rate : 0.09932         
##    Detection Prevalence : 0.17607         
##       Balanced Accuracy : 0.63589         
##                                           
##        'Positive' Class : 1               
## 
ROC_model_tree_4 <- rocit(score=prediksi_prob_data_test[,2], class=data_sinta_test$y)
plot(ROC_model_tree_4)

ROC_model_tree_4$AUC
## [1] 0.7596482
vip(model_tree_4, num_features = 50)

Bagging

Model Default

Model dengan hyperparameter nbagg default dan tree default

model_bag_1 <- ipred::bagging(y ~ ., data=data_sinta_train, coob = TRUE,
                              nbagg=25, 
                              control= rpart.control(minsplit=2, cp=0))
model_bag_1
## 
## Bagging classification trees with 25 bootstrap replications 
## 
## Call: bagging.data.frame(formula = y ~ ., data = data_sinta_train, 
##     coob = TRUE, nbagg = 25, control = rpart.control(minsplit = 2, 
##         cp = 0))
## 
## Out-of-bag estimate of misclassification error:  0.2505
# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_bag_1, data_sinta_train, type = "prob")
prediksi_data_train <- predict(model_bag_1, data_sinta_train,type="class")
eval_model_bag_1_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_model_bag_1_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 696 133
##          1  67 142
##                                          
##                Accuracy : 0.8073         
##                  95% CI : (0.782, 0.8309)
##     No Information Rate : 0.7351         
##     P-Value [Acc > NIR] : 3.127e-08      
##                                          
##                   Kappa : 0.4642         
##                                          
##  Mcnemar's Test P-Value : 4.303e-06      
##                                          
##             Sensitivity : 0.5164         
##             Specificity : 0.9122         
##          Pos Pred Value : 0.6794         
##          Neg Pred Value : 0.8396         
##              Prevalence : 0.2649         
##          Detection Rate : 0.1368         
##    Detection Prevalence : 0.2013         
##       Balanced Accuracy : 0.7143         
##                                          
##        'Positive' Class : 1              
## 
ROC_model_bag_1_train <- rocit(score=prediksi_prob_data_train[,2], class=data_sinta_train$y)
plot(ROC_model_bag_1_train)

ROC_model_bag_1_train$AUC
## [1] 0.798413
# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_bag_1, data_sinta_test, type = "prob")
prediksi_data_test <- predict(model_bag_1, data_sinta_test,type="class")
eval_model_bag_1<- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_model_bag_1
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 278  65
##          1  48  52
##                                           
##                Accuracy : 0.7449          
##                  95% CI : (0.7016, 0.7849)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.3558          
##                                           
##                   Kappa : 0.3117          
##                                           
##  Mcnemar's Test P-Value : 0.1323          
##                                           
##             Sensitivity : 0.4444          
##             Specificity : 0.8528          
##          Pos Pred Value : 0.5200          
##          Neg Pred Value : 0.8105          
##              Prevalence : 0.2641          
##          Detection Rate : 0.1174          
##    Detection Prevalence : 0.2257          
##       Balanced Accuracy : 0.6486          
##                                           
##        'Positive' Class : 1               
## 
ROC_model_bag_1 <- rocit(score=prediksi_prob_data_test[,2], class=data_sinta_test$y)
plot(ROC_model_bag_1)

ROC_model_bag_1$AUC
## [1] 0.7079859

Random Forest

Model 1 Default

Model dengan hyperparameter ntree, mtry default

model_rf_1 <- randomForest::randomForest(y ~ ., ntree=500,
                                         data=data_sinta_train)
model_rf_1
## 
## Call:
##  randomForest(formula = y ~ ., data = data_sinta_train, ntree = 500) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 2
## 
##         OOB estimate of  error rate: 23.89%
## Confusion matrix:
##     0   1 class.error
## 0 687  76  0.09960682
## 1 172 103  0.62545455
# Prediksi pada Data Training
prediksi_prob_data_train <- predict(model_rf_1, data_sinta_train, type = "prob")
prediksi_data_train <- predict(model_rf_1, data_sinta_train,type="class")
eval_model_rf_1_train <- caret::confusionMatrix(prediksi_data_train, data_sinta_train$y, positive="1")
eval_model_rf_1_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 714 149
##          1  49 126
##                                          
##                Accuracy : 0.8092         
##                  95% CI : (0.784, 0.8327)
##     No Information Rate : 0.7351         
##     P-Value [Acc > NIR] : 1.329e-08      
##                                          
##                   Kappa : 0.4458         
##                                          
##  Mcnemar's Test P-Value : 1.984e-12      
##                                          
##             Sensitivity : 0.4582         
##             Specificity : 0.9358         
##          Pos Pred Value : 0.7200         
##          Neg Pred Value : 0.8273         
##              Prevalence : 0.2649         
##          Detection Rate : 0.1214         
##    Detection Prevalence : 0.1686         
##       Balanced Accuracy : 0.6970         
##                                          
##        'Positive' Class : 1              
## 
ROC_model_rf_1_train <- rocit(score=prediksi_prob_data_train[,2], class=data_sinta_train$y)
plot(ROC_model_rf_1_train)

ROC_model_rf_1_train$AUC
## [1] 0.8058835
# Prediksi pada Data Testing
prediksi_prob_data_test <- predict(model_rf_1, data_sinta_test, type = "prob")
prediksi_data_test <- predict(model_rf_1, data_sinta_test,type="class")
eval_model_rf_1<- caret::confusionMatrix(prediksi_data_test, data_sinta_test$y, positive="1")
eval_model_rf_1
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 291  70
##          1  35  47
##                                           
##                Accuracy : 0.763           
##                  95% CI : (0.7206, 0.8018)
##     No Information Rate : 0.7359          
##     P-Value [Acc > NIR] : 0.1066955       
##                                           
##                   Kappa : 0.3256          
##                                           
##  Mcnemar's Test P-Value : 0.0009064       
##                                           
##             Sensitivity : 0.4017          
##             Specificity : 0.8926          
##          Pos Pred Value : 0.5732          
##          Neg Pred Value : 0.8061          
##              Prevalence : 0.2641          
##          Detection Rate : 0.1061          
##    Detection Prevalence : 0.1851          
##       Balanced Accuracy : 0.6472          
##                                           
##        'Positive' Class : 1               
## 
ROC_model_rf_1 <- rocit(score=prediksi_prob_data_test[,2], class=data_sinta_test$y)
plot(ROC_model_rf_1)

ROC_model_rf_1$AUC
## [1] 0.7082088
vip(model_rf_1, num_features = 50)

Perbandingan Hasil Model

hasil_eval <- rbind(
  c(eval_reglog_1$overall[1], eval_reglog_1$byClass[1], eval_reglog_1$byClass[2]),
  c(eval_reglog_2$overall[1], eval_reglog_2$byClass[1], eval_reglog_2$byClass[2]),
  c(eval_tree_1$overall[1], eval_tree_1$byClass[1], eval_tree_1$byClass[2]),
  c(eval_tree_2$overall[1], eval_tree_2$byClass[1], eval_tree_2$byClass[2]),
  c(eval_tree_3$overall[1], eval_tree_3$byClass[1], eval_tree_3$byClass[2]),
  c(eval_tree_4$overall[1], eval_tree_4$byClass[1], eval_tree_4$byClass[2]),
  c(eval_model_bag_1$overall[1], eval_model_bag_1$byClass[1], eval_model_bag_1$byClass[2]),
  c(eval_model_rf_1$overall[1], eval_model_rf_1$byClass[1], eval_model_rf_1$byClass[2]))
row.names(hasil_eval) <- 
  c("RegLog Semua Peubah","RegLog Seleksi Peubah",
    "ClassTree 1","ClassTree 2","ClassTree 3","ClassTree 4",
    "Bagging 1", "RandomForest 1")
hasil_eval <- as.data.frame(hasil_eval)
dplyr::arrange(.data = hasil_eval, desc(Accuracy))
##                        Accuracy Sensitivity Specificity
## ClassTree 3           0.7674944  0.42735043   0.8895706
## RandomForest 1        0.7629797  0.40170940   0.8926380
## ClassTree 4           0.7584650  0.37606838   0.8957055
## ClassTree 2           0.7494357  0.30769231   0.9079755
## ClassTree 1           0.7449210  0.29914530   0.9049080
## Bagging 1             0.7449210  0.44444444   0.8527607
## RegLog Semua Peubah   0.7426637  0.28205128   0.9079755
## RegLog Seleksi Peubah 0.7381490  0.07692308   0.9754601