Data Set-up
set.seed(12345)
dice_group<-c(1:6)
dice_rolls<-6
dice_trials<-20000
dice_results<-matrix(nrow = dice_trials, ncol = dice_rolls)
for(i in 1:dice_trials){
dice_results[i,]<-sample(dice_group,dice_rolls,replace=TRUE)
}
Create new success column
dice_success<-as.data.frame(dice_results)
dice_success$count<-
ifelse((dice_success$V1==5|dice_success$V1==6),1,0)+
ifelse((dice_success$V2==5|dice_success$V2==6),1,0)+
ifelse((dice_success$V3==5|dice_success$V3==6),1,0)+
ifelse((dice_success$V4==5|dice_success$V4==6),1,0)+
ifelse((dice_success$V4==5|dice_success$V5==6),1,0)+
ifelse((dice_success$V6==5|dice_success$V6==6),1,0)
Histogram *Data is not normal
hist(dice_success$count)
Test for Normality *Anderson- Darling test for large sample size
\(H_0\)= Data is normal \(H_1\)= Data is not normal
library(nortest)
ad.test(dice_success$count)
##
## Anderson-Darling normality test
##
## data: dice_success$count
## A = 584.24, p-value < 2.2e-16
Binomial Test *Two tailed Binomial Test
colSums(dice_success!=0)
## V1 V2 V3 V4 V5 V6 count
## 20000 20000 20000 20000 20000 20000 17752
success<-17752
trials<-20000
probability<-1/6
binom.test(success, trials, probability)
##
## Exact binomial test
##
## data: success and trials
## number of successes = 17752, number of trials = 20000, p-value <
## 2.2e-16
## alternative hypothesis: true probability of success is not equal to 0.1666667
## 95 percent confidence interval:
## 0.8831411 0.8919459
## sample estimates:
## probability of success
## 0.8876