9/12/22library(tidyverse)
library(openintro)
data("nycflights")The three histograms show the same trend with the main difference being the width of the bar graph. The thinnest one reveals a chunk of data before the peak that is below the peak which can’t be seen in any other histograms.
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram()## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 15)ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 150)68 flights match this criteria.
lax_flights <- nycflights %>%
filter(dest == "LAX")
ggplot(data = lax_flights, aes(x = dep_delay)) +
geom_histogram()## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
lax_flights %>%
summarise(mean_dd = mean(dep_delay),
median_dd = median(dep_delay),
n = n())## # A tibble: 1 × 3
## mean_dd median_dd n
## <dbl> <dbl> <int>
## 1 9.78 -1 1583
sfo_feb_flights <- nycflights %>%
filter(dest == "SFO", month == 2)
sfo_feb_flights %>%
summarise(n= n())## # A tibble: 1 × 1
## n
## <int>
## 1 68
The distribution is mostly is skewed to the right with some outliers to the left of the plot.
ggplot(data = sfo_feb_flights, aes(x = arr_delay)) +
geom_histogram()## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
AA has the mosst varaible arrival delays.
sfo_feb_flights %>%
group_by(carrier) %>%
summarise(median_dd = median(dep_delay), iqr_dd = IQR(dep_delay), n_flights = n())## # A tibble: 5 × 4
## carrier median_dd iqr_dd n_flights
## <chr> <dbl> <dbl> <int>
## 1 AA 13 32.8 10
## 2 B6 -2 3.5 6
## 3 DL -3 6.5 19
## 4 UA -2 13 21
## 5 VX -3.5 16.8 12
A pro of using the mean data is that it shows the average departure delay and represents all the available data. A con of this choice is that the data can be skewed due to outiers.
A pro of using the median is that it lines up all the data in the set and picked the middle value so it won’t be skewed becuase of the outliers. A con is that it doesn’t accuratly represent all of data or how it is distributed.
nycflights %>%
group_by(month) %>%
summarise(mean_dd = mean(dep_delay)) %>%
arrange(desc(mean_dd))## # A tibble: 12 × 2
## month mean_dd
## <int> <dbl>
## 1 7 20.8
## 2 6 20.4
## 3 12 17.4
## 4 4 14.6
## 5 3 13.5
## 6 5 13.3
## 7 8 12.6
## 8 2 10.7
## 9 1 10.2
## 10 9 6.87
## 11 11 6.10
## 12 10 5.88
nycflights %>%
group_by(month) %>%
summarise(median_dd = median(dep_delay)) %>%
arrange(desc(median_dd))## # A tibble: 12 × 2
## month median_dd
## <int> <dbl>
## 1 12 1
## 2 6 0
## 3 7 0
## 4 3 -1
## 5 5 -1
## 6 8 -1
## 7 1 -2
## 8 2 -2
## 9 4 -2
## 10 11 -2
## 11 9 -3
## 12 10 -3
ggplot(data=nycflights, aes(x=dep_delay)) +
geom_histogram()## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
LGA has the best time departure percentage as it has the least amount of delayed flights compared to the other flights, therefore I would choose LGA.
nycflights <- nycflights %>%
mutate(dep_type = ifelse(dep_delay < 5, "on time", "delayed"))
ggplot(data = nycflights, aes(x = origin, fill = dep_type)) +
geom_bar()nycflights <- nycflights %>%
mutate(avg_speed = 60*(distance / air_time))
glimpse(nycflights)## Rows: 32,735
## Columns: 18
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month <int> 6, 5, 12, 5, 7, 1, 12, 8, 9, 4, 6, 11, 4, 3, 10, 1, 2, 8, 10…
## $ day <int> 30, 7, 8, 14, 21, 1, 9, 13, 26, 30, 17, 22, 26, 25, 21, 23, …
## $ dep_time <int> 940, 1657, 859, 1841, 1102, 1817, 1259, 1920, 725, 1323, 940…
## $ dep_delay <dbl> 15, -3, -1, -4, -3, -3, 14, 85, -10, 62, 5, 5, -2, 115, -4, …
## $ arr_time <int> 1216, 2104, 1238, 2122, 1230, 2008, 1617, 2032, 1027, 1549, …
## $ arr_delay <dbl> -4, 10, 11, -34, -8, 3, 22, 71, -8, 60, -4, -2, 22, 91, -6, …
## $ carrier <chr> "VX", "DL", "DL", "DL", "9E", "AA", "WN", "B6", "AA", "EV", …
## $ tailnum <chr> "N626VA", "N3760C", "N712TW", "N914DL", "N823AY", "N3AXAA", …
## $ flight <int> 407, 329, 422, 2391, 3652, 353, 1428, 1407, 2279, 4162, 20, …
## $ origin <chr> "JFK", "JFK", "JFK", "JFK", "LGA", "LGA", "EWR", "JFK", "LGA…
## $ dest <chr> "LAX", "SJU", "LAX", "TPA", "ORF", "ORD", "HOU", "IAD", "MIA…
## $ air_time <dbl> 313, 216, 376, 135, 50, 138, 240, 48, 148, 110, 50, 161, 87,…
## $ distance <dbl> 2475, 1598, 2475, 1005, 296, 733, 1411, 228, 1096, 820, 264,…
## $ hour <dbl> 9, 16, 8, 18, 11, 18, 12, 19, 7, 13, 9, 13, 8, 20, 12, 20, 6…
## $ minute <dbl> 40, 57, 59, 41, 2, 17, 59, 20, 25, 23, 40, 20, 9, 54, 17, 24…
## $ dep_type <chr> "delayed", "on time", "on time", "on time", "on time", "on t…
## $ avg_speed <dbl> 474.4409, 443.8889, 394.9468, 446.6667, 355.2000, 318.6957, …
As distance increase, so does average speed. They are porportiantly related.
ggplot(data = nycflights, aes(x = distance, y = avg_speed)) + geom_point()nycflights_3carriers <- nycflights %>%
filter(carrier == "AA" | carrier == "DL" | carrier == "UA")
ggplot(data = nycflights_3carriers, aes(x = dep_delay, y = arr_delay, color= carrier)) + geom_point()