Tujuan dari regresi yakni membuat dan menentukan sebuah model regresi yang cocok digunakan sebagai untuk meramal cuaca di Delhi.
Package yang digunakan yakni dLagM, dynlm, MLmetrics, car, dan readxl.
library(dLagM)
## Warning: package 'dLagM' was built under R version 4.1.3
## Loading required package: nardl
## Warning: package 'nardl' was built under R version 4.1.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Loading required package: dynlm
## Warning: package 'dynlm' was built under R version 4.1.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.1.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(dynlm)
library(MLmetrics)
## Warning: package 'MLmetrics' was built under R version 4.1.3
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:dLagM':
##
## MAPE
## The following object is masked from 'package:base':
##
## Recall
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.1.3
library(car)
## Loading required package: carData
library(readxl)
Data yang digunakan Merupakan data cuaca Delhi dari tahun 2013 hingga 2017. Pada data ini, terdapat 4 peubah yang dicatat setiap hari, yakni suhu rata-rata, kelembapan, kecepatan angin, dan tekanan rata-rata.
A<-read.csv("C:\\Users\\Alam\\Downloads\\archive\\DailyDelhiClimateTrain.csv")
B<-read.csv("C:\\Users\\Alam\\Downloads\\archive\\DailyDelhiClimateTest.csv")
data<- rbind(A,B)
head(data)
## date Meantemp humidity wind_speed meanpressure
## 1 2013-01-01 10.000000 84.50000 0.000000 1015.667
## 2 2013-01-02 7.400000 92.00000 2.980000 1017.800
## 3 2013-01-03 7.166667 87.00000 4.633333 1018.667
## 4 2013-01-04 8.666667 71.33333 1.233333 1017.167
## 5 2013-01-05 6.000000 86.83333 3.700000 1016.500
## 6 2013-01-06 7.000000 82.80000 1.480000 1018.000
Pada dataset tersebut, akan suhu rata-rata (meantemp) akan digunakan sebagai variabel respon, sementara kelembapan (humidity) akan digunakan sebagai variabel penjelas.
#data time series
data$Yt <- data$Meantemp
data$Xt <- data$humidity
train <- data[1:1462,]
test <- data[1463:1576,]
train.ts<-ts(train)
test.ts<-ts(test)
data.ts<-ts(data)
Yt.ts <- data$Yt
Xt.ts <- data$Xt
par(mfrow = c(2,1))
plot.ts(Yt.ts, ylab = "Suhu")
plot.ts(Xt.ts, ylab = "Kelembapan")
Berdasarkan kedua grafik time series tersebut, kedua peubah memiliki pola musiman.
Digunakan syntax koyckDlm untuk mendapatkan model koyck, yakni:
model.koyck = dLagM::koyckDlm(x = train$Xt, y = train$Yt)
summary(model.koyck)
##
## Call:
## "Y ~ (Intercept) + Y.1 + X.t"
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.70363 -0.89800 0.05309 1.04736 6.88622
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.308579 0.383286 -0.805 0.42090
## Y.1 0.986820 0.007629 129.355 < 2e-16 ***
## X.t 0.010612 0.003799 2.793 0.00529 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.714 on 1458 degrees of freedom
## Multiple R-Squared: 0.9455, Adjusted R-squared: 0.9455
## Wald test: 1.27e+04 on 2 and 1458 DF, p-value: < 2.2e-16
##
## Diagnostic tests:
## NULL
##
## alpha beta phi
## Geometric coefficients: -23.41311 0.01061212 0.9868202
Sementara itu, didapatkan AIC dan BIC dari model sebesar:
AIC(model.koyck)
## [1] 5725.577
BIC(model.koyck)
## [1] 5746.725
Dilaksanakan peramalan data training sebagai pendugaan terhadap data testing.
#Ramalan
(fore.koyck <- forecast(model = model.koyck, x=test$Xt, h=114))
## $forecasts
## [1] 10.47088 10.84379 11.26131 11.54768 11.88223 12.25878 12.80563 13.21466
## [9] 13.58948 13.86527 14.13921 14.43572 14.64851 14.93514 15.19979 15.52340
## [17] 15.90636 16.21942 16.49450 16.67395 16.89769 17.17547 17.44704 17.63153
## [25] 17.83299 18.26190 18.53021 18.85580 19.16654 19.42838 19.67026 19.93681
## [33] 20.07166 20.32821 20.57521 20.81929 20.97563 21.06712 21.20675 21.34427
## [41] 21.51610 21.60311 21.75664 21.87232 21.97057 22.09101 22.09352 22.17717
## [49] 22.32711 22.42563 22.45954 22.59160 22.59149 22.44015 22.26428 22.19742
## [57] 22.22240 22.24042 22.18701 22.09457 22.07050 21.92205 21.78219 21.62428
## [65] 21.48112 21.32983 21.29967 21.44337 21.57114 21.61923 21.62662 21.55654
## [73] 21.56167 21.54992 21.47944 21.52131 21.42051 21.38439 21.37410 21.30381
## [81] 21.19199 21.13206 20.94469 20.77791 20.58920 20.41915 20.27301 20.06336
## [89] 19.88148 19.71015 19.51454 19.30693 19.05960 18.83799 18.76929 18.48925
## [97] 18.25402 18.01659 17.69474 17.35912 17.01012 16.75327 16.53281 16.40562
## [105] 16.20389 16.04522 15.93314 15.70463 15.44509 15.22478 15.13339 15.05939
## [113] 14.84417 14.62799
##
## $call
## forecast.koyckDlm(model = model.koyck, x = test$Xt, h = 114)
##
## attr(,"class")
## [1] "forecast.koyckDlm" "dLagM"
Dihitung MAPE dari antara data forecast dan data testing serta data training dan model. Kemudian, kedua data dibandingkan.
mape.koyck <- MAPE(fore.koyck$forecasts, test$Yt)
mape_train <- dLagM::GoF(model.koyck)["MAPE"]
c("MAPE_testing" = mape.koyck, "MAPE_taining" = mape_train)
## $MAPE_testing
## [1] 0.2420774
##
## $MAPE_taining.MAPE
## [1] 0.05559705
Digunakan syntax dlm dengan nilai lag = 2 untuk membuat sebuah model regresi with distributed lag sebagai berikut:
model.dlm = dLagM::dlm(x = train$Xt,y = train$Yt, q=2)
summary(model.dlm)
##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.109 -4.670 -0.306 5.541 12.179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.858693 0.618846 67.640 < 2e-16 ***
## x.t -0.176868 0.019496 -9.072 < 2e-16 ***
## x.1 -0.002206 0.025355 -0.087 0.931
## x.2 -0.089981 0.019515 -4.611 4.36e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.952 on 1456 degrees of freedom
## Multiple R-squared: 0.3415, Adjusted R-squared: 0.3401
## F-statistic: 251.6 on 3 and 1456 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 9357.638 9384.069
Sementara itu, didapatkan AIC dan BIC dari model sebesar:
AIC(model.koyck)
## [1] 5725.577
BIC(model.koyck)
## [1] 5746.725
Dilaksanakan peramalan data training sebagai pendugaan terhadap data testing.
#Ramalan
(fore.dlm <- forecast(model = model.dlm, x=test$Xt, h=114))#meramalkan 23 periode ke depan
## $forecasts
## [1] 18.62214 19.01300 19.47816 22.33988 21.08042 21.36132 17.99026 19.73699
## [9] 18.75861 21.43995 21.67449 22.03533 23.34496 21.86229 22.82632 21.13950
## [17] 20.22059 20.75871 20.79710 22.88732 22.41604 22.23654 21.87160 22.78077
## [25] 22.49613 19.36520 21.73522 18.80275 20.27991 20.51319 20.88716 20.80624
## [33] 23.07690 20.80925 21.97341 20.92206 22.38308 23.44428 23.35159 23.87814
## [41] 22.85794 24.22832 22.81176 24.09448 23.79360 23.70896 25.77828 24.25018
## [49] 24.09677 24.21845 24.71253 23.50152 26.19185 27.90326 29.48289 28.99247
## [57] 27.67923 26.86624 27.28284 28.01600 27.50885 29.90994 29.25602 30.64355
## [65] 30.38019 30.71331 28.62217 25.79162 24.97904 24.81127 25.61407 27.57342
## [73] 26.69111 27.61182 27.96706 26.26466 29.10956 27.13839 27.90775 28.36754
## [81] 28.87256 28.55115 31.03776 30.33485 31.82073 31.40231 31.24255 32.19151
## [89] 31.60450 32.01837 32.24675 32.42636 33.36182 33.12000 30.97552 34.29124
## [97] 32.37827 34.25777 35.36936 35.73260 36.77557 35.47276 35.05534 32.80030
## [105] 33.77159 32.34826 32.24411 33.85763 34.07218 34.48211 32.66305 32.06344
## [113] 33.36158 33.31709
##
## $call
## forecast.dlm(model = model.dlm, x = test$Xt, h = 114)
##
## attr(,"class")
## [1] "forecast.dlm" "dLagM"
Dihitung MAPE dari antara data forecast dan data testing serta data training dan model. Kemudian, kedua data dibandingkan.
mape.dlm <- MAPE(fore.dlm$forecasts,test$Yt)
mape_train <- GoF(model.dlm)["MAPE"]
c("MAPE_testing" = mape.dlm, "MAPE_training" = mape_train)
## $MAPE_testing
## [1] 0.2740091
##
## $MAPE_training.MAPE
## [1] 0.2415499
Untuk menentukan nilai lag optimum, digunakan syntax finiteDLMauto.
finiteDLMauto(formula = Yt ~ Xt,
data = data.frame(train),q.min = 1,q.max = 650,
model.type = "dlm",error.type = "AIC", trace = FALSE)
## q - k MASE AIC BIC GMRAE MBRAE R.Adj.Sq Ljung-Box
## 650 650 0.81706 3957.241 7026.014 1.50518 1.19092 0.85271 0
Setelah didapatkan lag optimum sebesar 650, nilai lag optimum dimasukkan ke dalam fungsi dlm.
model.dlm2 = dLagM::dlm(x = train$Xt,y = train$Yt, q= 650)
summary(model.dlm2)
##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1502 -0.7755 0.0799 0.8270 3.8529
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.275e+02 1.217e+01 10.482 < 2e-16 ***
## x.t -1.644e-01 2.489e-02 -6.605 5.59e-10 ***
## x.1 1.952e-02 3.146e-02 0.621 0.5358
## x.2 -2.392e-02 3.136e-02 -0.763 0.4468
## x.3 -1.054e-02 3.126e-02 -0.337 0.7364
## x.4 -2.115e-02 3.120e-02 -0.678 0.4990
## x.5 5.448e-03 3.121e-02 0.175 0.8616
## x.6 4.830e-03 3.131e-02 0.154 0.8776
## x.7 1.434e-02 3.121e-02 0.459 0.6465
## x.8 -2.875e-02 3.135e-02 -0.917 0.3604
## x.9 -2.754e-02 3.136e-02 -0.878 0.3812
## x.10 -1.744e-03 3.146e-02 -0.055 0.9559
## x.11 -5.970e-03 3.163e-02 -0.189 0.8505
## x.12 -1.551e-02 3.177e-02 -0.488 0.6261
## x.13 3.851e-03 3.169e-02 0.122 0.9034
## x.14 -6.185e-03 3.167e-02 -0.195 0.8454
## x.15 -9.444e-03 3.166e-02 -0.298 0.7659
## x.16 -1.334e-02 3.159e-02 -0.422 0.6734
## x.17 -2.724e-02 3.163e-02 -0.861 0.3905
## x.18 -1.004e-02 3.179e-02 -0.316 0.7526
## x.19 2.751e-03 3.205e-02 0.086 0.9317
## x.20 -2.320e-03 3.201e-02 -0.072 0.9423
## x.21 -5.342e-03 3.172e-02 -0.168 0.8665
## x.22 -2.230e-02 3.155e-02 -0.707 0.4807
## x.23 1.164e-02 3.197e-02 0.364 0.7162
## x.24 -1.924e-02 3.215e-02 -0.599 0.5503
## x.25 -1.581e-02 3.219e-02 -0.491 0.6240
## x.26 1.300e-03 3.194e-02 0.041 0.9676
## x.27 1.302e-02 3.183e-02 0.409 0.6830
## x.28 -1.343e-02 3.173e-02 -0.423 0.6728
## x.29 1.251e-02 3.169e-02 0.395 0.6936
## x.30 1.118e-02 3.192e-02 0.350 0.7266
## x.31 -1.051e-03 3.174e-02 -0.033 0.9736
## x.32 8.259e-03 3.184e-02 0.259 0.7957
## x.33 -9.028e-03 3.184e-02 -0.284 0.7771
## x.34 -7.597e-03 3.155e-02 -0.241 0.8100
## x.35 6.858e-03 3.139e-02 0.218 0.8273
## x.36 1.770e-02 3.135e-02 0.565 0.5731
## x.37 7.008e-03 3.155e-02 0.222 0.8245
## x.38 -3.308e-03 3.159e-02 -0.105 0.9167
## x.39 3.310e-03 3.193e-02 0.104 0.9176
## x.40 -1.273e-02 3.205e-02 -0.397 0.6918
## x.41 -1.195e-02 3.203e-02 -0.373 0.7095
## x.42 -2.215e-02 3.203e-02 -0.691 0.4903
## x.43 -3.813e-04 3.214e-02 -0.012 0.9905
## x.44 1.203e-03 3.207e-02 0.038 0.9701
## x.45 -1.641e-03 3.206e-02 -0.051 0.9592
## x.46 -1.502e-02 3.185e-02 -0.471 0.6380
## x.47 -9.078e-03 3.176e-02 -0.286 0.7754
## x.48 1.265e-02 3.203e-02 0.395 0.6934
## x.49 7.919e-03 3.204e-02 0.247 0.8051
## x.50 -2.028e-02 3.209e-02 -0.632 0.5282
## x.51 -6.813e-03 3.230e-02 -0.211 0.8332
## x.52 -4.512e-03 3.233e-02 -0.140 0.8892
## x.53 1.255e-02 3.220e-02 0.390 0.6971
## x.54 -2.155e-02 3.212e-02 -0.671 0.5033
## x.55 -6.532e-03 3.212e-02 -0.203 0.8391
## x.56 5.830e-03 3.215e-02 0.181 0.8563
## x.57 -7.233e-03 3.218e-02 -0.225 0.8224
## x.58 -5.216e-03 3.196e-02 -0.163 0.8706
## x.59 -1.105e-02 3.205e-02 -0.345 0.7306
## x.60 6.583e-03 3.222e-02 0.204 0.8384
## x.61 -3.893e-03 3.216e-02 -0.121 0.9038
## x.62 -1.561e-02 3.213e-02 -0.486 0.6278
## x.63 -9.642e-03 3.244e-02 -0.297 0.7667
## x.64 7.635e-03 3.249e-02 0.235 0.8145
## x.65 2.382e-03 3.249e-02 0.073 0.9416
## x.66 -2.049e-02 3.280e-02 -0.625 0.5330
## x.67 -5.242e-03 3.285e-02 -0.160 0.8734
## x.68 5.874e-03 3.298e-02 0.178 0.8589
## x.69 1.767e-02 3.307e-02 0.534 0.5940
## x.70 -6.656e-03 3.297e-02 -0.202 0.8403
## x.71 -3.081e-03 3.298e-02 -0.093 0.9257
## x.72 2.775e-04 3.251e-02 0.009 0.9932
## x.73 -3.941e-03 3.215e-02 -0.123 0.9026
## x.74 -2.077e-02 3.231e-02 -0.643 0.5212
## x.75 -4.388e-02 3.234e-02 -1.357 0.1769
## x.76 -6.140e-03 3.227e-02 -0.190 0.8493
## x.77 -1.680e-02 3.241e-02 -0.518 0.6050
## x.78 -3.549e-02 3.249e-02 -1.092 0.2764
## x.79 -1.042e-02 3.254e-02 -0.320 0.7493
## x.80 -8.399e-03 3.271e-02 -0.257 0.7977
## x.81 1.033e-02 3.276e-02 0.315 0.7529
## x.82 7.430e-04 3.273e-02 0.023 0.9819
## x.83 -6.809e-04 3.274e-02 -0.021 0.9834
## x.84 1.533e-03 3.320e-02 0.046 0.9632
## x.85 6.133e-03 3.328e-02 0.184 0.8540
## x.86 2.502e-02 3.323e-02 0.753 0.4526
## x.87 -9.718e-03 3.351e-02 -0.290 0.7722
## x.88 -8.840e-03 3.360e-02 -0.263 0.7928
## x.89 1.291e-02 3.364e-02 0.384 0.7016
## x.90 6.012e-03 3.343e-02 0.180 0.8575
## x.91 1.663e-04 3.368e-02 0.005 0.9961
## x.92 -9.690e-03 3.382e-02 -0.287 0.7748
## x.93 1.369e-02 3.364e-02 0.407 0.6845
## x.94 3.427e-03 3.351e-02 0.102 0.9187
## x.95 -1.603e-02 3.358e-02 -0.477 0.6339
## x.96 -1.445e-02 3.352e-02 -0.431 0.6669
## x.97 -8.747e-03 3.325e-02 -0.263 0.7929
## x.98 9.607e-03 3.343e-02 0.287 0.7742
## x.99 -7.369e-03 3.351e-02 -0.220 0.8262
## x.100 -1.098e-02 3.361e-02 -0.327 0.7443
## x.101 -6.421e-03 3.363e-02 -0.191 0.8488
## x.102 -1.548e-03 3.365e-02 -0.046 0.9634
## x.103 -4.849e-04 3.360e-02 -0.014 0.9885
## x.104 -1.080e-02 3.342e-02 -0.323 0.7469
## x.105 6.472e-03 3.342e-02 0.194 0.8467
## x.106 -9.149e-03 3.352e-02 -0.273 0.7852
## x.107 -1.307e-02 3.374e-02 -0.387 0.6991
## x.108 -1.739e-02 3.369e-02 -0.516 0.6064
## x.109 -1.436e-03 3.355e-02 -0.043 0.9659
## x.110 3.072e-03 3.367e-02 0.091 0.9274
## x.111 -5.785e-03 3.362e-02 -0.172 0.8636
## x.112 -1.591e-02 3.349e-02 -0.475 0.6355
## x.113 -1.609e-02 3.333e-02 -0.483 0.6299
## x.114 -4.691e-03 3.363e-02 -0.139 0.8892
## x.115 1.256e-02 3.381e-02 0.371 0.7108
## x.116 4.628e-04 3.387e-02 0.014 0.9891
## x.117 3.807e-03 3.368e-02 0.113 0.9101
## x.118 1.012e-03 3.338e-02 0.030 0.9758
## x.119 1.649e-03 3.327e-02 0.050 0.9605
## x.120 -2.167e-02 3.274e-02 -0.662 0.5090
## x.121 -9.651e-04 3.245e-02 -0.030 0.9763
## x.122 -6.911e-04 3.263e-02 -0.021 0.9831
## x.123 2.000e-02 3.284e-02 0.609 0.5433
## x.124 -7.552e-03 3.278e-02 -0.230 0.8181
## x.125 -5.877e-03 3.280e-02 -0.179 0.8580
## x.126 1.451e-02 3.288e-02 0.441 0.6596
## x.127 -9.350e-04 3.278e-02 -0.029 0.9773
## x.128 -3.218e-02 3.267e-02 -0.985 0.3260
## x.129 -1.873e-02 3.291e-02 -0.569 0.5701
## x.130 8.408e-03 3.299e-02 0.255 0.7992
## x.131 -1.217e-02 3.289e-02 -0.370 0.7119
## x.132 -8.035e-03 3.272e-02 -0.246 0.8063
## x.133 -6.742e-03 3.265e-02 -0.207 0.8366
## x.134 -1.224e-02 3.262e-02 -0.375 0.7080
## x.135 -9.837e-04 3.236e-02 -0.030 0.9758
## x.136 -1.485e-03 3.228e-02 -0.046 0.9634
## x.137 -1.691e-03 3.234e-02 -0.052 0.9584
## x.138 -7.050e-03 3.235e-02 -0.218 0.8278
## x.139 -1.638e-02 3.234e-02 -0.506 0.6133
## x.140 -1.889e-02 3.253e-02 -0.581 0.5622
## x.141 1.152e-03 3.262e-02 0.035 0.9719
## x.142 1.390e-02 3.254e-02 0.427 0.6697
## x.143 9.742e-03 3.264e-02 0.299 0.7657
## x.144 -2.692e-02 3.238e-02 -0.831 0.4070
## x.145 4.409e-03 3.195e-02 0.138 0.8904
## x.146 9.409e-04 3.189e-02 0.030 0.9765
## x.147 -3.082e-03 3.192e-02 -0.097 0.9232
## x.148 -4.517e-03 3.178e-02 -0.142 0.8872
## x.149 4.538e-03 3.177e-02 0.143 0.8866
## x.150 -1.286e-02 3.198e-02 -0.402 0.6881
## x.151 6.695e-03 3.202e-02 0.209 0.8346
## x.152 -4.569e-03 3.200e-02 -0.143 0.8866
## x.153 1.664e-04 3.216e-02 0.005 0.9959
## x.154 6.599e-03 3.213e-02 0.205 0.8375
## x.155 -7.856e-03 3.220e-02 -0.244 0.8076
## x.156 -4.836e-03 3.212e-02 -0.151 0.8805
## x.157 -2.354e-02 3.213e-02 -0.733 0.4647
## x.158 -1.182e-02 3.211e-02 -0.368 0.7132
## x.159 -5.730e-03 3.213e-02 -0.178 0.8587
## x.160 -1.231e-02 3.227e-02 -0.381 0.7034
## x.161 7.256e-03 3.221e-02 0.225 0.8221
## x.162 1.017e-03 3.195e-02 0.032 0.9747
## x.163 -9.440e-03 3.198e-02 -0.295 0.7682
## x.164 -2.589e-02 3.189e-02 -0.812 0.4181
## x.165 -6.820e-03 3.181e-02 -0.214 0.8305
## x.166 3.197e-03 3.182e-02 0.100 0.9201
## x.167 -3.285e-04 3.204e-02 -0.010 0.9918
## x.168 1.077e-02 3.216e-02 0.335 0.7381
## x.169 -1.081e-02 3.223e-02 -0.335 0.7378
## x.170 -6.453e-03 3.247e-02 -0.199 0.8427
## x.171 -8.864e-03 3.275e-02 -0.271 0.7870
## x.172 1.386e-02 3.285e-02 0.422 0.6735
## x.173 5.565e-03 3.292e-02 0.169 0.8660
## x.174 -3.162e-02 3.282e-02 -0.963 0.3368
## x.175 -1.063e-02 3.278e-02 -0.324 0.7461
## x.176 -3.349e-03 3.283e-02 -0.102 0.9189
## x.177 -1.159e-02 3.291e-02 -0.352 0.7252
## x.178 -4.160e-03 3.274e-02 -0.127 0.8991
## x.179 -1.609e-03 3.271e-02 -0.049 0.9608
## x.180 -6.177e-03 3.250e-02 -0.190 0.8495
## x.181 -3.023e-02 3.218e-02 -0.939 0.3489
## x.182 -1.509e-02 3.178e-02 -0.475 0.6355
## x.183 -5.528e-03 3.162e-02 -0.175 0.8614
## x.184 9.153e-03 3.157e-02 0.290 0.7723
## x.185 -2.025e-02 3.143e-02 -0.644 0.5204
## x.186 -8.433e-03 3.145e-02 -0.268 0.7889
## x.187 3.615e-03 3.150e-02 0.115 0.9088
## x.188 5.752e-03 3.193e-02 0.180 0.8572
## x.189 -5.944e-04 3.207e-02 -0.019 0.9852
## x.190 -1.098e-02 3.214e-02 -0.342 0.7331
## x.191 5.538e-03 3.211e-02 0.172 0.8633
## x.192 6.069e-03 3.225e-02 0.188 0.8509
## x.193 -6.627e-03 3.226e-02 -0.205 0.8375
## x.194 -1.030e-02 3.229e-02 -0.319 0.7500
## x.195 1.514e-04 3.226e-02 0.005 0.9963
## x.196 1.842e-02 3.233e-02 0.570 0.5696
## x.197 1.385e-02 3.248e-02 0.426 0.6705
## x.198 -9.062e-03 3.236e-02 -0.280 0.7798
## x.199 -6.371e-03 3.203e-02 -0.199 0.8426
## x.200 9.119e-03 3.199e-02 0.285 0.7760
## x.201 -1.260e-02 3.174e-02 -0.397 0.6920
## x.202 6.509e-03 3.147e-02 0.207 0.8364
## x.203 2.281e-02 3.138e-02 0.727 0.4683
## x.204 1.672e-02 3.166e-02 0.528 0.5982
## x.205 -5.118e-03 3.156e-02 -0.162 0.8714
## x.206 -1.383e-02 3.141e-02 -0.440 0.6602
## x.207 -7.369e-03 3.119e-02 -0.236 0.8135
## x.208 2.300e-03 3.129e-02 0.074 0.9415
## x.209 4.268e-03 3.158e-02 0.135 0.8927
## x.210 -2.771e-03 3.181e-02 -0.087 0.9307
## x.211 -1.427e-02 3.184e-02 -0.448 0.6546
## x.212 1.303e-03 3.179e-02 0.041 0.9674
## x.213 5.889e-03 3.195e-02 0.184 0.8540
## x.214 -1.647e-02 3.226e-02 -0.511 0.6103
## x.215 -9.282e-04 3.236e-02 -0.029 0.9772
## x.216 1.773e-02 3.229e-02 0.549 0.5836
## x.217 8.744e-03 3.224e-02 0.271 0.7866
## x.218 -9.287e-03 3.224e-02 -0.288 0.7737
## x.219 -3.536e-03 3.219e-02 -0.110 0.9127
## x.220 8.425e-03 3.231e-02 0.261 0.7946
## x.221 -4.187e-03 3.268e-02 -0.128 0.8982
## x.222 4.355e-03 3.269e-02 0.133 0.8942
## x.223 -1.155e-02 3.270e-02 -0.353 0.7245
## x.224 -5.793e-03 3.271e-02 -0.177 0.8597
## x.225 -4.462e-03 3.271e-02 -0.136 0.8917
## x.226 6.213e-03 3.241e-02 0.192 0.8482
## x.227 -4.816e-03 3.227e-02 -0.149 0.8815
## x.228 6.505e-03 3.227e-02 0.202 0.8405
## x.229 2.004e-02 3.242e-02 0.618 0.5375
## x.230 -1.418e-02 3.237e-02 -0.438 0.6620
## x.231 -3.144e-02 3.236e-02 -0.972 0.3327
## x.232 -1.463e-02 3.232e-02 -0.453 0.6514
## x.233 6.737e-03 3.203e-02 0.210 0.8337
## x.234 2.472e-02 3.219e-02 0.768 0.4436
## x.235 -6.853e-03 3.226e-02 -0.212 0.8321
## x.236 -1.463e-03 3.232e-02 -0.045 0.9639
## x.237 -6.306e-03 3.227e-02 -0.195 0.8453
## x.238 1.654e-02 3.252e-02 0.509 0.6117
## x.239 -3.350e-03 3.284e-02 -0.102 0.9189
## x.240 7.551e-03 3.308e-02 0.228 0.8197
## x.241 -2.871e-03 3.293e-02 -0.087 0.9306
## x.242 4.687e-03 3.265e-02 0.144 0.8860
## x.243 -1.183e-02 3.269e-02 -0.362 0.7179
## x.244 -8.417e-03 3.273e-02 -0.257 0.7974
## x.245 -1.208e-03 3.281e-02 -0.037 0.9707
## x.246 1.058e-02 3.273e-02 0.323 0.7470
## x.247 -2.573e-03 3.242e-02 -0.079 0.9368
## x.248 -7.554e-03 3.219e-02 -0.235 0.8148
## x.249 -5.309e-03 3.213e-02 -0.165 0.8690
## x.250 1.378e-02 3.213e-02 0.429 0.6686
## x.251 6.926e-03 3.209e-02 0.216 0.8294
## x.252 -1.099e-02 3.235e-02 -0.340 0.7344
## x.253 7.076e-03 3.217e-02 0.220 0.8262
## x.254 4.870e-03 3.214e-02 0.152 0.8797
## x.255 3.048e-04 3.218e-02 0.009 0.9925
## x.256 -1.773e-02 3.225e-02 -0.550 0.5832
## x.257 -1.234e-02 3.219e-02 -0.383 0.7019
## x.258 3.499e-04 3.209e-02 0.011 0.9913
## x.259 9.044e-03 3.212e-02 0.282 0.7786
## x.260 1.241e-02 3.216e-02 0.386 0.7000
## x.261 -2.717e-03 3.224e-02 -0.084 0.9330
## x.262 1.253e-02 3.241e-02 0.387 0.6996
## x.263 1.737e-02 3.246e-02 0.535 0.5933
## x.264 -1.986e-02 3.255e-02 -0.610 0.5428
## x.265 -6.097e-03 3.247e-02 -0.188 0.8513
## x.266 1.068e-02 3.256e-02 0.328 0.7433
## x.267 4.285e-03 3.256e-02 0.132 0.8954
## x.268 -2.240e-02 3.278e-02 -0.683 0.4954
## x.269 -2.418e-02 3.280e-02 -0.737 0.4619
## x.270 9.855e-03 3.278e-02 0.301 0.7641
## x.271 2.526e-02 3.283e-02 0.769 0.4428
## x.272 -2.254e-03 3.252e-02 -0.069 0.9448
## x.273 -1.517e-02 3.265e-02 -0.465 0.6429
## x.274 -8.890e-03 3.277e-02 -0.271 0.7865
## x.275 1.083e-03 3.295e-02 0.033 0.9738
## x.276 -1.526e-02 3.288e-02 -0.464 0.6431
## x.277 -2.605e-02 3.291e-02 -0.791 0.4299
## x.278 -1.567e-03 3.286e-02 -0.048 0.9620
## x.279 2.502e-02 3.296e-02 0.759 0.4490
## x.280 1.675e-02 3.274e-02 0.512 0.6096
## x.281 5.361e-03 3.262e-02 0.164 0.8697
## x.282 -2.902e-02 3.249e-02 -0.893 0.3732
## x.283 -9.840e-03 3.262e-02 -0.302 0.7633
## x.284 6.609e-03 3.269e-02 0.202 0.8400
## x.285 1.424e-02 3.255e-02 0.437 0.6624
## x.286 -5.981e-03 3.266e-02 -0.183 0.8549
## x.287 1.319e-02 3.290e-02 0.401 0.6890
## x.288 -1.004e-02 3.315e-02 -0.303 0.7623
## x.289 -2.326e-02 3.298e-02 -0.705 0.4817
## x.290 -2.264e-02 3.272e-02 -0.692 0.4900
## x.291 1.864e-02 3.272e-02 0.570 0.5697
## x.292 3.011e-02 3.262e-02 0.923 0.3574
## x.293 -1.647e-02 3.259e-02 -0.505 0.6141
## x.294 -1.476e-02 3.265e-02 -0.452 0.6518
## x.295 -1.579e-03 3.275e-02 -0.048 0.9616
## x.296 2.114e-02 3.249e-02 0.651 0.5163
## x.297 1.252e-02 3.269e-02 0.383 0.7023
## x.298 -7.445e-03 3.230e-02 -0.231 0.8180
## x.299 -1.258e-02 3.211e-02 -0.392 0.6956
## x.300 -7.976e-03 3.231e-02 -0.247 0.8053
## x.301 1.554e-02 3.241e-02 0.480 0.6322
## x.302 -7.175e-03 3.233e-02 -0.222 0.8246
## x.303 1.295e-02 3.184e-02 0.407 0.6847
## x.304 -4.281e-03 3.167e-02 -0.135 0.8926
## x.305 3.384e-03 3.180e-02 0.106 0.9154
## x.306 -1.264e-02 3.196e-02 -0.396 0.6930
## x.307 -2.002e-02 3.208e-02 -0.624 0.5335
## x.308 3.526e-03 3.196e-02 0.110 0.9123
## x.309 3.540e-03 3.178e-02 0.111 0.9115
## x.310 -6.815e-03 3.193e-02 -0.213 0.8313
## x.311 -2.871e-03 3.210e-02 -0.089 0.9288
## x.312 8.081e-03 3.213e-02 0.252 0.8017
## x.313 -1.038e-02 3.171e-02 -0.327 0.7438
## x.314 -2.721e-02 3.156e-02 -0.862 0.3900
## x.315 -1.704e-02 3.153e-02 -0.541 0.5896
## x.316 5.412e-03 3.154e-02 0.172 0.8640
## x.317 2.385e-02 3.224e-02 0.740 0.4606
## x.318 -9.594e-03 3.267e-02 -0.294 0.7694
## x.319 -1.813e-02 3.277e-02 -0.553 0.5810
## x.320 -1.304e-02 3.273e-02 -0.398 0.6909
## x.321 1.268e-02 3.316e-02 0.382 0.7027
## x.322 6.639e-03 3.322e-02 0.200 0.8418
## x.323 -5.645e-03 3.293e-02 -0.171 0.8641
## x.324 -2.432e-02 3.271e-02 -0.743 0.4584
## x.325 -9.469e-04 3.259e-02 -0.029 0.9769
## x.326 5.209e-05 3.255e-02 0.002 0.9987
## x.327 -1.428e-02 3.249e-02 -0.440 0.6609
## x.328 2.501e-03 3.244e-02 0.077 0.9386
## x.329 1.203e-02 3.255e-02 0.370 0.7121
## x.330 -2.196e-02 3.284e-02 -0.669 0.5047
## x.331 -2.485e-02 3.284e-02 -0.757 0.4504
## x.332 -1.904e-03 3.265e-02 -0.058 0.9536
## x.333 1.589e-02 3.358e-02 0.473 0.6368
## x.334 -2.021e-02 3.418e-02 -0.591 0.5552
## x.335 -3.071e-02 3.445e-02 -0.892 0.3740
## x.336 -1.705e-02 3.433e-02 -0.496 0.6202
## x.337 -4.904e-03 3.433e-02 -0.143 0.8866
## x.338 6.515e-03 3.435e-02 0.190 0.8498
## x.339 1.772e-03 3.431e-02 0.052 0.9589
## x.340 -1.500e-02 3.406e-02 -0.440 0.6603
## x.341 1.335e-02 3.407e-02 0.392 0.6957
## x.342 1.527e-03 3.381e-02 0.045 0.9640
## x.343 -1.760e-02 3.327e-02 -0.529 0.5976
## x.344 -1.512e-02 3.296e-02 -0.459 0.6469
## x.345 9.580e-03 3.285e-02 0.292 0.7709
## x.346 2.137e-02 3.266e-02 0.654 0.5138
## x.347 -1.476e-02 3.223e-02 -0.458 0.6477
## x.348 -8.685e-03 3.202e-02 -0.271 0.7865
## x.349 -1.514e-03 3.196e-02 -0.047 0.9623
## x.350 -8.413e-04 3.194e-02 -0.026 0.9790
## x.351 -8.327e-03 3.178e-02 -0.262 0.7936
## x.352 7.465e-03 3.149e-02 0.237 0.8129
## x.353 6.726e-03 3.150e-02 0.214 0.8312
## x.354 1.223e-03 3.179e-02 0.038 0.9694
## x.355 -2.644e-03 3.203e-02 -0.083 0.9343
## x.356 -1.339e-02 3.196e-02 -0.419 0.6758
## x.357 -5.488e-04 3.196e-02 -0.017 0.9863
## x.358 3.863e-03 3.205e-02 0.121 0.9042
## x.359 1.014e-02 3.226e-02 0.314 0.7536
## x.360 -3.367e-04 3.245e-02 -0.010 0.9917
## x.361 -2.391e-02 3.250e-02 -0.736 0.4630
## x.362 3.598e-03 3.236e-02 0.111 0.9116
## x.363 6.099e-03 3.231e-02 0.189 0.8505
## x.364 -1.531e-02 3.219e-02 -0.476 0.6350
## x.365 -1.910e-02 3.215e-02 -0.594 0.5532
## x.366 6.088e-03 3.217e-02 0.189 0.8501
## x.367 -1.071e-02 3.197e-02 -0.335 0.7380
## x.368 -1.155e-02 3.174e-02 -0.364 0.7165
## x.369 -1.321e-03 3.167e-02 -0.042 0.9668
## x.370 2.251e-04 3.167e-02 0.007 0.9943
## x.371 1.241e-03 3.167e-02 0.039 0.9688
## x.372 -1.068e-02 3.178e-02 -0.336 0.7372
## x.373 -1.396e-02 3.177e-02 -0.439 0.6610
## x.374 -6.304e-04 3.181e-02 -0.020 0.9842
## x.375 4.813e-03 3.181e-02 0.151 0.8799
## x.376 2.837e-03 3.186e-02 0.089 0.9292
## x.377 -1.997e-02 3.179e-02 -0.628 0.5308
## x.378 1.573e-02 3.129e-02 0.503 0.6158
## x.379 -9.835e-03 3.087e-02 -0.319 0.7504
## x.380 -1.057e-02 3.083e-02 -0.343 0.7323
## x.381 -1.647e-02 3.094e-02 -0.532 0.5953
## x.382 2.004e-02 3.074e-02 0.652 0.5152
## x.383 1.294e-02 3.068e-02 0.422 0.6737
## x.384 -4.612e-05 3.064e-02 -0.002 0.9988
## x.385 -2.380e-02 3.066e-02 -0.776 0.4389
## x.386 -1.380e-02 3.074e-02 -0.449 0.6542
## x.387 -1.493e-02 3.097e-02 -0.482 0.6304
## x.388 -5.947e-03 3.094e-02 -0.192 0.8478
## x.389 -2.170e-03 3.100e-02 -0.070 0.9443
## x.390 1.246e-02 3.093e-02 0.403 0.6875
## x.391 -9.150e-03 3.083e-02 -0.297 0.7670
## x.392 -4.667e-03 3.085e-02 -0.151 0.8800
## x.393 -2.370e-02 3.107e-02 -0.763 0.4467
## x.394 -4.865e-03 3.094e-02 -0.157 0.8753
## x.395 7.725e-03 3.076e-02 0.251 0.8021
## x.396 1.569e-03 3.085e-02 0.051 0.9595
## x.397 -1.399e-02 3.082e-02 -0.454 0.6506
## x.398 1.168e-02 3.096e-02 0.377 0.7066
## x.399 1.167e-02 3.109e-02 0.375 0.7078
## x.400 1.704e-02 3.142e-02 0.542 0.5883
## x.401 -2.287e-02 3.134e-02 -0.730 0.4665
## x.402 -2.235e-02 3.125e-02 -0.715 0.4756
## x.403 3.518e-03 3.099e-02 0.114 0.9097
## x.404 7.825e-03 3.133e-02 0.250 0.8031
## x.405 -8.281e-03 3.155e-02 -0.263 0.7933
## x.406 -1.112e-03 3.154e-02 -0.035 0.9719
## x.407 -9.700e-03 3.137e-02 -0.309 0.7575
## x.408 -3.317e-03 3.128e-02 -0.106 0.9157
## x.409 -1.025e-02 3.102e-02 -0.330 0.7416
## x.410 -1.927e-03 3.085e-02 -0.062 0.9503
## x.411 -5.261e-03 3.079e-02 -0.171 0.8645
## x.412 -3.717e-03 3.044e-02 -0.122 0.9030
## x.413 -8.884e-03 3.037e-02 -0.293 0.7703
## x.414 -1.018e-02 3.038e-02 -0.335 0.7380
## x.415 3.835e-03 3.073e-02 0.125 0.9008
## x.416 1.756e-02 3.079e-02 0.570 0.5693
## x.417 -3.301e-02 3.090e-02 -1.068 0.2870
## x.418 -3.046e-02 3.114e-02 -0.978 0.3294
## x.419 -8.134e-03 3.132e-02 -0.260 0.7954
## x.420 2.530e-03 3.127e-02 0.081 0.9356
## x.421 -3.564e-03 3.129e-02 -0.114 0.9095
## x.422 -1.375e-03 3.149e-02 -0.044 0.9652
## x.423 -6.884e-03 3.182e-02 -0.216 0.8290
## x.424 -3.033e-03 3.171e-02 -0.096 0.9239
## x.425 5.750e-03 3.169e-02 0.181 0.8563
## x.426 -1.960e-02 3.177e-02 -0.617 0.5380
## x.427 3.095e-03 3.180e-02 0.097 0.9226
## x.428 6.845e-03 3.165e-02 0.216 0.8290
## x.429 8.462e-03 3.139e-02 0.270 0.7878
## x.430 -8.807e-03 3.116e-02 -0.283 0.7778
## x.431 5.834e-03 3.096e-02 0.188 0.8508
## x.432 -7.387e-03 3.098e-02 -0.238 0.8118
## x.433 -5.359e-03 3.090e-02 -0.173 0.8625
## x.434 3.947e-03 3.091e-02 0.128 0.8986
## x.435 6.635e-04 3.095e-02 0.021 0.9829
## x.436 1.543e-02 3.080e-02 0.501 0.6171
## x.437 -1.411e-03 3.096e-02 -0.046 0.9637
## x.438 -1.658e-02 3.139e-02 -0.528 0.5982
## x.439 -3.449e-03 3.138e-02 -0.110 0.9126
## x.440 -1.864e-02 3.144e-02 -0.593 0.5542
## x.441 1.717e-02 3.143e-02 0.546 0.5855
## x.442 -8.086e-03 3.121e-02 -0.259 0.7959
## x.443 -9.959e-03 3.083e-02 -0.323 0.7471
## x.444 -1.767e-02 3.082e-02 -0.574 0.5671
## x.445 6.917e-04 3.081e-02 0.022 0.9821
## x.446 2.194e-02 3.048e-02 0.720 0.4728
## x.447 -4.984e-03 3.015e-02 -0.165 0.8689
## x.448 8.146e-03 3.015e-02 0.270 0.7874
## x.449 3.836e-03 2.998e-02 0.128 0.8984
## x.450 1.440e-03 3.000e-02 0.048 0.9618
## x.451 6.291e-03 3.006e-02 0.209 0.8345
## x.452 6.569e-05 3.016e-02 0.002 0.9983
## x.453 1.108e-02 3.027e-02 0.366 0.7148
## x.454 -4.514e-03 3.024e-02 -0.149 0.8815
## x.455 -1.201e-02 3.041e-02 -0.395 0.6934
## x.456 5.697e-03 3.063e-02 0.186 0.8527
## x.457 7.737e-03 3.043e-02 0.254 0.7996
## x.458 1.277e-02 3.031e-02 0.421 0.6742
## x.459 -2.212e-02 3.028e-02 -0.730 0.4662
## x.460 -4.694e-03 3.034e-02 -0.155 0.8772
## x.461 1.469e-02 2.996e-02 0.490 0.6246
## x.462 1.955e-03 2.983e-02 0.066 0.9478
## x.463 -4.192e-03 2.985e-02 -0.140 0.8885
## x.464 -1.077e-02 2.992e-02 -0.360 0.7194
## x.465 1.618e-03 2.990e-02 0.054 0.9569
## x.466 -6.829e-03 2.995e-02 -0.228 0.8199
## x.467 -2.988e-03 2.974e-02 -0.100 0.9201
## x.468 -6.087e-03 2.932e-02 -0.208 0.8358
## x.469 -1.316e-02 2.924e-02 -0.450 0.6532
## x.470 -1.345e-02 2.920e-02 -0.461 0.6457
## x.471 -9.406e-03 2.916e-02 -0.323 0.7474
## x.472 -5.301e-03 2.924e-02 -0.181 0.8564
## x.473 -3.756e-03 2.928e-02 -0.128 0.8981
## x.474 1.277e-02 2.912e-02 0.438 0.6617
## x.475 -4.859e-03 2.905e-02 -0.167 0.8674
## x.476 -1.254e-02 2.893e-02 -0.434 0.6652
## x.477 -6.872e-03 2.885e-02 -0.238 0.8120
## x.478 -1.195e-02 2.869e-02 -0.416 0.6777
## x.479 3.320e-03 2.872e-02 0.116 0.9081
## x.480 -2.157e-03 2.868e-02 -0.075 0.9401
## x.481 1.670e-02 2.857e-02 0.584 0.5597
## x.482 -4.213e-03 2.895e-02 -0.146 0.8845
## x.483 9.303e-03 2.946e-02 0.316 0.7526
## x.484 -2.033e-02 2.911e-02 -0.698 0.4859
## x.485 5.559e-03 2.874e-02 0.193 0.8469
## x.486 1.215e-02 2.870e-02 0.423 0.6727
## x.487 3.118e-05 2.870e-02 0.001 0.9991
## x.488 -9.009e-04 2.842e-02 -0.032 0.9748
## x.489 -1.694e-02 2.842e-02 -0.596 0.5521
## x.490 -1.427e-02 2.860e-02 -0.499 0.6184
## x.491 2.825e-03 2.857e-02 0.099 0.9213
## x.492 1.892e-02 2.832e-02 0.668 0.5051
## x.493 6.617e-03 2.842e-02 0.233 0.8162
## x.494 -5.591e-03 2.832e-02 -0.197 0.8438
## x.495 -7.208e-03 2.826e-02 -0.255 0.7990
## x.496 -1.246e-02 2.834e-02 -0.440 0.6607
## x.497 -1.109e-02 2.851e-02 -0.389 0.6980
## x.498 1.187e-02 2.851e-02 0.416 0.6777
## x.499 4.173e-03 2.851e-02 0.146 0.8838
## x.500 -6.824e-03 2.860e-02 -0.239 0.8117
## x.501 1.569e-02 2.861e-02 0.548 0.5841
## x.502 -1.038e-02 2.840e-02 -0.366 0.7152
## x.503 1.556e-03 2.798e-02 0.056 0.9557
## x.504 4.436e-03 2.783e-02 0.159 0.8736
## x.505 -1.132e-02 2.786e-02 -0.406 0.6852
## x.506 -1.513e-02 2.786e-02 -0.543 0.5879
## x.507 -4.365e-03 2.806e-02 -0.156 0.8766
## x.508 9.225e-03 2.803e-02 0.329 0.7425
## x.509 6.054e-03 2.799e-02 0.216 0.8290
## x.510 -2.561e-03 2.775e-02 -0.092 0.9266
## x.511 1.441e-02 2.761e-02 0.522 0.6023
## x.512 1.019e-02 2.761e-02 0.369 0.7126
## x.513 -6.206e-03 2.763e-02 -0.225 0.8226
## x.514 -1.666e-02 2.773e-02 -0.601 0.5489
## x.515 -5.097e-03 2.785e-02 -0.183 0.8550
## x.516 2.421e-03 2.798e-02 0.087 0.9311
## x.517 8.367e-03 2.774e-02 0.302 0.7633
## x.518 1.159e-02 2.772e-02 0.418 0.6765
## x.519 1.321e-03 2.771e-02 0.048 0.9620
## x.520 -7.029e-03 2.778e-02 -0.253 0.8006
## x.521 -2.348e-03 2.760e-02 -0.085 0.9323
## x.522 5.920e-03 2.757e-02 0.215 0.8302
## x.523 3.600e-03 2.743e-02 0.131 0.8957
## x.524 1.778e-03 2.733e-02 0.065 0.9482
## x.525 2.750e-03 2.734e-02 0.101 0.9200
## x.526 -1.174e-03 2.739e-02 -0.043 0.9659
## x.527 2.401e-03 2.742e-02 0.088 0.9303
## x.528 1.609e-02 2.730e-02 0.589 0.5565
## x.529 -6.955e-03 2.736e-02 -0.254 0.7996
## x.530 -1.734e-03 2.731e-02 -0.064 0.9494
## x.531 -3.126e-03 2.721e-02 -0.115 0.9087
## x.532 3.256e-04 2.729e-02 0.012 0.9905
## x.533 1.152e-02 2.732e-02 0.422 0.6737
## x.534 8.839e-04 2.747e-02 0.032 0.9744
## x.535 1.455e-02 2.770e-02 0.525 0.6000
## x.536 7.180e-03 2.791e-02 0.257 0.7973
## x.537 -1.298e-02 2.789e-02 -0.466 0.6422
## x.538 -5.609e-03 2.781e-02 -0.202 0.8404
## x.539 1.117e-02 2.774e-02 0.403 0.6877
## x.540 -2.655e-03 2.764e-02 -0.096 0.9236
## x.541 -1.356e-02 2.743e-02 -0.494 0.6217
## x.542 -2.105e-02 2.750e-02 -0.766 0.4450
## x.543 -8.146e-03 2.747e-02 -0.297 0.7672
## x.544 7.990e-03 2.760e-02 0.289 0.7726
## x.545 6.675e-03 2.763e-02 0.242 0.8094
## x.546 -1.742e-03 2.780e-02 -0.063 0.9501
## x.547 -5.886e-03 2.805e-02 -0.210 0.8340
## x.548 1.458e-02 2.803e-02 0.520 0.6037
## x.549 -6.183e-03 2.815e-02 -0.220 0.8264
## x.550 -3.954e-03 2.810e-02 -0.141 0.8883
## x.551 1.775e-02 2.801e-02 0.634 0.5271
## x.552 -9.965e-03 2.801e-02 -0.356 0.7225
## x.553 1.459e-02 2.800e-02 0.521 0.6031
## x.554 3.091e-03 2.796e-02 0.111 0.9121
## x.555 -1.837e-03 2.786e-02 -0.066 0.9475
## x.556 1.230e-02 2.791e-02 0.441 0.6601
## x.557 -9.979e-03 2.821e-02 -0.354 0.7240
## x.558 -6.752e-03 2.837e-02 -0.238 0.8122
## x.559 6.199e-03 2.836e-02 0.219 0.8272
## x.560 -9.772e-03 2.841e-02 -0.344 0.7313
## x.561 1.451e-03 2.865e-02 0.051 0.9597
## x.562 1.048e-02 2.894e-02 0.362 0.7178
## x.563 -4.316e-04 2.902e-02 -0.015 0.9882
## x.564 1.145e-02 2.889e-02 0.396 0.6923
## x.565 6.120e-03 2.863e-02 0.214 0.8310
## x.566 8.170e-03 2.860e-02 0.286 0.7755
## x.567 -1.162e-02 2.856e-02 -0.407 0.6847
## x.568 2.029e-04 2.886e-02 0.007 0.9944
## x.569 4.179e-03 2.878e-02 0.145 0.8847
## x.570 -5.684e-03 2.872e-02 -0.198 0.8434
## x.571 -1.166e-02 2.874e-02 -0.406 0.6856
## x.572 3.423e-03 2.854e-02 0.120 0.9047
## x.573 -8.365e-03 2.842e-02 -0.294 0.7689
## x.574 1.686e-02 2.842e-02 0.593 0.5538
## x.575 8.869e-04 2.839e-02 0.031 0.9751
## x.576 1.658e-02 2.838e-02 0.584 0.5600
## x.577 2.157e-03 2.828e-02 0.076 0.9393
## x.578 5.082e-03 2.821e-02 0.180 0.8572
## x.579 -1.864e-03 2.821e-02 -0.066 0.9474
## x.580 -6.852e-03 2.822e-02 -0.243 0.8085
## x.581 1.280e-03 2.840e-02 0.045 0.9641
## x.582 -6.421e-03 2.883e-02 -0.223 0.8240
## x.583 -2.362e-02 2.970e-02 -0.795 0.4275
## x.584 4.754e-03 3.026e-02 0.157 0.8754
## x.585 1.392e-02 3.034e-02 0.459 0.6470
## x.586 1.374e-02 3.011e-02 0.456 0.6488
## x.587 1.387e-02 3.008e-02 0.461 0.6454
## x.588 -2.758e-03 3.022e-02 -0.091 0.9274
## x.589 -3.250e-04 3.047e-02 -0.011 0.9915
## x.590 6.662e-03 3.056e-02 0.218 0.8277
## x.591 4.733e-03 3.064e-02 0.154 0.8774
## x.592 -1.339e-02 3.055e-02 -0.438 0.6618
## x.593 1.323e-03 3.059e-02 0.043 0.9656
## x.594 3.913e-03 3.060e-02 0.128 0.8984
## x.595 -1.646e-02 3.080e-02 -0.534 0.5938
## x.596 -8.222e-03 3.083e-02 -0.267 0.7901
## x.597 -5.754e-03 3.088e-02 -0.186 0.8524
## x.598 4.853e-03 3.090e-02 0.157 0.8754
## x.599 -3.038e-03 3.100e-02 -0.098 0.9220
## x.600 -9.799e-03 3.115e-02 -0.315 0.7535
## x.601 -2.812e-03 3.074e-02 -0.091 0.9272
## x.602 -1.125e-02 3.060e-02 -0.368 0.7137
## x.603 5.334e-03 3.069e-02 0.174 0.8623
## x.604 -1.290e-03 3.070e-02 -0.042 0.9665
## x.605 1.560e-03 3.065e-02 0.051 0.9595
## x.606 1.498e-02 3.096e-02 0.484 0.6290
## x.607 -7.031e-03 3.125e-02 -0.225 0.8223
## x.608 -1.704e-02 3.125e-02 -0.546 0.5862
## x.609 4.279e-03 3.127e-02 0.137 0.8913
## x.610 2.148e-02 3.106e-02 0.691 0.4903
## x.611 2.333e-02 3.064e-02 0.761 0.4476
## x.612 1.419e-02 3.088e-02 0.460 0.6465
## x.613 -1.728e-02 3.092e-02 -0.559 0.5771
## x.614 5.685e-03 3.074e-02 0.185 0.8535
## x.615 5.719e-03 3.031e-02 0.189 0.8506
## x.616 6.956e-03 3.000e-02 0.232 0.8169
## x.617 -1.146e-03 2.980e-02 -0.038 0.9694
## x.618 2.106e-03 2.980e-02 0.071 0.9438
## x.619 1.095e-02 2.987e-02 0.367 0.7143
## x.620 -1.050e-02 2.979e-02 -0.353 0.7249
## x.621 5.692e-03 2.963e-02 0.192 0.8479
## x.622 5.261e-03 2.966e-02 0.177 0.8594
## x.623 2.158e-02 2.975e-02 0.725 0.4694
## x.624 -4.649e-03 2.960e-02 -0.157 0.8754
## x.625 -1.769e-02 2.955e-02 -0.599 0.5504
## x.626 5.397e-03 2.953e-02 0.183 0.8552
## x.627 1.726e-02 2.960e-02 0.583 0.5605
## x.628 8.361e-03 2.950e-02 0.283 0.7772
## x.629 3.760e-03 2.947e-02 0.128 0.8986
## x.630 1.088e-02 2.970e-02 0.366 0.7145
## x.631 -1.052e-02 2.968e-02 -0.354 0.7236
## x.632 -1.395e-02 2.928e-02 -0.476 0.6344
## x.633 -1.170e-02 2.839e-02 -0.412 0.6807
## x.634 -1.062e-02 2.819e-02 -0.377 0.7068
## x.635 -2.456e-03 2.803e-02 -0.088 0.9303
## x.636 1.387e-02 2.777e-02 0.500 0.6181
## x.637 8.769e-03 2.738e-02 0.320 0.7491
## x.638 -2.273e-02 2.763e-02 -0.823 0.4119
## x.639 -6.757e-03 2.797e-02 -0.242 0.8094
## x.640 3.412e-03 2.786e-02 0.122 0.9027
## x.641 -1.779e-03 2.802e-02 -0.064 0.9494
## x.642 -9.022e-03 2.797e-02 -0.323 0.7474
## x.643 -3.532e-03 2.793e-02 -0.126 0.8995
## x.644 7.414e-03 2.798e-02 0.265 0.7914
## x.645 -1.363e-02 2.797e-02 -0.487 0.6268
## x.646 -1.121e-02 2.770e-02 -0.405 0.6863
## x.647 8.640e-05 2.774e-02 0.003 0.9975
## x.648 9.681e-03 2.780e-02 0.348 0.7281
## x.649 8.141e-04 2.789e-02 0.029 0.9767
## x.650 -3.953e-02 2.249e-02 -1.757 0.0808 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.789 on 160 degrees of freedom
## Multiple R-squared: 0.9709, Adjusted R-squared: 0.8527
## F-statistic: 8.212 on 651 and 160 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 3957.241 7026.014
Sementara itu, didapatkan AIC dan BIC dari model sebesar:
AIC(model.koyck)
## [1] 5725.577
BIC(model.koyck)
## [1] 5746.725
Dilaksanakan peramalan data training sebagai pendugaan terhadap data testing.
#ramalan
(fore.dlm2 <- forecast(model = model.dlm2, x=test$Xt, h=114))
## $forecasts
## [1] 11.31206 10.98702 12.14416 15.60685 16.93620 16.93603 12.87922 12.54258
## [9] 12.65955 16.67661 16.91704 16.91685 17.52297 15.73263 12.13883 11.00255
## [17] 12.06509 13.15564 13.35670 16.99182 17.03518 19.05521 20.57817 18.66082
## [25] 15.18932 11.85439 16.22820 18.81620 22.04180 22.85480 17.29696 14.56926
## [33] 19.29066 16.55770 17.24138 18.36060 20.15353 19.00494 19.28363 17.37932
## [41] 19.60706 20.45030 18.84035 21.81238 24.59455 23.67775 24.68985 21.86081
## [49] 20.61181 20.09093 20.77335 19.50663 24.88105 28.31558 30.95553 25.85282
## [57] 24.79303 27.10157 33.16992 35.41543 32.37798 35.65620 35.88797 34.33741
## [65] 35.04541 33.76446 34.85782 25.53758 27.24421 30.71931 32.41774 30.83419
## [73] 27.42919 28.21596 30.62852 28.59840 31.50338 29.87132 34.57387 33.80257
## [81] 33.21206 33.10488 35.48321 35.40198 35.42947 35.99700 33.79028 34.79783
## [89] 31.52644 30.53271 33.89635 35.69509 36.55309 37.07682 36.64029 39.63537
## [97] 37.07629 37.17804 37.97017 38.11849 39.50345 40.02351 40.73627 41.35786
## [105] 42.74578 36.84543 36.23000 39.71194 38.81476 41.70264 39.84441 40.81602
## [113] 39.84777 37.70464
##
## $call
## forecast.dlm(model = model.dlm2, x = test$Xt, h = 114)
##
## attr(,"class")
## [1] "forecast.dlm" "dLagM"
Dihitung MAPE dari antara data forecast dan data testing serta data training dan model. Kemudian, kedua data dibandingkan.
mape.dlm2 <- MAPE(fore.dlm2$forecast, test$Yt)
mape_train <- GoF(model.dlm2)["MAPE"]
c("MAPE_testing" = mape.dlm2,"MAPE_training" = mape_train)
## $MAPE_testing
## [1] 0.2788194
##
## $MAPE_training.MAPE
## [1] 0.04285742
Digunakan syntax ardlDlm untuk membuat model autoregresive dengan nilai lag x = 1, dan nilai lag y = 1
#MODEL AUTOREGRESSIVE
model.ardl = ardlDlm(x = train$Xt, y = train$Yt, p =1, q =1)
summary(model.ardl)
##
## Time series regression with "ts" data:
## Start = 2, End = 1462
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.7218 -0.6964 0.1028 0.7305 6.2173
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.270489 0.256393 4.955 8.07e-07 ***
## X.t -0.136302 0.004090 -33.322 < 2e-16 ***
## X.1 0.126140 0.004240 29.747 < 2e-16 ***
## Y.1 0.974448 0.005432 179.375 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.249 on 1457 degrees of freedom
## Multiple R-squared: 0.9711, Adjusted R-squared: 0.9711
## F-statistic: 1.633e+04 on 3 and 1457 DF, p-value: < 2.2e-16
Didapatkan AIC dan BIC dari model sebesar:
AIC(model.ardl)
## [1] 4801.104
BIC(model.ardl)
## [1] 4827.538
Dilaksanakan peramalan data training sebagai pendugaan terhadap data testing.
#ramalan
(fore.ardl <- forecast(model = model.ardl, x=test$Xt,h=114))
## $forecasts
## [1] 11.92475 13.19657 12.70902 14.43626 13.95888 13.51494 11.38298 13.06620
## [9] 13.52431 14.83635 14.97390 14.79259 15.95222 15.14936 15.51163 14.84622
## [17] 14.12307 15.00750 15.53334 16.82493 16.39081 15.79028 15.91523 17.07936
## [25] 16.97170 14.14215 16.11015 15.40492 15.57623 16.19317 16.47377 16.19320
## [33] 17.89738 16.44823 16.58323 16.63709 17.77919 18.69386 18.20503 18.31865
## [41] 17.96241 19.10462 18.36764 18.91364 19.22443 19.03625 20.62665 19.75066
## [49] 18.99651 19.69766 20.60636 19.47283 21.21570 23.30587 23.88589 22.76542
## [57] 21.77343 21.97317 23.00334 23.67125 22.98750 24.72086 24.84259 25.29562
## [65] 25.33775 25.65820 24.32103 22.20648 22.38774 23.39950 23.97283 25.04919
## [73] 24.22416 24.51901 25.36308 24.05432 25.92889 25.25251 25.02087 25.86886
## [81] 26.52560 26.01357 27.76077 27.70628 28.17876 28.14434 28.02487 29.00653
## [89] 28.86396 28.91770 29.40767 29.75720 30.46956 30.37065 28.61485 31.41275
## [97] 31.08819 31.32886 32.62480 33.07820 33.53483 32.64355 32.39165 31.37817
## [105] 32.44324 32.05665 31.58825 33.17537 33.75769 33.46041 31.97786 31.82324
## [113] 33.69139 33.87021
##
## $call
## forecast.ardlDlm(model = model.ardl, x = test$Xt, h = 114)
##
## attr(,"class")
## [1] "forecast.ardlDlm" "dLagM"
#Akurasi testing
mape.ardl <- MAPE(fore.ardl$forecasts, test$Yt)
#Akurasi data training
mape_train <- GoF(model.ardl)["MAPE"]
c("MAPE_testing" = mape.ardl, "MAPE_training" = mape_train)
## $MAPE_testing
## [1] 0.1220792
##
## $MAPE_training.MAPE
## [1] 0.04222255
Digunakna fungsi ardlBoundOrders untuk menentukan for nilai lag optimum dalam model autoregressive
ardlBoundOrders(data = data.frame(data), formula = Yt ~ Xt)
## $p
## Xt
## 1 4
##
## $q
## [1] 15
##
## $Stat.table
## q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8
## p = 1 5223.217 5211.007 5189.278 5182.436 5172.609 5166.250 5162.958 5154.423
## p = 2 5219.151 5188.993 5172.795 5166.931 5157.776 5152.441 5149.223 5140.990
## p = 3 5187.419 5187.419 5155.695 5152.130 5144.025 5138.806 5136.212 5128.058
## p = 4 5152.696 5154.681 5154.681 5150.529 5143.672 5138.673 5136.112 5127.917
## p = 5 5153.613 5152.585 5149.404 5149.404 5144.741 5140.174 5137.687 5129.666
## p = 6 5154.942 5149.371 5141.774 5143.771 5143.771 5139.153 5137.246 5129.479
## p = 7 5152.980 5145.930 5134.796 5136.634 5138.632 5138.632 5138.876 5131.247
## p = 8 5149.276 5140.069 5126.202 5126.939 5127.982 5128.591 5128.591 5124.947
## p = 9 5141.508 5132.056 5118.446 5119.259 5119.921 5120.763 5121.845 5121.845
## p = 10 5132.247 5121.789 5107.697 5108.488 5109.007 5109.320 5110.841 5112.739
## p = 11 5134.875 5122.972 5107.530 5107.894 5107.994 5107.695 5109.669 5110.583
## p = 12 5144.593 5129.415 5111.614 5110.843 5109.873 5108.420 5110.344 5109.329
## p = 13 5148.172 5132.296 5113.326 5112.021 5110.878 5108.947 5110.798 5109.302
## p = 14 5148.628 5133.113 5113.784 5112.107 5110.643 5108.577 5110.363 5108.656
## p = 15 5149.312 5133.492 5113.861 5111.848 5109.646 5107.279 5108.835 5106.620
## q = 9 q = 10 q = 11 q = 12 q = 13 q = 14 q = 15
## p = 1 5145.935 5136.347 5134.315 5130.707 5129.409 5128.840 5120.189
## p = 2 5132.787 5123.270 5121.325 5117.716 5116.681 5116.178 5107.683
## p = 3 5119.634 5111.347 5109.194 5105.608 5104.914 5104.347 5095.587
## p = 4 5119.513 5111.333 5109.331 5105.618 5104.987 5104.458 5095.374
## p = 5 5121.383 5113.215 5111.222 5107.552 5106.936 5106.410 5097.344
## p = 6 5121.087 5112.920 5110.941 5107.317 5106.741 5106.217 5097.295
## p = 7 5122.924 5114.861 5112.869 5109.247 5108.669 5108.158 5099.241
## p = 8 5118.128 5110.525 5108.872 5105.071 5104.514 5104.005 5095.680
## p = 9 5119.193 5111.887 5110.263 5106.606 5106.088 5105.583 5097.222
## p = 10 5112.739 5113.602 5112.000 5108.373 5107.855 5107.353 5098.994
## p = 11 5111.980 5111.980 5113.974 5110.328 5109.801 5109.287 5100.905
## p = 12 5109.073 5110.326 5110.326 5112.037 5111.572 5111.074 5102.782
## p = 13 5108.566 5109.982 5111.724 5111.724 5113.557 5113.069 5104.781
## p = 14 5107.752 5109.144 5110.888 5112.882 5112.882 5114.880 5106.197
## p = 15 5105.342 5106.548 5108.438 5110.328 5112.183 5112.183 5104.190
##
## $min.Stat
## [1] 5095.374
Dengan nilai P dan Q sama dengan 15, dibuat 4 model DLM dan ARDL dengan library dynlm sebagai berikut:
#PEMODELAN DLM dan ARDL dengan library dynlm
#sama dengan model dlm p=1
cons_lm1 <- dynlm(Yt ~ Xt+L(Xt),data = train.ts)
#sama dengan model ardl p=0 q=1
cons_lm2 <- dynlm(Yt ~ Xt+L(Yt),data = train.ts)
#sama dengan ardl p=1 q=1
cons_lm3 <- dynlm(Yt ~ Xt+L(Xt)+L(Yt),data = train.ts)
#sama dengan dlm p=2
cons_lm4 <- dynlm(Yt ~ Xt+L(Xt)+L(Xt,2),data = train.ts)
Ringkasan dari model-model berikut yakni:
summary(cons_lm1)
##
## Time series regression with "ts" data:
## Start = 2, End = 1462
##
## Call:
## dynlm(formula = Yt ~ Xt + L(Xt), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.0061 -4.8229 -0.0874 5.6174 12.3816
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.26800 0.60783 67.894 < 2e-16 ***
## Xt -0.18283 0.01961 -9.325 < 2e-16 ***
## L(Xt) -0.07662 0.01963 -3.903 9.93e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.997 on 1458 degrees of freedom
## Multiple R-squared: 0.3332, Adjusted R-squared: 0.3323
## F-statistic: 364.3 on 2 and 1458 DF, p-value: < 2.2e-16
summary(cons_lm2)
##
## Time series regression with "ts" data:
## Start = 2, End = 1462
##
## Call:
## dynlm(formula = Yt ~ Xt + L(Yt), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.0376 -0.8761 0.0372 0.9540 6.2722
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.909006 0.304880 12.82 <2e-16 ***
## Xt -0.035529 0.002905 -12.23 <2e-16 ***
## L(Yt) 0.931372 0.006636 140.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.583 on 1458 degrees of freedom
## Multiple R-squared: 0.9536, Adjusted R-squared: 0.9535
## F-statistic: 1.497e+04 on 2 and 1458 DF, p-value: < 2.2e-16
summary(cons_lm3)
##
## Time series regression with "ts" data:
## Start = 2, End = 1462
##
## Call:
## dynlm(formula = Yt ~ Xt + L(Xt) + L(Yt), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.7218 -0.6964 0.1028 0.7305 6.2173
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.270489 0.256393 4.955 8.07e-07 ***
## Xt -0.136302 0.004090 -33.322 < 2e-16 ***
## L(Xt) 0.126140 0.004240 29.747 < 2e-16 ***
## L(Yt) 0.974448 0.005432 179.375 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.249 on 1457 degrees of freedom
## Multiple R-squared: 0.9711, Adjusted R-squared: 0.9711
## F-statistic: 1.633e+04 on 3 and 1457 DF, p-value: < 2.2e-16
summary(cons_lm4)
##
## Time series regression with "ts" data:
## Start = 3, End = 1462
##
## Call:
## dynlm(formula = Yt ~ Xt + L(Xt) + L(Xt, 2), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.109 -4.670 -0.306 5.541 12.179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.858693 0.618846 67.640 < 2e-16 ***
## Xt -0.176868 0.019496 -9.072 < 2e-16 ***
## L(Xt) -0.002206 0.025355 -0.087 0.931
## L(Xt, 2) -0.089981 0.019515 -4.611 4.36e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.952 on 1456 degrees of freedom
## Multiple R-squared: 0.3415, Adjusted R-squared: 0.3401
## F-statistic: 251.6 on 3 and 1456 DF, p-value: < 2.2e-16
Sementara itu, didapatkan jumlah kuadrat galat yakni:
deviance(cons_lm1)
## [1] 52440.98
deviance(cons_lm2)
## [1] 3651.525
deviance(cons_lm3)
## [1] 2271.808
deviance(cons_lm4)
## [1] 51575.73
Uji model
if(require("lmtest"))encomptest(cons_lm1, cons_lm2)
## Encompassing test
##
## Model 1: Yt ~ Xt + L(Xt)
## Model 2: Yt ~ Xt + L(Yt)
## Model E: Yt ~ Xt + L(Xt) + L(Yt)
## Res.Df Df F Pr(>F)
## M1 vs. ME 1457 -1 32175.47 < 2.2e-16 ***
## M2 vs. ME 1457 -1 884.87 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Uji Durbin-Watson
dwtest(cons_lm1)
##
## Durbin-Watson test
##
## data: cons_lm1
## DW = 0.061873, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(cons_lm2)
##
## Durbin-Watson test
##
## data: cons_lm2
## DW = 2.1257, p-value = 0.9908
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(cons_lm3)
##
## Durbin-Watson test
##
## data: cons_lm3
## DW = 2.0043, p-value = 0.5142
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(cons_lm4)
##
## Durbin-Watson test
##
## data: cons_lm4
## DW = 0.05825, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
Uji Breusch-Pagan
bptest(cons_lm1)
##
## studentized Breusch-Pagan test
##
## data: cons_lm1
## BP = 244.48, df = 2, p-value < 2.2e-16
bptest(cons_lm2)
##
## studentized Breusch-Pagan test
##
## data: cons_lm2
## BP = 24.477, df = 2, p-value = 4.84e-06
bptest(cons_lm3)
##
## studentized Breusch-Pagan test
##
## data: cons_lm3
## BP = 8.3324, df = 3, p-value = 0.03962
bptest(cons_lm4)
##
## studentized Breusch-Pagan test
##
## data: cons_lm4
## BP = 301.05, df = 3, p-value < 2.2e-16
Uji Shapiro-Wilk
shapiro.test(residuals(cons_lm1))
##
## Shapiro-Wilk normality test
##
## data: residuals(cons_lm1)
## W = 0.96906, p-value < 2.2e-16
shapiro.test(residuals(cons_lm2))
##
## Shapiro-Wilk normality test
##
## data: residuals(cons_lm2)
## W = 0.9858, p-value = 8.871e-11
shapiro.test(residuals(cons_lm3))
##
## Shapiro-Wilk normality test
##
## data: residuals(cons_lm3)
## W = 0.96764, p-value < 2.2e-16
shapiro.test(residuals(cons_lm4))
##
## Shapiro-Wilk normality test
##
## data: residuals(cons_lm4)
## W = 0.9698, p-value < 2.2e-16
Dibuat perbandingan akurasi antara model koyck, kedua model DLM, dan model ARDL
akurasi <- matrix(c(mape.koyck, mape.dlm, mape.dlm2, mape.ardl))
row.names(akurasi) <- c("Koyck","DLM 1","DLM 2","Autoregressive")
colnames(akurasi) <- c("MAPE")
akurasi
## MAPE
## Koyck 0.2420774
## DLM 1 0.2740091
## DLM 2 0.2788194
## Autoregressive 0.1220792
#Plot
par(mfrow=c(1,1))
plot(test$Xt, test$Yt, col="black", ylim=c(0,40), ylab = "Suhu", xlab = "Kelembapan")
abline(lm(test$Yt~test$Xt))
points(test$Xt, fore.koyck$forecasts,col="red")
abline(lm(fore.koyck$forecasts~test$Xt), col = "red")
points(test$Xt, fore.dlm$forecasts,col="blue")
abline(lm(fore.dlm$forecasts~test$Xt), col = "blue")
points(test$Xt, fore.dlm2$forecasts,col="orange")
abline(lm(fore.dlm2$forecasts~test$Xt), col = "orange")
points(test$Xt, fore.ardl$forecasts,col="green")
abline(lm(fore.ardl$forecasts~test$Xt), col = "green")
legend("topleft",c("aktual", "koyck","DLM 1","DLM 2", "autoregressive"), lty=1, col=c("black","red","blue","orange","green"), cex=0.8)
Terlihat bahwa autoregressive memiliki garis regresi yang paling mendekati dengan garis aktual.
Di antara model-model yang telah dibuat, didapatkan bahwa MAPE terkecil dimiliki oleh model autoregressive, yang dapat dilihat pada grafik memiliki garis paling dekat dengan garis aktual.
Sumber data: https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data?resource=download