1.2.3 Predictor Coding
[A] Considering prognostic significance (determined
using the Wald Chi-squared value from the formulated Cox regression
models) as a criterion while maintaining model parsimony (minimal
variable transformation), most predictors can be coded linearly during
model development except for the following variables where a
transformation might improve their performance:
[A.1] The AGE
variable (numeric) was coded using its squared value after 50 years [if
(AGE>50) then (AGE-50)^2 else 0] since this demonstrated a better
Wald Chi-squared value as compared to other transformation types.
[A.2] The CREAT
variable (numeric) was coded using its logarithm [log(CREAT)] since this
demonstrated a better Wald Chi-squared value as compared to other
transformation types.
[A.3] The CEREBRAL
variable (numeric), CARDIAC variable
(numeric), AAA variable (numeric)
and PERIPH variable (numeric) were
coded using their linear combination [CEREBRAL + CARDIAC + (2*AAA) +
PERIPH] since this demonstrated a better Wald Chi-squared value as
compared to other transformation types.
##################################
# Loading dataset
##################################
PC <- SMART
PC$EVENT <- as.numeric(PC$EVENT)
##################################
# Evaluating the impact of predictor coding
# for AGE as applied in a univariate Cox regression model
#################################
##################################
# Relationship of AGE with prognostic outcome = Linear
# (TEVENT,EVENT) ~ AGE
#################################
AGE_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ AGE, data=PC)
anova(AGE_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 97.17 1 <.0001
## TOTAL 97.17 1 <.0001
(AGE_CoxPHFit_Linear_WaldX2 <- anova(AGE_CoxPHFit_Linear)[1])
## [1] 97.17258
##################################
# Relationship of AGE with prognostic outcome = Squared
# (TEVENT,EVENT) ~ AGE +AGE^2
#################################
AGE_CoxPHFit_Squared <- cph(Surv(TEVENT,EVENT) ~ pol(AGE,2), data=PC)
anova(AGE_CoxPHFit_Squared)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 124.99 2 <.0001
## Nonlinear 15.00 1 1e-04
## TOTAL 124.99 2 <.0001
(AGE_CoxPHFit_Squared_WaldX2 <- anova(AGE_CoxPHFit_Squared)[1])
## [1] 124.9852
##################################
# Relationship of AGE with prognostic outcome = Linear after 55
# (TEVENT,EVENT) ~ if (AGE>55) then (AGE-55) else 0
#################################
AGE_CoxPHFit_LinearAfter55 <- cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>55, (AGE-55),0), data=PC)
anova(AGE_CoxPHFit_LinearAfter55)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 118.59 1 <.0001
## TOTAL 118.59 1 <.0001
(AGE_CoxPHFit_LinearAfter55_WaldX2 <- anova(AGE_CoxPHFit_LinearAfter55)[1])
## [1] 118.591
##################################
# Relationship of AGE with prognostic outcome = Squared after 50
# (TEVENT,EVENT) ~ if (AGE>50) then (AGE-50)^2 else 0
#################################
AGE_CoxPHFit_SquaredAfter50 <- cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0), data=PC)
anova(AGE_CoxPHFit_SquaredAfter50)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 129.64 1 <.0001
## TOTAL 129.64 1 <.0001
(AGE_CoxPHFit_SquaredAfter50_WaldX2 <- anova(AGE_CoxPHFit_SquaredAfter50)[1])
## [1] 129.6405
##################################
# Relationship of AGE with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(AGE,4)
#################################
AGE_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(AGE,4), data=PC)
anova(AGE_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 125.30 3 <.0001
## Nonlinear 13.77 2 0.001
## TOTAL 125.30 3 <.0001
(AGE_CoxPHFit_RCS4Knots_WaldX2 <- anova(AGE_CoxPHFit_RCS4Knots)[1])
## [1] 125.3017
##################################
# Relationship of AGE with prognostic outcome = Quartiles
# (TEVENT,EVENT) ~ AGE(Quartile1, Quartile2, Quartile3, Quartile4)
#################################
tapply(PC$AGE, ifelse(PC$AGE<50,1,
ifelse(PC$AGE<60,2,
ifelse(PC$AGE<70,3,4))),mean)
## 1 2 3 4
## 43.20362 54.78531 64.53566 73.59654
PC$AGEQuartile <- as.factor(ifelse(PC$AGE<50,43,
ifelse(PC$AGE<60,55,
ifelse(PC$AGE<70,65,74))))
PC$AGEQuartile <- as.factor(PC$AGEQuartile)
AGE_CoxPHFit_Quartile <- cph(Surv(TEVENT,EVENT) ~ AGEQuartile, data=PC)
anova(AGE_CoxPHFit_Quartile)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGEQuartile 93.22 3 <.0001
## TOTAL 93.22 3 <.0001
(AGE_CoxPHFit_Quartile_WaldX2 <- anova(AGE_CoxPHFit_Quartile)[1])
## [1] 93.22204
##################################
# Relationship of AGE with prognostic outcome = Quartiles
# (TEVENT,EVENT) ~ AGE(Half1, Half2)
#################################
tapply(PC$AGE, cut2(PC$AGE,g=2), mean)
## [19,61) [61,82]
## 51.29891 68.50350
AGE_CoxPHFit_Dichotomized <- cph(Surv(TEVENT,EVENT) ~ ifelse(SMART$AGE<61,51,69), data=PC)
anova(AGE_CoxPHFit_Dichotomized)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SMART 72.47 1 <.0001
## TOTAL 72.47 1 <.0001
(AGE_CoxPHFit_Dichotomized_WaldX2 <- anova(AGE_CoxPHFit_Dichotomized)[1])
## [1] 72.46705
##################################
# Evaluating the impact of predictor coding
# for CREAT as applied in a univariate Cox regression model
#################################
##################################
# Relationship of CREAT with prognostic outcome = Linear
# (TEVENT,EVENT) ~ CREAT
#################################
CREAT_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ CREAT, data=PC)
anova(CREAT_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CREAT 93.42 1 <.0001
## TOTAL 93.42 1 <.0001
(CREAT_CoxPHFit_Linear_WaldX2 <- anova(CREAT_CoxPHFit_Linear)[1])
## [1] 93.42011
##################################
# Relationship of CREAT with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(CREAT,4)
#################################
CREAT_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(CREAT,4), data=PC)
anova(CREAT_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CREAT 116.1 3 <.0001
## Nonlinear 42.6 2 <.0001
## TOTAL 116.1 3 <.0001
(CREAT_CoxPHFit_RCS4Knots_WaldX2 <- anova(CREAT_CoxPHFit_RCS4Knots)[1])
## [1] 116.102
##################################
# Relationship of CREAT with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(CREAT,3)
#################################
CREAT_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(CREAT,3), data=PC)
anova(CREAT_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CREAT 99.03 2 <.0001
## Nonlinear 20.32 1 <.0001
## TOTAL 99.03 2 <.0001
(CREAT_CoxPHFit_RCS3Knots_WaldX2 <- anova(CREAT_CoxPHFit_RCS3Knots)[1])
## [1] 99.02755
##################################
# Relationship of CREAT with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(CREAT)
#################################
CREAT_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(CREAT), data=PC)
anova(CREAT_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CREAT 131.01 1 <.0001
## TOTAL 131.01 1 <.0001
(CREAT_CoxPHFit_Log_WaldX2 <- anova(CREAT_CoxPHFit_Log)[1])
## [1] 131.0105
##################################
# Evaluating the impact of predictor coding
# for SYSTH as applied in a univariate Cox regression model
#################################
##################################
# Relationship of SYSTH with prognostic outcome = Linear
# (TEVENT,EVENT) ~ SYSTH
#################################
SYSTH_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ SYSTH, data=PC)
anova(SYSTH_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTH 15.49 1 1e-04
## TOTAL 15.49 1 1e-04
(SYSTH_CoxPHFit_Linear_WaldX2 <- anova(SYSTH_CoxPHFit_Linear)[1])
## [1] 15.49085
##################################
# Relationship of SYSTH with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(SYSTH,4)
#################################
SYSTH_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(SYSTH,4), data=PC)
anova(SYSTH_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTH 15.60 3 0.0014
## Nonlinear 0.25 2 0.8841
## TOTAL 15.60 3 0.0014
(SYSTH_CoxPHFit_RCS4Knots_WaldX2 <- anova(SYSTH_CoxPHFit_RCS4Knots)[1])
## [1] 15.5989
##################################
# Relationship of SYSTH with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(SYSTH,3)
#################################
SYSTH_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(SYSTH,3), data=PC)
anova(SYSTH_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTH 15.17 2 0.0005
## Nonlinear 0.05 1 0.8261
## TOTAL 15.17 2 0.0005
(SYSTH_CoxPHFit_RCS3Knots_WaldX2 <- anova(SYSTH_CoxPHFit_RCS3Knots)[1])
## [1] 15.16692
##################################
# Relationship of SYSTH with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(SYSTH)
#################################
SYSTH_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(SYSTH), data=PC)
anova(SYSTH_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTH 14.39 1 1e-04
## TOTAL 14.39 1 1e-04
(SYSTH_CoxPHFit_Log_WaldX2 <- anova(SYSTH_CoxPHFit_Log)[1])
## [1] 14.39016
##################################
# Evaluating the impact of predictor coding
# for DIASTH as applied in a univariate Cox regression model
#################################
##################################
# Relationship of DIASTH with prognostic outcome = Linear
# (TEVENT,EVENT) ~ DIASTH
#################################
DIASTH_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ DIASTH, data=PC)
anova(DIASTH_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTH 0.73 1 0.3916
## TOTAL 0.73 1 0.3916
(DIASTH_CoxPHFit_Linear_WaldX2 <- anova(DIASTH_CoxPHFit_Linear)[1])
## [1] 0.7339729
##################################
# Relationship of DIASTH with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(DIASTH,4)
#################################
DIASTH_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(DIASTH,4), data=PC)
anova(DIASTH_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTH 2.62 3 0.4540
## Nonlinear 1.91 2 0.3851
## TOTAL 2.62 3 0.4540
(DIASTH_CoxPHFit_RCS4Knots_WaldX2 <- anova(DIASTH_CoxPHFit_RCS4Knots)[1])
## [1] 2.620047
##################################
# Relationship of DIASTH with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(DIASTH,3)
#################################
DIASTH_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(DIASTH,3), data=PC)
anova(DIASTH_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTH 2.08 2 0.3528
## Nonlinear 1.24 1 0.2659
## TOTAL 2.08 2 0.3528
(DIASTH_CoxPHFit_RCS3Knots_WaldX2 <- anova(DIASTH_CoxPHFit_RCS3Knots)[1])
## [1] 2.083467
##################################
# Relationship of DIASTH with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(DIASTH)
#################################
DIASTH_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(DIASTH), data=PC)
anova(DIASTH_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTH 0.47 1 0.492
## TOTAL 0.47 1 0.492
(DIASTH_CoxPHFit_Log_WaldX2 <- anova(DIASTH_CoxPHFit_Log)[1])
## [1] 0.4721145
##################################
# Evaluating the impact of predictor coding
# for SYSTBP as applied in a univariate Cox regression model
#################################
##################################
# Relationship of SYSTBP with prognostic outcome = Linear
# (TEVENT,EVENT) ~ SYSTBP
#################################
SYSTBP_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ SYSTBP, data=PC)
anova(SYSTBP_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTBP 23.22 1 <.0001
## TOTAL 23.22 1 <.0001
(SYSTBP_CoxPHFit_Linear_WaldX2 <- anova(SYSTBP_CoxPHFit_Linear)[1])
## [1] 23.22008
##################################
# Relationship of SYSTBP with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(SYSTBP,4)
#################################
SYSTBP_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(SYSTBP,4), data=PC)
anova(SYSTBP_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTBP 26.27 3 <.0001
## Nonlinear 1.73 2 0.4219
## TOTAL 26.27 3 <.0001
(SYSTBP_CoxPHFit_RCS4Knots_WaldX2 <- anova(SYSTBP_CoxPHFit_RCS4Knots)[1])
## [1] 26.27116
##################################
# Relationship of SYSTBP with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(SYSTBP,3)
#################################
SYSTBP_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(SYSTBP,3), data=PC)
anova(SYSTBP_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTBP 26.26 2 <.0001
## Nonlinear 1.37 1 0.2422
## TOTAL 26.26 2 <.0001
(SYSTBP_CoxPHFit_RCS3Knots_WaldX2 <- anova(SYSTBP_CoxPHFit_RCS3Knots)[1])
## [1] 26.26421
##################################
# Relationship of SYSTBP with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(SYSTBP)
#################################
SYSTBP_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(SYSTBP), data=PC)
anova(SYSTBP_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## SYSTBP 21.2 1 <.0001
## TOTAL 21.2 1 <.0001
(SYSTBP_CoxPHFit_Log_WaldX2 <- anova(SYSTBP_CoxPHFit_Log)[1])
## [1] 21.20011
##################################
# Evaluating the impact of predictor coding
# for DIASTBP as applied in a univariate Cox regression model
#################################
##################################
# Relationship of DIASTBP with prognostic outcome = Linear
# (TEVENT,EVENT) ~ DIASTBP
#################################
DIASTBP_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ DIASTBP, data=PC)
anova(DIASTBP_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTBP 1.67 1 0.1962
## TOTAL 1.67 1 0.1962
(DIASTBP_CoxPHFit_Linear_WaldX2 <- anova(DIASTBP_CoxPHFit_Linear)[1])
## [1] 1.670766
##################################
# Relationship of DIASTBP with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(DIASTBP,4)
#################################
DIASTBP_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(DIASTBP,4), data=PC)
anova(DIASTBP_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTBP 25.15 3 <.0001
## Nonlinear 23.22 2 <.0001
## TOTAL 25.15 3 <.0001
(DIASTBP_CoxPHFit_RCS4Knots_WaldX2 <- anova(DIASTBP_CoxPHFit_RCS4Knots)[1])
## [1] 25.14634
##################################
# Relationship of DIASTBP with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(DIASTBP,3)
#################################
DIASTBP_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(DIASTBP,3), data=PC)
anova(DIASTBP_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTBP 24.84 2 <.0001
## Nonlinear 22.29 1 <.0001
## TOTAL 24.84 2 <.0001
(DIASTBP_CoxPHFit_RCS3Knots_WaldX2 <- anova(DIASTBP_CoxPHFit_RCS3Knots)[1])
## [1] 24.84403
##################################
# Relationship of DIASTBP with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(DIASTBP)
#################################
DIASTBP_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(DIASTBP), data=PC)
anova(DIASTBP_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## DIASTBP 0.68 1 0.4092
## TOTAL 0.68 1 0.4092
(DIASTBP_CoxPHFit_Log_WaldX2 <- anova(DIASTBP_CoxPHFit_Log)[1])
## [1] 0.6810459
##################################
# Evaluating the impact of predictor coding
# for CHOL as applied in a univariate Cox regression model
#################################
##################################
# Relationship of CHOL with prognostic outcome = Linear
# (TEVENT,EVENT) ~ CHOL
#################################
CHOL_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ CHOL, data=PC)
anova(CHOL_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CHOL 0.32 1 0.5717
## TOTAL 0.32 1 0.5717
(CHOL_CoxPHFit_Linear_WaldX2 <- anova(CHOL_CoxPHFit_Linear)[1])
## [1] 0.3199142
##################################
# Relationship of CHOL with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(CHOL,4)
#################################
CHOL_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(CHOL,4), data=PC)
anova(CHOL_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CHOL 0.60 3 0.8964
## Nonlinear 0.27 2 0.8720
## TOTAL 0.60 3 0.8964
(CHOL_CoxPHFit_RCS4Knots_WaldX2 <- anova(CHOL_CoxPHFit_RCS4Knots)[1])
## [1] 0.5999714
##################################
# Relationship of CHOL with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(CHOL,3)
#################################
CHOL_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(CHOL,3), data=PC)
anova(CHOL_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CHOL 0.60 2 0.7399
## Nonlinear 0.25 1 0.6161
## TOTAL 0.60 2 0.7399
(CHOL_CoxPHFit_RCS3Knots_WaldX2 <- anova(CHOL_CoxPHFit_RCS3Knots)[1])
## [1] 0.6024457
##################################
# Relationship of CHOL with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(CHOL)
#################################
CHOL_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(CHOL), data=PC)
anova(CHOL_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CHOL 0.25 1 0.6171
## TOTAL 0.25 1 0.6171
(CHOL_CoxPHFit_Log_WaldX2 <- anova(CHOL_CoxPHFit_Log)[1])
## [1] 0.2499827
##################################
# Evaluating the impact of predictor coding
# for HDL as applied in a univariate Cox regression model
#################################
##################################
# Relationship of HDL with prognostic outcome = Linear
# (TEVENT,EVENT) ~ HDL
#################################
HDL_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ HDL, data=PC)
anova(HDL_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HDL 11.83 1 6e-04
## TOTAL 11.83 1 6e-04
(HDL_CoxPHFit_Linear_WaldX2 <- anova(HDL_CoxPHFit_Linear)[1])
## [1] 11.83362
##################################
# Relationship of HDL with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(HDL,4)
#################################
HDL_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(HDL,4), data=PC)
anova(HDL_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HDL 11.94 3 0.0076
## Nonlinear 0.63 2 0.7302
## TOTAL 11.94 3 0.0076
(HDL_CoxPHFit_RCS4Knots_WaldX2 <- anova(HDL_CoxPHFit_RCS4Knots)[1])
## [1] 11.93661
##################################
# Relationship of HDL with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(HDL,3)
#################################
HDL_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(HDL,3), data=PC)
anova(HDL_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HDL 11.61 2 0.0030
## Nonlinear 0.08 1 0.7741
## TOTAL 11.61 2 0.0030
(HDL_CoxPHFit_RCS3Knots_WaldX2 <- anova(HDL_CoxPHFit_RCS3Knots)[1])
## [1] 11.60599
##################################
# Relationship of HDL with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(HDL)
#################################
HDL_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(HDL), data=PC)
anova(HDL_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HDL 11.8 1 6e-04
## TOTAL 11.8 1 6e-04
(HDL_CoxPHFit_Log_WaldX2 <- anova(HDL_CoxPHFit_Log)[1])
## [1] 11.79606
##################################
# Evaluating the impact of predictor coding
# for LDL as applied in a univariate Cox regression model
#################################
##################################
# Relationship of LDL with prognostic outcome = Linear
# (TEVENT,EVENT) ~ LDL
#################################
LDL_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ LDL, data=PC)
anova(LDL_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LDL 1.28 1 0.2584
## TOTAL 1.28 1 0.2584
(LDL_CoxPHFit_Linear_WaldX2 <- anova(LDL_CoxPHFit_Linear)[1])
## [1] 1.2771
##################################
# Relationship of LDL with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(LDL,4)
#################################
LDL_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(LDL,4), data=PC)
anova(LDL_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LDL 1.52 3 0.6777
## Nonlinear 0.25 2 0.8812
## TOTAL 1.52 3 0.6777
(LDL_CoxPHFit_RCS4Knots_WaldX2 <- anova(LDL_CoxPHFit_RCS4Knots)[1])
## [1] 1.519874
##################################
# Relationship of LDL with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(LDL,3)
#################################
LDL_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(LDL,3), data=PC)
anova(LDL_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LDL 1.28 2 0.5260
## Nonlinear 0.00 1 0.9537
## TOTAL 1.28 2 0.5260
(LDL_CoxPHFit_RCS3Knots_WaldX2 <- anova(LDL_CoxPHFit_RCS3Knots)[1])
## [1] 1.284805
##################################
# Relationship of LDL with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(LDL)
#################################
LDL_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(LDL), data=PC)
anova(LDL_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LDL 1.15 1 0.2839
## TOTAL 1.15 1 0.2839
(LDL_CoxPHFit_Log_WaldX2 <- anova(LDL_CoxPHFit_Log)[1])
## [1] 1.148225
##################################
# Evaluating the impact of predictor coding
# for TRIG as applied in a univariate Cox regression model
#################################
##################################
# Relationship of TRIG with prognostic outcome = Linear
# (TEVENT,EVENT) ~ TRIG
#################################
TRIG_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ TRIG, data=PC)
anova(TRIG_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## TRIG 1.4 1 0.2366
## TOTAL 1.4 1 0.2366
(TRIG_CoxPHFit_Linear_WaldX2 <- anova(TRIG_CoxPHFit_Linear)[1])
## [1] 1.400792
##################################
# Relationship of TRIG with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(TRIG,4)
#################################
TRIG_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(TRIG,4), data=PC)
anova(TRIG_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## TRIG 3.51 3 0.3192
## Nonlinear 2.12 2 0.3456
## TOTAL 3.51 3 0.3192
(TRIG_CoxPHFit_RCS4Knots_WaldX2 <- anova(TRIG_CoxPHFit_RCS4Knots)[1])
## [1] 3.512266
##################################
# Relationship of TRIG with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(TRIG,3)
#################################
TRIG_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(TRIG,3), data=PC)
anova(TRIG_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## TRIG 3.25 2 0.1965
## Nonlinear 1.94 1 0.1642
## TOTAL 3.25 2 0.1965
(TRIG_CoxPHFit_RCS3Knots_WaldX2 <- anova(TRIG_CoxPHFit_RCS3Knots)[1])
## [1] 3.253776
##################################
# Relationship of TRIG with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(TRIG)
#################################
TRIG_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(TRIG), data=PC)
anova(TRIG_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## TRIG 2.47 1 0.1164
## TOTAL 2.47 1 0.1164
(TRIG_CoxPHFit_Log_WaldX2 <- anova(TRIG_CoxPHFit_Log)[1])
## [1] 2.46539
##################################
# Evaluating the impact of predictor coding
# for HOMOC as applied in a univariate Cox regression model
#################################
##################################
# Relationship of HOMOC with prognostic outcome = Linear
# (TEVENT,EVENT) ~ HOMOC
#################################
HOMOC_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ HOMOC, data=PC)
anova(HOMOC_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HOMOC 49.59 1 <.0001
## TOTAL 49.59 1 <.0001
(HOMOC_CoxPHFit_Linear_WaldX2 <- anova(HOMOC_CoxPHFit_Linear)[1])
## [1] 49.59385
##################################
# Relationship of HOMOC with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(HOMOC,4)
#################################
HOMOC_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(HOMOC,4), data=PC)
anova(HOMOC_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HOMOC 50.68 3 <.0001
## Nonlinear 7.97 2 0.0186
## TOTAL 50.68 3 <.0001
(HOMOC_CoxPHFit_RCS4Knots_WaldX2 <- anova(HOMOC_CoxPHFit_RCS4Knots)[1])
## [1] 50.67529
##################################
# Relationship of HOMOC with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(HOMOC,3)
#################################
HOMOC_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(HOMOC,3), data=PC)
anova(HOMOC_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HOMOC 47.32 2 <.0001
## Nonlinear 3.64 1 0.0563
## TOTAL 47.32 2 <.0001
(HOMOC_CoxPHFit_RCS3Knots_WaldX2 <- anova(HOMOC_CoxPHFit_RCS3Knots)[1])
## [1] 47.32265
##################################
# Relationship of HOMOC with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(HOMOC)
#################################
HOMOC_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(HOMOC), data=PC)
anova(HOMOC_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## HOMOC 52.46 1 <.0001
## TOTAL 52.46 1 <.0001
(HOMOC_CoxPHFit_Log_WaldX2 <- anova(HOMOC_CoxPHFit_Log)[1])
## [1] 52.46239
##################################
# Evaluating the impact of predictor coding
# for GLUT as applied in a univariate Cox regression model
#################################
##################################
# Relationship of GLUT with prognostic outcome = Linear
# (TEVENT,EVENT) ~ GLUT
#################################
GLUT_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ GLUT, data=PC)
anova(GLUT_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## GLUT 12.69 1 4e-04
## TOTAL 12.69 1 4e-04
(GLUT_CoxPHFit_Linear_WaldX2 <- anova(GLUT_CoxPHFit_Linear)[1])
## [1] 12.68661
##################################
# Relationship of GLUT with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(GLUT,4)
#################################
GLUT_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(GLUT,4), data=PC)
anova(GLUT_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## GLUT 15.43 3 0.0015
## Nonlinear 3.16 2 0.2059
## TOTAL 15.43 3 0.0015
(GLUT_CoxPHFit_RCS4Knots_WaldX2 <- anova(GLUT_CoxPHFit_RCS4Knots)[1])
## [1] 15.42745
##################################
# Relationship of GLUT with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(GLUT,3)
#################################
GLUT_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(GLUT,3), data=PC)
anova(GLUT_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## GLUT 13.03 2 0.0015
## Nonlinear 0.11 1 0.7407
## TOTAL 13.03 2 0.0015
(GLUT_CoxPHFit_RCS3Knots_WaldX2 <- anova(GLUT_CoxPHFit_RCS3Knots)[1])
## [1] 13.03222
##################################
# Relationship of GLUT with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(GLUT)
#################################
GLUT_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(GLUT), data=PC)
anova(GLUT_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## GLUT 12.08 1 5e-04
## TOTAL 12.08 1 5e-04
(GLUT_CoxPHFit_Log_WaldX2 <- anova(GLUT_CoxPHFit_Log)[1])
## [1] 12.08488
##################################
# Evaluating the impact of predictor coding
# for LENGTH as applied in a univariate Cox regression model
#################################
##################################
# Relationship of LENGTH with prognostic outcome = Linear
# (TEVENT,EVENT) ~ LENGTH
#################################
LENGTH_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ LENGTH, data=PC)
anova(LENGTH_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LENGTH 0.01 1 0.9284
## TOTAL 0.01 1 0.9284
(LENGTH_CoxPHFit_Linear_WaldX2 <- anova(LENGTH_CoxPHFit_Linear)[1])
## [1] 0.008063822
##################################
# Relationship of LENGTH with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(LENGTH,4)
#################################
LENGTH_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(LENGTH,4), data=PC)
anova(LENGTH_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LENGTH 4.19 3 0.2417
## Nonlinear 4.17 2 0.1243
## TOTAL 4.19 3 0.2417
(LENGTH_CoxPHFit_RCS4Knots_WaldX2 <- anova(LENGTH_CoxPHFit_RCS4Knots)[1])
## [1] 4.189518
##################################
# Relationship of LENGTH with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(LENGTH,3)
#################################
LENGTH_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(LENGTH,3), data=PC)
anova(LENGTH_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LENGTH 4.11 2 0.1280
## Nonlinear 4.11 1 0.0427
## TOTAL 4.11 2 0.1280
(LENGTH_CoxPHFit_RCS3Knots_WaldX2 <- anova(LENGTH_CoxPHFit_RCS3Knots)[1])
## [1] 4.111306
##################################
# Relationship of LENGTH with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(LENGTH)
#################################
LENGTH_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(LENGTH), data=PC)
anova(LENGTH_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## LENGTH 0 1 0.9751
## TOTAL 0 1 0.9751
(LENGTH_CoxPHFit_Log_WaldX2 <- anova(LENGTH_CoxPHFit_Log)[1])
## [1] 0.0009703188
##################################
# Evaluating the impact of predictor coding
# for WEIGHT as applied in a univariate Cox regression model
#################################
##################################
# Relationship of WEIGHT with prognostic outcome = Linear
# (TEVENT,EVENT) ~ WEIGHT
#################################
WEIGHT_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ WEIGHT, data=PC)
anova(WEIGHT_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## WEIGHT 3.21 1 0.073
## TOTAL 3.21 1 0.073
(WEIGHT_CoxPHFit_Linear_WaldX2 <- anova(WEIGHT_CoxPHFit_Linear)[1])
## [1] 3.213383
##################################
# Relationship of WEIGHT with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(WEIGHT,4)
#################################
WEIGHT_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(WEIGHT,4), data=PC)
anova(WEIGHT_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## WEIGHT 4.55 3 0.2080
## Nonlinear 1.85 2 0.3966
## TOTAL 4.55 3 0.2080
(WEIGHT_CoxPHFit_RCS4Knots_WaldX2 <- anova(WEIGHT_CoxPHFit_RCS4Knots)[1])
## [1] 4.548998
##################################
# Relationship of WEIGHT with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(WEIGHT,3)
#################################
WEIGHT_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(WEIGHT,3), data=PC)
anova(WEIGHT_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## WEIGHT 4.08 2 0.1300
## Nonlinear 1.14 1 0.2847
## TOTAL 4.08 2 0.1300
(WEIGHT_CoxPHFit_RCS3Knots_WaldX2 <- anova(WEIGHT_CoxPHFit_RCS3Knots)[1])
## [1] 4.080816
##################################
# Relationship of WEIGHT with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(WEIGHT)
#################################
WEIGHT_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(WEIGHT), data=PC)
anova(WEIGHT_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## WEIGHT 2.73 1 0.0982
## TOTAL 2.73 1 0.0982
(WEIGHT_CoxPHFit_Log_WaldX2 <- anova(WEIGHT_CoxPHFit_Log)[1])
## [1] 2.734381
##################################
# Evaluating the impact of predictor coding
# for BMI as applied in a univariate Cox regression model
#################################
##################################
# Relationship of BMI with prognostic outcome = Linear
# (TEVENT,EVENT) ~ BMI
#################################
BMI_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ BMI, data=PC)
anova(BMI_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## BMI 3.87 1 0.0492
## TOTAL 3.87 1 0.0492
(BMI_CoxPHFit_Linear_WaldX2 <- anova(BMI_CoxPHFit_Linear)[1])
## [1] 3.867475
##################################
# Relationship of BMI with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(BMI,4)
#################################
BMI_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(BMI,4), data=PC)
anova(BMI_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## BMI 7.64 3 0.0542
## Nonlinear 3.77 2 0.1516
## TOTAL 7.64 3 0.0542
(BMI_CoxPHFit_RCS4Knots_WaldX2 <- anova(BMI_CoxPHFit_RCS4Knots)[1])
## [1] 7.635769
##################################
# Relationship of BMI with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(BMI,3)
#################################
BMI_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(BMI,3), data=PC)
anova(BMI_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## BMI 4.02 2 0.1342
## Nonlinear 0.08 1 0.7811
## TOTAL 4.02 2 0.1342
(BMI_CoxPHFit_RCS3Knots_WaldX2 <- anova(BMI_CoxPHFit_RCS3Knots)[1])
## [1] 4.01637
##################################
# Relationship of BMI with prognostic outcome = Logarithm
# (TEVENT,EVENT) ~ Logarithm(BMI)
#################################
BMI_CoxPHFit_Log <- cph(Surv(TEVENT,EVENT) ~ log(BMI), data=PC)
anova(BMI_CoxPHFit_Log)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## BMI 3.9 1 0.0482
## TOTAL 3.9 1 0.0482
(BMI_CoxPHFit_Log_WaldX2 <- anova(BMI_CoxPHFit_Log)[1])
## [1] 3.902606
##################################
# Evaluating the impact of predictor coding
# for PACKYRS as applied in a univariate Cox regression model
#################################
##################################
# Relationship of PACKYRS with prognostic outcome = Linear
# (TEVENT,EVENT) ~ PACKYRS
#################################
PACKYRS_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ packyrs, data=PC)
anova(PACKYRS_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## packyrs 12.95 1 3e-04
## TOTAL 12.95 1 3e-04
(PACKYRS_CoxPHFit_Linear_WaldX2 <- anova(PACKYRS_CoxPHFit_Linear)[1])
## [1] 12.95089
##################################
# Relationship of PACKYRS with prognostic outcome = Restricted cubic spline (4 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(PACKYRS,4)
#################################
PACKYRS_CoxPHFit_RCS4Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(packyrs,4), data=PC)
anova(PACKYRS_CoxPHFit_RCS4Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## packyrs 14.85 3 0.0019
## Nonlinear 1.54 2 0.4640
## TOTAL 14.85 3 0.0019
(PACKYRS_CoxPHFit_RCS4Knots_WaldX2 <- anova(PACKYRS_CoxPHFit_RCS4Knots)[1])
## [1] 14.85005
##################################
# Relationship of PACKYRS with prognostic outcome = Restricted cubic spline (3 knots)
# (TEVENT,EVENT) ~ Restricted Cubic Spline(PACKYRS,3)
#################################
PACKYRS_CoxPHFit_RCS3Knots <- cph(Surv(TEVENT,EVENT) ~ rcs(packyrs,3), data=PC)
anova(PACKYRS_CoxPHFit_RCS3Knots)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## packyrs 13.48 2 0.0012
## Nonlinear 0.13 1 0.7152
## TOTAL 13.48 2 0.0012
(PACKYRS_CoxPHFit_RCS3Knots_WaldX2 <- anova(PACKYRS_CoxPHFit_RCS3Knots)[1])
## [1] 13.47873
##################################
# Evaluating the impact of predictor coding
# for CEREBRAL, CARDIAC, AAA and PERIPH
# as applied in a univariate and multivariate Cox regression model
#################################
PC$CEREBRAL <- as.numeric(as.character(PC$CEREBRAL))
PC$CARDIAC <- as.numeric(as.character(PC$CARDIAC))
PC$AAA <- as.numeric(as.character(PC$AAA))
PC$PERIPH <- as.numeric(as.character(PC$PERIPH))
##################################
# Relationship of CEREBRAL, CARDIAC, AAA and PERIPH
# with prognostic outcome = Linear
# (TEVENT,EVENT) ~ CEREBRAL + CARDIAC + AAA + PERIPH
#################################
COMBINED_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ CEREBRAL + CARDIAC + AAA + PERIPH, data=PC)
anova(COMBINED_CoxPHFit_Linear)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## CEREBRAL 35.73 1 <.0001
## CARDIAC 19.11 1 <.0001
## AAA 96.62 1 <.0001
## PERIPH 23.13 1 <.0001
## TOTAL 122.61 4 <.0001
(CEREBRAL_CoxPHFit_Linear_WaldX2 <- anova(COMBINED_CoxPHFit_Linear)[1])
## [1] 35.72751
(CARDIAC_CoxPHFit_Linear_WaldX2 <- anova(COMBINED_CoxPHFit_Linear)[2])
## [1] 19.11319
(AAA_CoxPHFit_Linear_WaldX2 <- anova(COMBINED_CoxPHFit_Linear)[3])
## [1] 96.62462
(PERIPH_CoxPHFit_Linear_WaldX2 <- anova(COMBINED_CoxPHFit_Linear)[4])
## [1] 23.12629
(COMBINED_CoxPHFit_Linear_WaldX2 <- anova(COMBINED_CoxPHFit_Linear)[5])
## [1] 122.6137
##################################
# Relationship of (CEREBRAL + CARDIAC + AAA + PERIPH)
# with prognostic outcome = Linear
# (TEVENT,EVENT) ~ (CEREBRAL + CARDIAC + AAA + PERIPH)
#################################
PC$SUMSCORE_4LEVELS <- PC$CEREBRAL + PC$CARDIAC + PC$AAA + PC$PERIPH
SUMSCORE_4LEVELS_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ SUMSCORE_4LEVELS, data=PC)
(SUMSCORE_4LEVELS_CoxPHFit_Linear_WaldX2 <- anova(SUMSCORE_4LEVELS_CoxPHFit_Linear)[1])
## [1] 95.98494
##################################
# Relationship of (CEREBRAL + CARDIAC + 2*AAA + PERIPH)
# with prognostic outcome = Linear
# (TEVENT,EVENT) ~ (CEREBRAL + CARDIAC + 2*AAA + PERIPH)
#################################
PC$SUMSCORE_5LEVELS <- PC$CEREBRAL + PC$CARDIAC + (2*PC$AAA) + PC$PERIPH
SUMSCORE_5LEVELS_CoxPHFit_Linear <- cph(Surv(TEVENT,EVENT) ~ SUMSCORE_5LEVELS, data=PC)
(SUMSCORE_5LEVELS_CoxPHFit_Linear_WaldX2 <- anova(SUMSCORE_5LEVELS_CoxPHFit_Linear)[1])
## [1] 119.3857
##################################
# Consolidating all results
# of predictor coding evaluation
#################################
PredictorInformation <- c(rep("AGE",7),
rep("CREAT",4),
rep("SYSTH",4),
rep("DIASTH",4),
rep("SYSTBP",4),
rep("DIASTBP",4),
rep("CHOL",4),
rep("HDL",4),
rep("LDL",4),
rep("TRIG",4),
rep("HOMOC",4),
rep("GLUT",4),
rep("LENGTH",4),
rep("WEIGHT",4),
rep("BMI",4),
rep("PACKYRS",3),
rep("A-CEREBRAL",1),
rep("B-CARDIAC",1),
rep("C-AAA",1),
rep("D-PERIPH",1),
rep("(A,B,C,D)",1),
rep("(A+B+C+D)",1),
rep("[A+B+(2*C)+D]",1))
CodingInformation <- c("Linear",
"Squared",
"Linear Effect After 55",
"Squared Effect After 50",
"Restricted Cubic Spline (4 knots)",
"Quartiles",
"Dichotomized",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Logarithm",
"Linear",
"Restricted Cubic Spline (4 knots)",
"Restricted Cubic Spline (3 knots)",
"Linear",
"Linear",
"Linear",
"Linear",
"Linear",
"Linear",
"Linear")
WaldX2Information <- c(AGE_CoxPHFit_Linear_WaldX2,
AGE_CoxPHFit_Squared_WaldX2,
AGE_CoxPHFit_LinearAfter55_WaldX2,
AGE_CoxPHFit_SquaredAfter50_WaldX2,
AGE_CoxPHFit_RCS4Knots_WaldX2,
AGE_CoxPHFit_Quartile_WaldX2,
AGE_CoxPHFit_Dichotomized_WaldX2,
CREAT_CoxPHFit_Linear_WaldX2,
CREAT_CoxPHFit_RCS4Knots_WaldX2,
CREAT_CoxPHFit_RCS3Knots_WaldX2,
CREAT_CoxPHFit_Log_WaldX2,
SYSTH_CoxPHFit_Linear_WaldX2,
SYSTH_CoxPHFit_RCS4Knots_WaldX2,
SYSTH_CoxPHFit_RCS3Knots_WaldX2,
SYSTH_CoxPHFit_Log_WaldX2,
DIASTH_CoxPHFit_Linear_WaldX2,
DIASTH_CoxPHFit_RCS4Knots_WaldX2,
DIASTH_CoxPHFit_RCS3Knots_WaldX2,
DIASTH_CoxPHFit_Log_WaldX2,
SYSTBP_CoxPHFit_Linear_WaldX2,
SYSTBP_CoxPHFit_RCS4Knots_WaldX2,
SYSTBP_CoxPHFit_RCS3Knots_WaldX2,
SYSTBP_CoxPHFit_Log_WaldX2,
DIASTBP_CoxPHFit_Linear_WaldX2,
DIASTBP_CoxPHFit_RCS4Knots_WaldX2,
DIASTBP_CoxPHFit_RCS3Knots_WaldX2,
DIASTBP_CoxPHFit_Log_WaldX2,
CHOL_CoxPHFit_Linear_WaldX2,
CHOL_CoxPHFit_RCS4Knots_WaldX2,
CHOL_CoxPHFit_RCS3Knots_WaldX2,
CHOL_CoxPHFit_Log_WaldX2,
HDL_CoxPHFit_Linear_WaldX2,
HDL_CoxPHFit_RCS4Knots_WaldX2,
HDL_CoxPHFit_RCS3Knots_WaldX2,
HDL_CoxPHFit_Log_WaldX2,
LDL_CoxPHFit_Linear_WaldX2,
LDL_CoxPHFit_RCS4Knots_WaldX2,
LDL_CoxPHFit_RCS3Knots_WaldX2,
LDL_CoxPHFit_Log_WaldX2,
TRIG_CoxPHFit_Linear_WaldX2,
TRIG_CoxPHFit_RCS4Knots_WaldX2,
TRIG_CoxPHFit_RCS3Knots_WaldX2,
TRIG_CoxPHFit_Log_WaldX2,
HOMOC_CoxPHFit_Linear_WaldX2,
HOMOC_CoxPHFit_RCS4Knots_WaldX2,
HOMOC_CoxPHFit_RCS3Knots_WaldX2,
HOMOC_CoxPHFit_Log_WaldX2,
GLUT_CoxPHFit_Linear_WaldX2,
GLUT_CoxPHFit_RCS4Knots_WaldX2,
GLUT_CoxPHFit_RCS3Knots_WaldX2,
GLUT_CoxPHFit_Log_WaldX2,
LENGTH_CoxPHFit_Linear_WaldX2,
LENGTH_CoxPHFit_RCS4Knots_WaldX2,
LENGTH_CoxPHFit_RCS3Knots_WaldX2,
LENGTH_CoxPHFit_Log_WaldX2,
WEIGHT_CoxPHFit_Linear_WaldX2,
WEIGHT_CoxPHFit_RCS4Knots_WaldX2,
WEIGHT_CoxPHFit_RCS3Knots_WaldX2,
WEIGHT_CoxPHFit_Log_WaldX2,
BMI_CoxPHFit_Linear_WaldX2,
BMI_CoxPHFit_RCS4Knots_WaldX2,
BMI_CoxPHFit_RCS3Knots_WaldX2,
BMI_CoxPHFit_Log_WaldX2,
PACKYRS_CoxPHFit_Linear_WaldX2,
PACKYRS_CoxPHFit_RCS4Knots_WaldX2,
PACKYRS_CoxPHFit_RCS3Knots_WaldX2,
CEREBRAL_CoxPHFit_Linear_WaldX2,
CARDIAC_CoxPHFit_Linear_WaldX2,
AAA_CoxPHFit_Linear_WaldX2,
PERIPH_CoxPHFit_Linear_WaldX2,
COMBINED_CoxPHFit_Linear_WaldX2,
SUMSCORE_4LEVELS_CoxPHFit_Linear_WaldX2,
SUMSCORE_5LEVELS_CoxPHFit_Linear_WaldX2)
PredictorCodingSummary <- as.data.frame(cbind(PredictorInformation,
CodingInformation,
WaldX2Information))
PredictorCodingSummary$WaldX2Information <- round(as.numeric(as.character(PredictorCodingSummary$WaldX2Information)),2)
colnames(PredictorCodingSummary)<- c("Predictor",
"Coding",
"Wald Chi-Squared")
##################################
# Summarizing all results
# of predictor coding evaluation
#################################
(PredictorCodingSummary)
## Predictor Coding Wald Chi-Squared
## 1 AGE Linear 97.17
## 2 AGE Squared 124.99
## 3 AGE Linear Effect After 55 118.59
## 4 AGE Squared Effect After 50 129.64
## 5 AGE Restricted Cubic Spline (4 knots) 125.30
## 6 AGE Quartiles 93.22
## 7 AGE Dichotomized 72.47
## 8 CREAT Linear 93.42
## 9 CREAT Restricted Cubic Spline (4 knots) 116.10
## 10 CREAT Restricted Cubic Spline (3 knots) 99.03
## 11 CREAT Logarithm 131.01
## 12 SYSTH Linear 15.49
## 13 SYSTH Restricted Cubic Spline (4 knots) 15.60
## 14 SYSTH Restricted Cubic Spline (3 knots) 15.17
## 15 SYSTH Logarithm 14.39
## 16 DIASTH Linear 0.73
## 17 DIASTH Restricted Cubic Spline (4 knots) 2.62
## 18 DIASTH Restricted Cubic Spline (3 knots) 2.08
## 19 DIASTH Logarithm 0.47
## 20 SYSTBP Linear 23.22
## 21 SYSTBP Restricted Cubic Spline (4 knots) 26.27
## 22 SYSTBP Restricted Cubic Spline (3 knots) 26.26
## 23 SYSTBP Logarithm 21.20
## 24 DIASTBP Linear 1.67
## 25 DIASTBP Restricted Cubic Spline (4 knots) 25.15
## 26 DIASTBP Restricted Cubic Spline (3 knots) 24.84
## 27 DIASTBP Logarithm 0.68
## 28 CHOL Linear 0.32
## 29 CHOL Restricted Cubic Spline (4 knots) 0.60
## 30 CHOL Restricted Cubic Spline (3 knots) 0.60
## 31 CHOL Logarithm 0.25
## 32 HDL Linear 11.83
## 33 HDL Restricted Cubic Spline (4 knots) 11.94
## 34 HDL Restricted Cubic Spline (3 knots) 11.61
## 35 HDL Logarithm 11.80
## 36 LDL Linear 1.28
## 37 LDL Restricted Cubic Spline (4 knots) 1.52
## 38 LDL Restricted Cubic Spline (3 knots) 1.28
## 39 LDL Logarithm 1.15
## 40 TRIG Linear 1.40
## 41 TRIG Restricted Cubic Spline (4 knots) 3.51
## 42 TRIG Restricted Cubic Spline (3 knots) 3.25
## 43 TRIG Logarithm 2.47
## 44 HOMOC Linear 49.59
## 45 HOMOC Restricted Cubic Spline (4 knots) 50.68
## 46 HOMOC Restricted Cubic Spline (3 knots) 47.32
## 47 HOMOC Logarithm 52.46
## 48 GLUT Linear 12.69
## 49 GLUT Restricted Cubic Spline (4 knots) 15.43
## 50 GLUT Restricted Cubic Spline (3 knots) 13.03
## 51 GLUT Logarithm 12.08
## 52 LENGTH Linear 0.01
## 53 LENGTH Restricted Cubic Spline (4 knots) 4.19
## 54 LENGTH Restricted Cubic Spline (3 knots) 4.11
## 55 LENGTH Logarithm 0.00
## 56 WEIGHT Linear 3.21
## 57 WEIGHT Restricted Cubic Spline (4 knots) 4.55
## 58 WEIGHT Restricted Cubic Spline (3 knots) 4.08
## 59 WEIGHT Logarithm 2.73
## 60 BMI Linear 3.87
## 61 BMI Restricted Cubic Spline (4 knots) 7.64
## 62 BMI Restricted Cubic Spline (3 knots) 4.02
## 63 BMI Logarithm 3.90
## 64 PACKYRS Linear 12.95
## 65 PACKYRS Restricted Cubic Spline (4 knots) 14.85
## 66 PACKYRS Restricted Cubic Spline (3 knots) 13.48
## 67 A-CEREBRAL Linear 35.73
## 68 B-CARDIAC Linear 19.11
## 69 C-AAA Linear 96.62
## 70 D-PERIPH Linear 23.13
## 71 (A,B,C,D) Linear 122.61
## 72 (A+B+C+D) Linear 95.98
## 73 [A+B+(2*C)+D] Linear 119.39
1.2.4 Data Preprocessing
Missing data pattern assessment:
[A] The missing data patterns were summarized using the
aggr method from the
VIM
package and the naclus method from
the
Hmisc
package.
[A.1] There were 924/3873 (0.236) observations assessed
as complete.
[A.2] The DIASTH
variable (numeric), SYSTH variable
(numeric), SYSTBP variable (numeric)
and DIASTBP variable (numeric)
contributed the most missing data.
[A.3] There were 105 missing data patterns observed
employing various combinations of the 21 variables. The most prevalent
pattern consists of two variables with missing data as noted from
1975/3873 (0.510) observations.
[A.4] The missing data patterns were predominantly
clustered between the following variables:
[A.4.1] DIASTH
(numeric) and SYSTH (numeric)
variables.
[A.4.2] DIASTBP
(numeric) and SYSTBP (numeric)
variables.
Missing data imputation method implementation and plausibility
evaluation:
[A] The missing data imputation method aregImpute (multiple imputation using
additive regression, bootstrapping, and predictive mean matching) from
the
Hmisc
package was applied using 5 iterations. The imputed values for each
iteration were collectively compared to the original data by individual
variable and showed:
[A.1] Relatively good data plausibility for the numeric
variables in the imputed dataset as compared to the original dataset for
all 5 iterations.
[A.2] Relatively good data plausibility for the
categorical variables in the imputed dataset as compared to the original
dataset for all 5 iterations.
##################################
# Loading dataset
##################################
DPP <- SMART
##################################
# Exploring the missing data patterns
##################################
DPP.Profile <- aggr(DPP,
plot = FALSE)
DPP.Profile.Summary <- summary(DPP.Profile)
nrow(DPP.Profile.Summary)
## NULL
plot(DPP.Profile,
numbers = TRUE,
prop = TRUE,
sortVars = TRUE,
col=c("green","red"))

##
## Variables sorted by number of missings:
## Variable Count
## DIASTH 0.3870384715
## SYSTH 0.3867802737
## SYSTBP 0.3157758843
## DIASTBP 0.3152594888
## HOMOC 0.1195455719
## LDL 0.0557707204
## albumin 0.0534469404
## IMT 0.0253033824
## STENOSIS 0.0240123935
## DIABETES 0.0103279112
## HDL 0.0077459334
## TRIG 0.0072295378
## SMOKING 0.0064549445
## alcohol 0.0064549445
## packyrs 0.0054221534
## GLUT 0.0049057578
## CHOL 0.0046475600
## CREAT 0.0043893623
## BMI 0.0007745933
## WEIGHT 0.0005163956
## LENGTH 0.0002581978
## TEVENT 0.0000000000
## EVENT 0.0000000000
## SEX 0.0000000000
## AGE 0.0000000000
## CEREBRAL 0.0000000000
## CARDIAC 0.0000000000
## AAA 0.0000000000
## PERIPH 0.0000000000
par(mfrow=c(1,1))
DPP.Patterns <- naclus(DPP)
plot(DPP.Patterns,
ylab="Fraction of NAs in common",
col="red")

par(mfrow=c(1,2))
naplot(DPP.Patterns, which=c('na per var'),col="red")
naplot(DPP.Patterns, which=c('na per obs'),col="red")

##################################
# Conducting missing data imputation
# using AREGIMPUTE
# (Multiple Imputation using Additive Regression, Bootstrapping, and Predictive Mean Matching)
##################################
DPP$CEREBRAL <- as.numeric(as.character(DPP$CEREBRAL))
DPP$CARDIAC <- as.numeric(as.character(DPP$CARDIAC))
DPP$AAA <- as.numeric(as.character(DPP$AAA))
DPP$PERIPH <- as.numeric(as.character(DPP$PERIPH))
DPP$SUMSCORE_5LEVELS <- DPP$CEREBRAL +
DPP$CARDIAC +
(2*DPP$AAA) +
DPP$PERIPH
set.seed(123456789)
DPP.AREGIMPUTED <-aregImpute(~I(TEVENT)+EVENT+SEX+I(AGE)+
SYSTBP+DIASTBP+SYSTH+DIASTH+
DIABETES+CEREBRAL+CARDIAC+AAA+PERIPH+I(SUMSCORE_5LEVELS)+STENOSIS+
I(LENGTH)+I(WEIGHT)+I(BMI)+
I(CHOL)+I(HDL)+I(LDL)+I(TRIG)+I(HOMOC)+I(GLUT)+I(CREAT)+I(IMT)+
as.factor(albumin) +as.factor(SMOKING) + I(packyrs) + as.factor(alcohol),
n.impute=5,data=DPP)
## Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7
Iteration 8
##################################
# Evaluating the plausibility of the
# AREG-imputed values for the
# numerical variables
##################################
SYSTBP_complete <- (DPP$SYSTBP[complete.cases(DPP$SYSTBP)])
DPP.AREGIMPUTED_aregImpute_SYSTBP <- as.data.frame(DPP.AREGIMPUTED$imputed$SYSTBP)
SYSTBP_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_SYSTBP$V1
SYSTBP_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_SYSTBP$V2
SYSTBP_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_SYSTBP$V3
SYSTBP_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_SYSTBP$V4
SYSTBP_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_SYSTBP$V5
SYSTBP_values <- c(SYSTBP_complete,
SYSTBP_aregImpute_1,
SYSTBP_aregImpute_2,
SYSTBP_aregImpute_3,
SYSTBP_aregImpute_4,
SYSTBP_aregImpute_5)
SYSTBP_labels <- c(rep("Original",length(SYSTBP_complete)),
rep("aregImputed_1",length(SYSTBP_aregImpute_1)),
rep("aregImputed_2",length(SYSTBP_aregImpute_2)),
rep("aregImputed_3",length(SYSTBP_aregImpute_3)),
rep("aregImputed_4",length(SYSTBP_aregImpute_4)),
rep("aregImputed_5",length(SYSTBP_aregImpute_5)))
DIASTBP_complete <- (DPP$DIASTBP[complete.cases(DPP$DIASTBP)])
DPP.AREGIMPUTED_aregImpute_DIASTBP <- as.data.frame(DPP.AREGIMPUTED$imputed$DIASTBP)
DIASTBP_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_DIASTBP$V1
DIASTBP_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_DIASTBP$V2
DIASTBP_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_DIASTBP$V3
DIASTBP_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_DIASTBP$V4
DIASTBP_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_DIASTBP$V5
DIASTBP_values <- c(DIASTBP_complete,
DIASTBP_aregImpute_1,
DIASTBP_aregImpute_2,
DIASTBP_aregImpute_3,
DIASTBP_aregImpute_4,
DIASTBP_aregImpute_5)
DIASTBP_labels <- c(rep("Original",length(DIASTBP_complete)),
rep("aregImputed_1",length(DIASTBP_aregImpute_1)),
rep("aregImputed_2",length(DIASTBP_aregImpute_2)),
rep("aregImputed_3",length(DIASTBP_aregImpute_3)),
rep("aregImputed_4",length(DIASTBP_aregImpute_4)),
rep("aregImputed_5",length(DIASTBP_aregImpute_5)))
SYSTH_complete <- (DPP$SYSTH[complete.cases(DPP$SYSTH)])
DPP.AREGIMPUTED_aregImpute_SYSTH <- as.data.frame(DPP.AREGIMPUTED$imputed$SYSTH)
SYSTH_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_SYSTH$V1
SYSTH_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_SYSTH$V2
SYSTH_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_SYSTH$V3
SYSTH_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_SYSTH$V4
SYSTH_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_SYSTH$V5
SYSTH_values <- c(SYSTH_complete,
SYSTH_aregImpute_1,
SYSTH_aregImpute_2,
SYSTH_aregImpute_3,
SYSTH_aregImpute_4,
SYSTH_aregImpute_5)
SYSTH_labels <- c(rep("Original",length(SYSTH_complete)),
rep("aregImputed_1",length(SYSTH_aregImpute_1)),
rep("aregImputed_2",length(SYSTH_aregImpute_2)),
rep("aregImputed_3",length(SYSTH_aregImpute_3)),
rep("aregImputed_4",length(SYSTH_aregImpute_4)),
rep("aregImputed_5",length(SYSTH_aregImpute_5)))
DIASTH_complete <- (DPP$DIASTH[complete.cases(DPP$DIASTH)])
DPP.AREGIMPUTED_aregImpute_DIASTH <- as.data.frame(DPP.AREGIMPUTED$imputed$DIASTH)
DIASTH_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_DIASTH$V1
DIASTH_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_DIASTH$V2
DIASTH_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_DIASTH$V3
DIASTH_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_DIASTH$V4
DIASTH_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_DIASTH$V5
DIASTH_values <- c(DIASTH_complete,
DIASTH_aregImpute_1,
DIASTH_aregImpute_2,
DIASTH_aregImpute_3,
DIASTH_aregImpute_4,
DIASTH_aregImpute_5)
DIASTH_labels <- c(rep("Original",length(DIASTH_complete)),
rep("aregImputed_1",length(DIASTH_aregImpute_1)),
rep("aregImputed_2",length(DIASTH_aregImpute_2)),
rep("aregImputed_3",length(DIASTH_aregImpute_3)),
rep("aregImputed_4",length(DIASTH_aregImpute_4)),
rep("aregImputed_5",length(DIASTH_aregImpute_5)))
LENGTH_complete <- (DPP$LENGTH[complete.cases(DPP$LENGTH)])
DPP.AREGIMPUTED_aregImpute_LENGTH <- as.data.frame(DPP.AREGIMPUTED$imputed$LENGTH)
LENGTH_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_LENGTH$V1
LENGTH_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_LENGTH$V2
LENGTH_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_LENGTH$V3
LENGTH_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_LENGTH$V4
LENGTH_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_LENGTH$V5
LENGTH_values <- c(LENGTH_complete,
LENGTH_aregImpute_1,
LENGTH_aregImpute_2,
LENGTH_aregImpute_3,
LENGTH_aregImpute_4,
LENGTH_aregImpute_5)
LENGTH_labels <- c(rep("Original",length(LENGTH_complete)),
rep("aregImputed_1",length(LENGTH_aregImpute_1)),
rep("aregImputed_2",length(LENGTH_aregImpute_2)),
rep("aregImputed_3",length(LENGTH_aregImpute_3)),
rep("aregImputed_4",length(LENGTH_aregImpute_4)),
rep("aregImputed_5",length(LENGTH_aregImpute_5)))
WEIGHT_complete <- (DPP$WEIGHT[complete.cases(DPP$WEIGHT)])
DPP.AREGIMPUTED_aregImpute_WEIGHT <- as.data.frame(DPP.AREGIMPUTED$imputed$WEIGHT)
WEIGHT_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_WEIGHT$V1
WEIGHT_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_WEIGHT$V2
WEIGHT_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_WEIGHT$V3
WEIGHT_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_WEIGHT$V4
WEIGHT_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_WEIGHT$V5
WEIGHT_values <- c(WEIGHT_complete,
WEIGHT_aregImpute_1,
WEIGHT_aregImpute_2,
WEIGHT_aregImpute_3,
WEIGHT_aregImpute_4,
WEIGHT_aregImpute_5)
WEIGHT_labels <- c(rep("Original",length(WEIGHT_complete)),
rep("aregImputed_1",length(WEIGHT_aregImpute_1)),
rep("aregImputed_2",length(WEIGHT_aregImpute_2)),
rep("aregImputed_3",length(WEIGHT_aregImpute_3)),
rep("aregImputed_4",length(WEIGHT_aregImpute_4)),
rep("aregImputed_5",length(WEIGHT_aregImpute_5)))
BMI_complete <- (DPP$BMI[complete.cases(DPP$BMI)])
DPP.AREGIMPUTED_aregImpute_BMI <- as.data.frame(DPP.AREGIMPUTED$imputed$BMI)
BMI_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_BMI$V1
BMI_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_BMI$V2
BMI_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_BMI$V3
BMI_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_BMI$V4
BMI_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_BMI$V5
BMI_values <- c(BMI_complete,
BMI_aregImpute_1,
BMI_aregImpute_2,
BMI_aregImpute_3,
BMI_aregImpute_4,
BMI_aregImpute_5)
BMI_labels <- c(rep("Original",length(BMI_complete)),
rep("aregImputed_1",length(BMI_aregImpute_1)),
rep("aregImputed_2",length(BMI_aregImpute_2)),
rep("aregImputed_3",length(BMI_aregImpute_3)),
rep("aregImputed_4",length(BMI_aregImpute_4)),
rep("aregImputed_5",length(BMI_aregImpute_5)))
CHOL_complete <- (DPP$CHOL[complete.cases(DPP$CHOL)])
DPP.AREGIMPUTED_aregImpute_CHOL <- as.data.frame(DPP.AREGIMPUTED$imputed$CHOL)
CHOL_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_CHOL$V1
CHOL_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_CHOL$V2
CHOL_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_CHOL$V3
CHOL_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_CHOL$V4
CHOL_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_CHOL$V5
CHOL_values <- c(CHOL_complete,
CHOL_aregImpute_1,
CHOL_aregImpute_2,
CHOL_aregImpute_3,
CHOL_aregImpute_4,
CHOL_aregImpute_5)
CHOL_labels <- c(rep("Original",length(CHOL_complete)),
rep("aregImputed_1",length(CHOL_aregImpute_1)),
rep("aregImputed_2",length(CHOL_aregImpute_2)),
rep("aregImputed_3",length(CHOL_aregImpute_3)),
rep("aregImputed_4",length(CHOL_aregImpute_4)),
rep("aregImputed_5",length(CHOL_aregImpute_5)))
HDL_complete <- (DPP$HDL[complete.cases(DPP$HDL)])
DPP.AREGIMPUTED_aregImpute_HDL <- as.data.frame(DPP.AREGIMPUTED$imputed$HDL)
HDL_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_HDL$V1
HDL_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_HDL$V2
HDL_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_HDL$V3
HDL_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_HDL$V4
HDL_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_HDL$V5
HDL_values <- c(HDL_complete,
HDL_aregImpute_1,
HDL_aregImpute_2,
HDL_aregImpute_3,
HDL_aregImpute_4,
HDL_aregImpute_5)
HDL_labels <- c(rep("Original",length(HDL_complete)),
rep("aregImputed_1",length(HDL_aregImpute_1)),
rep("aregImputed_2",length(HDL_aregImpute_2)),
rep("aregImputed_3",length(HDL_aregImpute_3)),
rep("aregImputed_4",length(HDL_aregImpute_4)),
rep("aregImputed_5",length(HDL_aregImpute_5)))
LDL_complete <- (DPP$LDL[complete.cases(DPP$LDL)])
DPP.AREGIMPUTED_aregImpute_LDL <- as.data.frame(DPP.AREGIMPUTED$imputed$LDL)
LDL_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_LDL$V1
LDL_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_LDL$V2
LDL_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_LDL$V3
LDL_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_LDL$V4
LDL_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_LDL$V5
LDL_values <- c(LDL_complete,
LDL_aregImpute_1,
LDL_aregImpute_2,
LDL_aregImpute_3,
LDL_aregImpute_4,
LDL_aregImpute_5)
LDL_labels <- c(rep("Original",length(LDL_complete)),
rep("aregImputed_1",length(LDL_aregImpute_1)),
rep("aregImputed_2",length(LDL_aregImpute_2)),
rep("aregImputed_3",length(LDL_aregImpute_3)),
rep("aregImputed_4",length(LDL_aregImpute_4)),
rep("aregImputed_5",length(LDL_aregImpute_5)))
TRIG_complete <- (DPP$TRIG[complete.cases(DPP$TRIG)])
DPP.AREGIMPUTED_aregImpute_TRIG <- as.data.frame(DPP.AREGIMPUTED$imputed$TRIG)
TRIG_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_TRIG$V1
TRIG_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_TRIG$V2
TRIG_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_TRIG$V3
TRIG_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_TRIG$V4
TRIG_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_TRIG$V5
TRIG_values <- c(TRIG_complete,
TRIG_aregImpute_1,
TRIG_aregImpute_2,
TRIG_aregImpute_3,
TRIG_aregImpute_4,
TRIG_aregImpute_5)
TRIG_labels <- c(rep("Original",length(TRIG_complete)),
rep("aregImputed_1",length(TRIG_aregImpute_1)),
rep("aregImputed_2",length(TRIG_aregImpute_2)),
rep("aregImputed_3",length(TRIG_aregImpute_3)),
rep("aregImputed_4",length(TRIG_aregImpute_4)),
rep("aregImputed_5",length(TRIG_aregImpute_5)))
HOMOC_complete <- (DPP$HOMOC[complete.cases(DPP$HOMOC)])
DPP.AREGIMPUTED_aregImpute_HOMOC <- as.data.frame(DPP.AREGIMPUTED$imputed$HOMOC)
HOMOC_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_HOMOC$V1
HOMOC_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_HOMOC$V2
HOMOC_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_HOMOC$V3
HOMOC_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_HOMOC$V4
HOMOC_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_HOMOC$V5
HOMOC_values <- c(HOMOC_complete,
HOMOC_aregImpute_1,
HOMOC_aregImpute_2,
HOMOC_aregImpute_3,
HOMOC_aregImpute_4,
HOMOC_aregImpute_5)
HOMOC_labels <- c(rep("Original",length(HOMOC_complete)),
rep("aregImputed_1",length(HOMOC_aregImpute_1)),
rep("aregImputed_2",length(HOMOC_aregImpute_2)),
rep("aregImputed_3",length(HOMOC_aregImpute_3)),
rep("aregImputed_4",length(HOMOC_aregImpute_4)),
rep("aregImputed_5",length(HOMOC_aregImpute_5)))
GLUT_complete <- (DPP$GLUT[complete.cases(DPP$GLUT)])
DPP.AREGIMPUTED_aregImpute_GLUT <- as.data.frame(DPP.AREGIMPUTED$imputed$GLUT)
GLUT_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_GLUT$V1
GLUT_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_GLUT$V2
GLUT_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_GLUT$V3
GLUT_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_GLUT$V4
GLUT_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_GLUT$V5
GLUT_values <- c(GLUT_complete,
GLUT_aregImpute_1,
GLUT_aregImpute_2,
GLUT_aregImpute_3,
GLUT_aregImpute_4,
GLUT_aregImpute_5)
GLUT_labels <- c(rep("Original",length(GLUT_complete)),
rep("aregImputed_1",length(GLUT_aregImpute_1)),
rep("aregImputed_2",length(GLUT_aregImpute_2)),
rep("aregImputed_3",length(GLUT_aregImpute_3)),
rep("aregImputed_4",length(GLUT_aregImpute_4)),
rep("aregImputed_5",length(GLUT_aregImpute_5)))
CREAT_complete <- (DPP$CREAT[complete.cases(DPP$CREAT)])
DPP.AREGIMPUTED_aregImpute_CREAT <- as.data.frame(DPP.AREGIMPUTED$imputed$CREAT)
CREAT_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_CREAT$V1
CREAT_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_CREAT$V2
CREAT_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_CREAT$V3
CREAT_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_CREAT$V4
CREAT_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_CREAT$V5
CREAT_values <- c(CREAT_complete,
CREAT_aregImpute_1,
CREAT_aregImpute_2,
CREAT_aregImpute_3,
CREAT_aregImpute_4,
CREAT_aregImpute_5)
CREAT_labels <- c(rep("Original",length(CREAT_complete)),
rep("aregImputed_1",length(CREAT_aregImpute_1)),
rep("aregImputed_2",length(CREAT_aregImpute_2)),
rep("aregImputed_3",length(CREAT_aregImpute_3)),
rep("aregImputed_4",length(CREAT_aregImpute_4)),
rep("aregImputed_5",length(CREAT_aregImpute_5)))
IMT_complete <- (DPP$IMT[complete.cases(DPP$IMT)])
DPP.AREGIMPUTED_aregImpute_IMT <- as.data.frame(DPP.AREGIMPUTED$imputed$IMT)
IMT_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_IMT$V1
IMT_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_IMT$V2
IMT_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_IMT$V3
IMT_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_IMT$V4
IMT_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_IMT$V5
IMT_values <- c(IMT_complete,
IMT_aregImpute_1,
IMT_aregImpute_2,
IMT_aregImpute_3,
IMT_aregImpute_4,
IMT_aregImpute_5)
IMT_labels <- c(rep("Original",length(IMT_complete)),
rep("aregImputed_1",length(IMT_aregImpute_1)),
rep("aregImputed_2",length(IMT_aregImpute_2)),
rep("aregImputed_3",length(IMT_aregImpute_3)),
rep("aregImputed_4",length(IMT_aregImpute_4)),
rep("aregImputed_5",length(IMT_aregImpute_5)))
PACKYRS_complete <- (DPP$packyrs[complete.cases(DPP$packyrs)])
DPP.AREGIMPUTED_aregImpute_PACKYRS <- as.data.frame(DPP.AREGIMPUTED$imputed$packyrs)
PACKYRS_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_PACKYRS$V1
PACKYRS_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_PACKYRS$V2
PACKYRS_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_PACKYRS$V3
PACKYRS_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_PACKYRS$V4
PACKYRS_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_PACKYRS$V5
PACKYRS_values <- c(PACKYRS_complete,
PACKYRS_aregImpute_1,
PACKYRS_aregImpute_2,
PACKYRS_aregImpute_3,
PACKYRS_aregImpute_4,
PACKYRS_aregImpute_5)
PACKYRS_labels <- c(rep("Original",length(PACKYRS_complete)),
rep("aregImputed_1",length(PACKYRS_aregImpute_1)),
rep("aregImputed_2",length(PACKYRS_aregImpute_2)),
rep("aregImputed_3",length(PACKYRS_aregImpute_3)),
rep("aregImputed_4",length(PACKYRS_aregImpute_4)),
rep("aregImputed_5",length(PACKYRS_aregImpute_5)))
VARIABLE_labels <- c(rep("SYSTBP",length(SYSTBP_labels)),
rep("DIASTBP",length(DIASTBP_labels)),
rep("SYSTH",length(SYSTH_labels)),
rep("DIASTH",length(DIASTH_labels)),
rep("LENGTH",length(LENGTH_labels)),
rep("WEIGHT",length(WEIGHT_labels)),
rep("BMI",length(BMI_labels)),
rep("CHOL",length(CHOL_labels)),
rep("HDL",length(HDL_labels)),
rep("LDL",length(LDL_labels)),
rep("TRIG",length(TRIG_labels)),
rep("HOMOC",length(HOMOC_labels)),
rep("GLUT",length(GLUT_labels)),
rep("CREAT",length(CREAT_labels)),
rep("IMT",length(IMT_labels)),
rep("PACKYRS",length(PACKYRS_labels)))
NUMERIC_VARIABLES_postimputation <- cbind(VARIABLE_labels,
c(SYSTBP_labels,
DIASTBP_labels,
SYSTH_labels,
DIASTH_labels,
LENGTH_labels,
WEIGHT_labels,
BMI_labels,
CHOL_labels,
HDL_labels,
LDL_labels,
TRIG_labels,
HOMOC_labels,
GLUT_labels,
CREAT_labels,
IMT_labels,
PACKYRS_labels),
c(SYSTBP_values,
DIASTBP_values,
SYSTH_values,
DIASTH_values,
LENGTH_values,
WEIGHT_values,
BMI_values,
CHOL_values,
HDL_values,
LDL_values,
TRIG_values,
HOMOC_values,
GLUT_values,
CREAT_values,
IMT_values,
PACKYRS_values))
NUMERIC_VARIABLES_postimputation <- as.data.frame(NUMERIC_VARIABLES_postimputation)
colnames(NUMERIC_VARIABLES_postimputation) <- c("Variable",
"Category",
"Value")
NUMERIC_VARIABLES_postimputation$Variable <- factor(NUMERIC_VARIABLES_postimputation$Variable,
levels=c("PACKYRS",
"IMT",
"CREAT",
"GLUT",
"HOMOC",
"TRIG",
"LDL",
"HDL",
"CHOL",
"BMI",
"WEIGHT",
"LENGTH",
"DIASTH",
"SYSTH",
"DIASTBP",
"SYSTBP"))
NUMERIC_VARIABLES_postimputation$Category <- factor(NUMERIC_VARIABLES_postimputation$Category,
levels=c("Original",
"aregImputed_1",
"aregImputed_2",
"aregImputed_3",
"aregImputed_4",
"aregImputed_5"))
NUMERIC_VARIABLES_postimputation_SYSTBP <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="SYSTBP",]
NUMERIC_VARIABLES_postimputation_SYSTH <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="SYSTH",]
NUMERIC_VARIABLES_postimputation_DIASTBP <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="DIASTBP",]
NUMERIC_VARIABLES_postimputation_DIASTH <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="DIASTH",]
NUMERIC_VARIABLES_postimputation_LENGTH <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="LENGTH",]
NUMERIC_VARIABLES_postimputation_WEIGHT <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="WEIGHT",]
NUMERIC_VARIABLES_postimputation_BMI <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="BMI",]
NUMERIC_VARIABLES_postimputation_CHOL <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="CHOL",]
NUMERIC_VARIABLES_postimputation_HDL <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="HDL",]
NUMERIC_VARIABLES_postimputation_LDL <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="LDL",]
NUMERIC_VARIABLES_postimputation_TRIG <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="TRIG",]
NUMERIC_VARIABLES_postimputation_HOMOC <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="HOMOC",]
NUMERIC_VARIABLES_postimputation_GLUT <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="GLUT",]
NUMERIC_VARIABLES_postimputation_CREAT <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="CREAT",]
NUMERIC_VARIABLES_postimputation_IMT <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="IMT",]
NUMERIC_VARIABLES_postimputation_PACKYRS <- NUMERIC_VARIABLES_postimputation[NUMERIC_VARIABLES_postimputation$Variable=="PACKYRS",]
DENSITY_SYSTBP <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_SYSTBP,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_SYSTH <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_SYSTH,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_DIASTBP <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_DIASTBP,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_DIASTH <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_DIASTH,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_LENGTH <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_LENGTH,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_WEIGHT <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_WEIGHT,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_BMI <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_BMI,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_CHOL <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_CHOL,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_HDL <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_HDL,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_LDL <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_LDL,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_TRIG <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_TRIG,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_HOMOC <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_HOMOC,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_GLUT <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_GLUT,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_CREAT <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_CREAT,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_IMT <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_IMT,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
DENSITY_PACKYRS <- densityplot(~ Value | Variable,
data = NUMERIC_VARIABLES_postimputation_PACKYRS,
groups = Category,
plot.points = FALSE,
ref = TRUE,
scales=list(relation="free"),
auto.key = list(columns = 1),
par.settings = list(superpose.line = list(lwd=2)))
grid.arrange(DENSITY_SYSTBP,
DENSITY_SYSTH,
DENSITY_DIASTBP,
DENSITY_DIASTH,
DENSITY_LENGTH,
DENSITY_WEIGHT,
DENSITY_BMI,
DENSITY_CHOL,
DENSITY_HDL,
DENSITY_LDL,
DENSITY_TRIG,
DENSITY_HOMOC,
DENSITY_GLUT,
DENSITY_CREAT,
DENSITY_IMT,
DENSITY_PACKYRS,
ncol = 4)

##################################
# Evaluating the plausibility of the
# AREG-imputed values for the
# numerical variables
##################################
DIABETES_complete <- (DPP$DIABETES[complete.cases(DPP$DIABETES)])
DPP.AREGIMPUTED_aregImpute_DIABETES <- as.data.frame(DPP.AREGIMPUTED$imputed$DIABETES)
DIABETES_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_DIABETES$V1
DIABETES_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_DIABETES$V2
DIABETES_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_DIABETES$V3
DIABETES_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_DIABETES$V4
DIABETES_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_DIABETES$V5
DIABETES_values <- c(DIABETES_complete,
DIABETES_aregImpute_1,
DIABETES_aregImpute_2,
DIABETES_aregImpute_3,
DIABETES_aregImpute_4,
DIABETES_aregImpute_5)
DIABETES_labels <- c(rep("Original",length(DIABETES_complete)),
rep("aregImputed_1",length(DIABETES_aregImpute_1)),
rep("aregImputed_2",length(DIABETES_aregImpute_2)),
rep("aregImputed_3",length(DIABETES_aregImpute_3)),
rep("aregImputed_4",length(DIABETES_aregImpute_4)),
rep("aregImputed_5",length(DIABETES_aregImpute_5)))
DIABETES_postimputation <- cbind(DIABETES_values,
DIABETES_labels)
DIABETES_postimputation <- as.data.frame(DIABETES_postimputation)
colnames(DIABETES_postimputation) <- c("Value",
"Category")
DIABETES_postimputation_proportion <- as.data.frame(prop.table(table(DIABETES_postimputation), 2))
DIABETES_postimputation_proportion$Category <- factor(DIABETES_postimputation_proportion$Category,
levels=c("Original",
"aregImputed_1",
"aregImputed_2",
"aregImputed_3",
"aregImputed_4",
"aregImputed_5"))
DIABETES_postimputation_proportion$Variable <- rep("DIABETES",nrow(DIABETES_postimputation_proportion))
BAR_DIABETES <- barchart(Freq ~ Category | Variable,
data=DIABETES_postimputation_proportion,
groups = Value,
stack=TRUE,
ylab = "Proportion",
auto.key = list(adj = 1))
STENOSIS_complete <- (DPP$STENOSIS[complete.cases(DPP$STENOSIS)])
DPP.AREGIMPUTED_aregImpute_STENOSIS <- as.data.frame(DPP.AREGIMPUTED$imputed$STENOSIS)
STENOSIS_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_STENOSIS$V1
STENOSIS_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_STENOSIS$V2
STENOSIS_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_STENOSIS$V3
STENOSIS_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_STENOSIS$V4
STENOSIS_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_STENOSIS$V5
STENOSIS_values <- c(STENOSIS_complete,
STENOSIS_aregImpute_1,
STENOSIS_aregImpute_2,
STENOSIS_aregImpute_3,
STENOSIS_aregImpute_4,
STENOSIS_aregImpute_5)
STENOSIS_labels <- c(rep("Original",length(STENOSIS_complete)),
rep("aregImputed_1",length(STENOSIS_aregImpute_1)),
rep("aregImputed_2",length(STENOSIS_aregImpute_2)),
rep("aregImputed_3",length(STENOSIS_aregImpute_3)),
rep("aregImputed_4",length(STENOSIS_aregImpute_4)),
rep("aregImputed_5",length(STENOSIS_aregImpute_5)))
STENOSIS_postimputation <- cbind(STENOSIS_values,
STENOSIS_labels)
STENOSIS_postimputation <- as.data.frame(STENOSIS_postimputation)
colnames(STENOSIS_postimputation) <- c("Value",
"Category")
STENOSIS_postimputation_proportion <- as.data.frame(prop.table(table(STENOSIS_postimputation), 2))
STENOSIS_postimputation_proportion$Category <- factor(STENOSIS_postimputation_proportion$Category,
levels=c("Original",
"aregImputed_1",
"aregImputed_2",
"aregImputed_3",
"aregImputed_4",
"aregImputed_5"))
STENOSIS_postimputation_proportion$Variable <- rep("STENOSIS",nrow(STENOSIS_postimputation_proportion))
BAR_STENOSIS <- barchart(Freq ~ Category | Variable,
data=STENOSIS_postimputation_proportion,
groups = Value,
stack=TRUE,
ylab = "Proportion",
auto.key = list(adj = 1))
ALBUMIN_complete <- (DPP$ albumin [complete.cases(DPP$albumin)])
DPP.AREGIMPUTED_aregImpute_ALBUMIN <- as.data.frame(DPP.AREGIMPUTED$imputed$ albumin)
ALBUMIN_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_ALBUMIN$V1
ALBUMIN_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_ALBUMIN$V2
ALBUMIN_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_ALBUMIN$V3
ALBUMIN_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_ALBUMIN$V4
ALBUMIN_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_ALBUMIN$V5
ALBUMIN_values <- c(ALBUMIN_complete,
ALBUMIN_aregImpute_1,
ALBUMIN_aregImpute_2,
ALBUMIN_aregImpute_3,
ALBUMIN_aregImpute_4,
ALBUMIN_aregImpute_5)
ALBUMIN_labels <- c(rep("Original",length(ALBUMIN_complete)),
rep("aregImputed_1",length(ALBUMIN_aregImpute_1)),
rep("aregImputed_2",length(ALBUMIN_aregImpute_2)),
rep("aregImputed_3",length(ALBUMIN_aregImpute_3)),
rep("aregImputed_4",length(ALBUMIN_aregImpute_4)),
rep("aregImputed_5",length(ALBUMIN_aregImpute_5)))
ALBUMIN_postimputation <- cbind(ALBUMIN_values,
ALBUMIN_labels)
ALBUMIN_postimputation <- as.data.frame(ALBUMIN_postimputation)
colnames(ALBUMIN_postimputation) <- c("Value",
"Category")
ALBUMIN_postimputation_proportion <- as.data.frame(prop.table(table(ALBUMIN_postimputation), 2))
ALBUMIN_postimputation_proportion$Category <- factor(ALBUMIN_postimputation_proportion$Category,
levels=c("Original",
"aregImputed_1",
"aregImputed_2",
"aregImputed_3",
"aregImputed_4",
"aregImputed_5"))
ALBUMIN_postimputation_proportion$Variable <- rep("ALBUMIN",nrow(ALBUMIN_postimputation_proportion))
BAR_ALBUMIN <- barchart(Freq ~ Category | Variable,
data=ALBUMIN_postimputation_proportion,
groups = Value,
stack=TRUE,
ylab = "Proportion",
auto.key = list(adj = 1))
SMOKING_complete <- (DPP$ SMOKING [complete.cases(DPP$SMOKING)])
DPP.AREGIMPUTED_aregImpute_SMOKING <- as.data.frame(DPP.AREGIMPUTED$imputed$SMOKING)
SMOKING_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_SMOKING$V1
SMOKING_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_SMOKING$V2
SMOKING_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_SMOKING$V3
SMOKING_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_SMOKING$V4
SMOKING_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_SMOKING$V5
SMOKING_values <- c(SMOKING_complete,
SMOKING_aregImpute_1,
SMOKING_aregImpute_2,
SMOKING_aregImpute_3,
SMOKING_aregImpute_4,
SMOKING_aregImpute_5)
SMOKING_labels <- c(rep("Original",length(SMOKING_complete)),
rep("aregImputed_1",length(SMOKING_aregImpute_1)),
rep("aregImputed_2",length(SMOKING_aregImpute_2)),
rep("aregImputed_3",length(SMOKING_aregImpute_3)),
rep("aregImputed_4",length(SMOKING_aregImpute_4)),
rep("aregImputed_5",length(SMOKING_aregImpute_5)))
SMOKING_postimputation <- cbind(SMOKING_values,
SMOKING_labels)
SMOKING_postimputation <- as.data.frame(SMOKING_postimputation)
colnames(SMOKING_postimputation) <- c("Value",
"Category")
SMOKING_postimputation_proportion <- as.data.frame(prop.table(table(SMOKING_postimputation), 2))
SMOKING_postimputation_proportion$Category <- factor(SMOKING_postimputation_proportion$Category,
levels=c("Original",
"aregImputed_1",
"aregImputed_2",
"aregImputed_3",
"aregImputed_4",
"aregImputed_5"))
SMOKING_postimputation_proportion$Variable <- rep("SMOKING",nrow(SMOKING_postimputation_proportion))
BAR_SMOKING <- barchart(Freq ~ Category | Variable,
data=SMOKING_postimputation_proportion,
groups = Value,
stack=TRUE,
ylab = "Proportion",
auto.key = list(adj = 1))
ALCOHOL_complete <- (DPP$ alcohol [complete.cases(DPP$alcohol)])
DPP.AREGIMPUTED_aregImpute_ALCOHOL <- as.data.frame(DPP.AREGIMPUTED$imputed$alcohol)
ALCOHOL_aregImpute_1 <- DPP.AREGIMPUTED_aregImpute_ALCOHOL$V1
ALCOHOL_aregImpute_2 <- DPP.AREGIMPUTED_aregImpute_ALCOHOL$V2
ALCOHOL_aregImpute_3 <- DPP.AREGIMPUTED_aregImpute_ALCOHOL$V3
ALCOHOL_aregImpute_4 <- DPP.AREGIMPUTED_aregImpute_ALCOHOL$V4
ALCOHOL_aregImpute_5 <- DPP.AREGIMPUTED_aregImpute_ALCOHOL$V5
ALCOHOL_values <- c(ALCOHOL_complete,
ALCOHOL_aregImpute_1,
ALCOHOL_aregImpute_2,
ALCOHOL_aregImpute_3,
ALCOHOL_aregImpute_4,
ALCOHOL_aregImpute_5)
ALCOHOL_labels <- c(rep("Original",length(ALCOHOL_complete)),
rep("aregImputed_1",length(ALCOHOL_aregImpute_1)),
rep("aregImputed_2",length(ALCOHOL_aregImpute_2)),
rep("aregImputed_3",length(ALCOHOL_aregImpute_3)),
rep("aregImputed_4",length(ALCOHOL_aregImpute_4)),
rep("aregImputed_5",length(ALCOHOL_aregImpute_5)))
ALCOHOL_postimputation <- cbind(ALCOHOL_values,
ALCOHOL_labels)
ALCOHOL_postimputation <- as.data.frame(ALCOHOL_postimputation)
colnames(ALCOHOL_postimputation) <- c("Value",
"Category")
ALCOHOL_postimputation_proportion <- as.data.frame(prop.table(table(ALCOHOL_postimputation), 2))
ALCOHOL_postimputation_proportion$Category <- factor(ALCOHOL_postimputation_proportion$Category,
levels=c("Original",
"aregImputed_1",
"aregImputed_2",
"aregImputed_3",
"aregImputed_4",
"aregImputed_5"))
ALCOHOL_postimputation_proportion$Variable <- rep("ALCOHOL",nrow(ALCOHOL_postimputation_proportion))
BAR_ALCOHOL <- barchart(Freq ~ Category | Variable,
data=ALCOHOL_postimputation_proportion,
groups = Value,
stack=TRUE,
ylab = "Proportion",
auto.key = list(adj = 1))
grid.arrange(BAR_DIABETES,
BAR_STENOSIS,
BAR_ALBUMIN,
BAR_SMOKING,
BAR_ALCOHOL,
ncol = 2)

1.2.5 Model Specification
Missing data imputation evaluation using full model specification:
[A] Certain variables were initially excluded for
modelling in order to (1) reduce potential multicollinearity among
predictors (those which reported high variance inflation factor values);
(2) remove variables which were minimally associated to the outcome
based from initial data exploration (those which reported low Wald
chi-squared values); and (3) only retain important and standard risk
factors (those which have been previously shown as significant clinical
survival predictors based from expert recommendations and/or literature
review) :
[A.1] DIASTH
variable (numeric)
[A.2] DIASBP
variable (numeric)
[A.3] SYSTBP
variable (numeric)
[A.4] LENGTH
variable (numeric)
[A.5] WEIGHT
variable (numeric)
[A.6] CHOL variable
(numeric)
[A.7] LDL variable
(numeric)
[A.8] TRIG variable
(numeric)
[A.9] GLUT variable
(numeric)
[A.10] PACKYRS
variable (numeric)
[B] The variables selected to be a part of the full
model comprised of the following:
[B.1] AGE variable
(numeric) coded using its squared value after 50 years [if (AGE>50)
then (AGE-50)^2 else 0]
[B.2] SEX variable
(factor)
[B.3] SMOKING
variable (factor)
[B.4] ALCOHOL
variable (factor)
[B.5] BMI variable
(numeric)
[B.6] SYSTH
variable (numeric)
[B.7] HDL variable
(numeric)
[B.8] DIABETES
variable (factor)
[B.9] CEREBRAL
variable (numeric), CARDIAC variable
(numeric), AAA variable (numeric)
and PERIPH variable (numeric) coded
using their linear combination [CEREBRAL + CARDIAC + (2*AAA) + PERIPH]
called SUMSCORE_5LEVELS variable
(numeric)
[B.10] HOMOC
variable (numeric)
[B.11] CREAT
variable (numeric) coded using its logarithm [log(CREAT)]
[B.12] ALBUMIN
variable (factor)
[B.13] STENOSIS
variable (factor)
[B.14] IMT variable
(numeric)
[B.14] HOMOC
variable (numeric)
[C] The five imputed datasets (aregImputed_1, aregImputed_2, aregImputed_3, aregImputed_4 and aregImputed_5) demonstrated generally
stable estimated coefficients for the full cox proportional hazards
model. The imputed data from iteration 3 (aregImputed_3) was assigned for the
subsequent model selection process.
##################################
# Loading the modelling dataset
# by combining the complete and imputed values
##################################
##################################
# Combining the complete and
# 1ST imputation results from AREG
##################################
DPP.AREGIMPUTED_1 <- impute.transcan(DPP.AREGIMPUTED,
imputation=1,
data=DPP,
list.out=TRUE,
pr=FALSE,
check=FALSE)
SMART.AREGIMPUTED_1 <- SMART
SMART.AREGIMPUTED_1[names(DPP.AREGIMPUTED_1)] <- DPP.AREGIMPUTED_1
SMART.AREGIMPUTED_1$CEREBRAL <- as.numeric(as.character(SMART.AREGIMPUTED_1$CEREBRAL))
SMART.AREGIMPUTED_1$CARDIAC <- as.numeric(as.character(SMART.AREGIMPUTED_1$CARDIAC))
SMART.AREGIMPUTED_1$AAA <- as.numeric(as.character(SMART.AREGIMPUTED_1$AAA))
SMART.AREGIMPUTED_1$PERIPH <- as.numeric(as.character(SMART.AREGIMPUTED_1$PERIPH))
SMART.AREGIMPUTED_1$SUMSCORE_5LEVELS <- SMART.AREGIMPUTED_1$CEREBRAL +
SMART.AREGIMPUTED_1$CARDIAC +
(2*SMART.AREGIMPUTED_1$AAA) +
SMART.AREGIMPUTED_1$PERIPH
##################################
# Combining the complete and
# 2ND imputation results from AREG
##################################
DPP.AREGIMPUTED_2 <- impute.transcan(DPP.AREGIMPUTED,
imputation=2,
data=DPP,
list.out=TRUE,
pr=FALSE,
check=FALSE)
SMART.AREGIMPUTED_2 <- SMART
SMART.AREGIMPUTED_2[names(DPP.AREGIMPUTED_2)] <- DPP.AREGIMPUTED_2
SMART.AREGIMPUTED_2$CEREBRAL <- as.numeric(as.character(SMART.AREGIMPUTED_2$CEREBRAL))
SMART.AREGIMPUTED_2$CARDIAC <- as.numeric(as.character(SMART.AREGIMPUTED_2$CARDIAC))
SMART.AREGIMPUTED_2$AAA <- as.numeric(as.character(SMART.AREGIMPUTED_2$AAA))
SMART.AREGIMPUTED_2$PERIPH <- as.numeric(as.character(SMART.AREGIMPUTED_2$PERIPH))
SMART.AREGIMPUTED_2$SUMSCORE_5LEVELS <- SMART.AREGIMPUTED_2$CEREBRAL +
SMART.AREGIMPUTED_2$CARDIAC +
(2*SMART.AREGIMPUTED_2$AAA) +
SMART.AREGIMPUTED_2$PERIPH
##################################
# Combining the complete and
# 3RD imputation results from AREG
##################################
DPP.AREGIMPUTED_3 <- impute.transcan(DPP.AREGIMPUTED,
imputation=3,
data=DPP,
list.out=TRUE,
pr=FALSE,
check=FALSE)
SMART.AREGIMPUTED_3 <- SMART
SMART.AREGIMPUTED_3[names(DPP.AREGIMPUTED_3)] <- DPP.AREGIMPUTED_3
SMART.AREGIMPUTED_3$CEREBRAL <- as.numeric(as.character(SMART.AREGIMPUTED_3$CEREBRAL))
SMART.AREGIMPUTED_3$CARDIAC <- as.numeric(as.character(SMART.AREGIMPUTED_3$CARDIAC))
SMART.AREGIMPUTED_3$AAA <- as.numeric(as.character(SMART.AREGIMPUTED_3$AAA))
SMART.AREGIMPUTED_3$PERIPH <- as.numeric(as.character(SMART.AREGIMPUTED_3$PERIPH))
SMART.AREGIMPUTED_3$SUMSCORE_5LEVELS <- SMART.AREGIMPUTED_3$CEREBRAL +
SMART.AREGIMPUTED_3$CARDIAC +
(2*SMART.AREGIMPUTED_3$AAA) +
SMART.AREGIMPUTED_3$PERIPH
##################################
# Combining the complete and
# 4TH imputation results from AREG
##################################
DPP.AREGIMPUTED_4 <- impute.transcan(DPP.AREGIMPUTED,
imputation=4,
data=DPP,
list.out=TRUE,
pr=FALSE,
check=FALSE)
SMART.AREGIMPUTED_4 <- SMART
SMART.AREGIMPUTED_4[names(DPP.AREGIMPUTED_4)] <- DPP.AREGIMPUTED_4
SMART.AREGIMPUTED_4$CEREBRAL <- as.numeric(as.character(SMART.AREGIMPUTED_4$CEREBRAL))
SMART.AREGIMPUTED_4$CARDIAC <- as.numeric(as.character(SMART.AREGIMPUTED_4$CARDIAC))
SMART.AREGIMPUTED_4$AAA <- as.numeric(as.character(SMART.AREGIMPUTED_4$AAA))
SMART.AREGIMPUTED_4$PERIPH <- as.numeric(as.character(SMART.AREGIMPUTED_4$PERIPH))
SMART.AREGIMPUTED_4$SUMSCORE_5LEVELS <- SMART.AREGIMPUTED_4$CEREBRAL +
SMART.AREGIMPUTED_4$CARDIAC +
(2*SMART.AREGIMPUTED_4$AAA) +
SMART.AREGIMPUTED_4$PERIPH
##################################
# Combining the complete and
# 5TH imputation results from AREG
##################################
DPP.AREGIMPUTED_5 <- impute.transcan(DPP.AREGIMPUTED,
imputation=5,
data=DPP,
list.out=TRUE,
pr=FALSE,
check=FALSE)
SMART.AREGIMPUTED_5 <- SMART
SMART.AREGIMPUTED_5[names(DPP.AREGIMPUTED_5)] <- DPP.AREGIMPUTED_5
SMART.AREGIMPUTED_5$CEREBRAL <- as.numeric(as.character(SMART.AREGIMPUTED_5$CEREBRAL))
SMART.AREGIMPUTED_5$CARDIAC <- as.numeric(as.character(SMART.AREGIMPUTED_5$CARDIAC))
SMART.AREGIMPUTED_5$AAA <- as.numeric(as.character(SMART.AREGIMPUTED_5$AAA))
SMART.AREGIMPUTED_5$PERIPH <- as.numeric(as.character(SMART.AREGIMPUTED_5$PERIPH))
SMART.AREGIMPUTED_5$SUMSCORE_5LEVELS <- SMART.AREGIMPUTED_5$CEREBRAL +
SMART.AREGIMPUTED_5$CARDIAC +
(2*SMART.AREGIMPUTED_5$AAA) +
SMART.AREGIMPUTED_5$PERIPH
##################################
# Exploring the single imputation
# results using AREG
##################################
describe(SMART.AREGIMPUTED_1)
## SMART.AREGIMPUTED_1
##
## 30 Variables 3873 Observations
## --------------------------------------------------------------------------------
## TEVENT
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 1934 1 1370 1078 98.6 197.0
## .25 .50 .75 .90 .95
## 555.0 1213.0 2165.0 2762.4 3017.4
##
## lowest : 0.1 1.0 2.0 3.0 4.0, highest: 3451.0 3452.0 3463.0 3465.0 3466.0
## --------------------------------------------------------------------------------
## EVENT
## n missing distinct
## 3873 0 2
##
## Value 0 1
## Frequency 3413 460
## Proportion 0.881 0.119
## --------------------------------------------------------------------------------
## SEX
## n missing distinct
## 3873 0 2
##
## Value 1 2
## Frequency 2897 976
## Proportion 0.748 0.252
## --------------------------------------------------------------------------------
## AGE
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 62 0.999 59.56 11.94 41 46
## .25 .50 .75 .90 .95
## 52 60 68 73 76
##
## lowest : 19 20 23 24 25, highest: 78 79 80 81 82
## --------------------------------------------------------------------------------
## DIABETES
## n missing imputed distinct
## 3873 0 40 2
##
## Value 0 1
## Frequency 3024 849
## Proportion 0.781 0.219
## --------------------------------------------------------------------------------
## CEREBRAL
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.625 1147 0.2962 0.417
##
## --------------------------------------------------------------------------------
## CARDIAC
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.74 2160 0.5577 0.4935
##
## --------------------------------------------------------------------------------
## AAA
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.288 416 0.1074 0.1918
##
## --------------------------------------------------------------------------------
## PERIPH
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.551 940 0.2427 0.3677
##
## --------------------------------------------------------------------------------
## STENOSIS
## n missing imputed distinct
## 3873 0 93 2
##
## Value 0 1
## Frequency 3131 742
## Proportion 0.808 0.192
## --------------------------------------------------------------------------------
## SYSTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1223 114 1 140.8 22.31 112
## .10 .25 .50 .75 .90 .95
## 117 126 139 153 168 178
##
## lowest : 96 97 98 99 100, highest: 206 209 211 212 216
## --------------------------------------------------------------------------------
## DIASTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1221 70 0.999 79.72 10.94 65
## .10 .25 .50 .75 .90 .95
## 68 73 79 86 93 97
##
## lowest : 46 48 52 53 54, highest: 117 118 120 124 127
## --------------------------------------------------------------------------------
## SYSTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1498 132 1 143.1 24.73 111
## .10 .25 .50 .75 .90 .95
## 117 127 140 157 173 183
##
## lowest : 79 88 91 93 94, highest: 222 223 228 242 244
## --------------------------------------------------------------------------------
## DIASTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1499 77 0.999 81.93 12.92 64
## .10 .25 .50 .75 .90 .95
## 68 74 81 89 97 102
##
## lowest : 45 49 50 52 53, highest: 123 125 126 130 136
## --------------------------------------------------------------------------------
## LENGTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1 42 0.999 1.74 0.09862 1.59
## .10 .25 .50 .75 .90 .95
## 1.62 1.68 1.75 1.80 1.85 1.88
##
## lowest : 1.53 1.54 1.55 1.56 1.57, highest: 1.90 1.91 1.92 1.93 1.94
## --------------------------------------------------------------------------------
## WEIGHT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 2 75 0.999 80.99 15.41 59
## .10 .25 .50 .75 .90 .95
## 64 72 80 89 99 104
##
## lowest : 50 51 52 53 54, highest: 120 121 122 123 124
## --------------------------------------------------------------------------------
## BMI
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 3 995 1 26.69 4.259 20.96
## .10 .25 .50 .75 .90 .95
## 22.16 24.11 26.30 28.73 31.86 33.90
##
## lowest : 18.70 18.71 18.73 18.78 18.81, highest: 39.25 39.43 39.45 39.64 39.80
## --------------------------------------------------------------------------------
## CHOL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 18 65 0.999 5.191 1.283 3.5
## .10 .25 .50 .75 .90 .95
## 3.8 4.4 5.1 5.9 6.7 7.2
##
## lowest : 2.8 2.9 3.0 3.1 3.2, highest: 8.8 8.9 9.1 9.2 9.4
## --------------------------------------------------------------------------------
## HDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 30 188 1 1.23 0.4031 0.74
## .10 .25 .50 .75 .90 .95
## 0.82 0.96 1.17 1.42 1.73 1.94
##
## lowest : 0.58 0.59 0.60 0.61 0.62, highest: 2.46 2.47 2.48 2.49 2.51
## --------------------------------------------------------------------------------
## LDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 216 478 1 3.129 1.184 1.52
## .10 .25 .50 .75 .90 .95
## 1.82 2.37 3.05 3.83 4.55 4.98
##
## lowest : 1.10 1.11 1.12 1.14 1.15, highest: 6.34 6.37 6.41 6.47 6.60
## --------------------------------------------------------------------------------
## TRIG
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 28 461 1 1.852 1.093 0.760
## .10 .25 .50 .75 .90 .95
## 0.880 1.120 1.530 2.230 3.120 3.904
##
## lowest : 0.56 0.57 0.58 0.59 0.60, highest: 8.28 8.61 8.68 8.91 8.96
## --------------------------------------------------------------------------------
## HOMOC
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 463 255 1 14.17 5.609 8.0
## .10 .25 .50 .75 .90 .95
## 8.8 10.5 13.0 16.2 20.6 24.8
##
## lowest : 6.1 6.2 6.3 6.4 6.5, highest: 35.5 35.9 36.1 37.1 38.3
## --------------------------------------------------------------------------------
## GLUT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 19 125 0.998 6.333 1.702 4.8
## .10 .25 .50 .75 .90 .95
## 5.0 5.3 5.7 6.5 8.4 10.4
##
## lowest : 4.3 4.4 4.5 4.6 4.7, highest: 17.6 17.7 17.9 18.0 18.7
## --------------------------------------------------------------------------------
## CREAT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 17 194 1 98.35 34.53 65
## .10 .25 .50 .75 .90 .95
## 69 78 89 101 118 138
##
## lowest : 54 55 56 57 58, highest: 784 799 809 813 825
## --------------------------------------------------------------------------------
## IMT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 98 99 0.999 0.936 0.2883 0.60
## .10 .25 .50 .75 .90 .95
## 0.65 0.75 0.88 1.07 1.30 1.45
##
## lowest : 0.47 0.48 0.50 0.52 0.53, highest: 1.77 1.78 1.80 1.82 1.83
## --------------------------------------------------------------------------------
## albumin
## n missing imputed distinct
## 3873 0 207 3
##
## Value 1 2 3
## Frequency 3045 696 132
## Proportion 0.786 0.180 0.034
## --------------------------------------------------------------------------------
## SMOKING
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 694 2733 446
## Proportion 0.179 0.706 0.115
## --------------------------------------------------------------------------------
## packyrs
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 21 263 0.994 22.64 22.26 0.0
## .10 .25 .50 .75 .90 .95
## 0.0 5.9 19.5 34.2 50.4 62.0
##
## lowest : 0.0 0.3 0.6 0.7 0.8, highest: 100.0 102.0 104.0 110.0 120.0
## --------------------------------------------------------------------------------
## alcohol
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 756 412 2705
## Proportion 0.195 0.106 0.698
## --------------------------------------------------------------------------------
## SUMSCORE_5LEVELS
## n missing distinct Info Mean Gmd
## 3873 0 5 0.532 1.311 0.511
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 2999 605 211 53 5
## Proportion 0.774 0.156 0.054 0.014 0.001
## --------------------------------------------------------------------------------
describe(SMART.AREGIMPUTED_2)
## SMART.AREGIMPUTED_2
##
## 30 Variables 3873 Observations
## --------------------------------------------------------------------------------
## TEVENT
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 1934 1 1370 1078 98.6 197.0
## .25 .50 .75 .90 .95
## 555.0 1213.0 2165.0 2762.4 3017.4
##
## lowest : 0.1 1.0 2.0 3.0 4.0, highest: 3451.0 3452.0 3463.0 3465.0 3466.0
## --------------------------------------------------------------------------------
## EVENT
## n missing distinct
## 3873 0 2
##
## Value 0 1
## Frequency 3413 460
## Proportion 0.881 0.119
## --------------------------------------------------------------------------------
## SEX
## n missing distinct
## 3873 0 2
##
## Value 1 2
## Frequency 2897 976
## Proportion 0.748 0.252
## --------------------------------------------------------------------------------
## AGE
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 62 0.999 59.56 11.94 41 46
## .25 .50 .75 .90 .95
## 52 60 68 73 76
##
## lowest : 19 20 23 24 25, highest: 78 79 80 81 82
## --------------------------------------------------------------------------------
## DIABETES
## n missing imputed distinct
## 3873 0 40 2
##
## Value 0 1
## Frequency 3024 849
## Proportion 0.781 0.219
## --------------------------------------------------------------------------------
## CEREBRAL
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.625 1147 0.2962 0.417
##
## --------------------------------------------------------------------------------
## CARDIAC
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.74 2160 0.5577 0.4935
##
## --------------------------------------------------------------------------------
## AAA
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.288 416 0.1074 0.1918
##
## --------------------------------------------------------------------------------
## PERIPH
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.551 940 0.2427 0.3677
##
## --------------------------------------------------------------------------------
## STENOSIS
## n missing imputed distinct
## 3873 0 93 2
##
## Value 0 1
## Frequency 3130 743
## Proportion 0.808 0.192
## --------------------------------------------------------------------------------
## SYSTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1223 114 1 140.7 21.96 112
## .10 .25 .50 .75 .90 .95
## 117 126 138 153 167 177
##
## lowest : 96 97 98 99 100, highest: 206 209 211 212 216
## --------------------------------------------------------------------------------
## DIASTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1221 70 0.999 79.85 10.89 65
## .10 .25 .50 .75 .90 .95
## 68 73 79 86 93 97
##
## lowest : 46 48 52 53 54, highest: 117 118 120 124 127
## --------------------------------------------------------------------------------
## SYSTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1498 132 1 143.1 24.78 111
## .10 .25 .50 .75 .90 .95
## 117 127 140 157 173 183
##
## lowest : 79 88 91 93 94, highest: 222 223 228 242 244
## --------------------------------------------------------------------------------
## DIASTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1499 77 0.999 82.13 12.95 64
## .10 .25 .50 .75 .90 .95
## 68 74 81 90 97 102
##
## lowest : 45 49 50 52 53, highest: 123 125 126 130 136
## --------------------------------------------------------------------------------
## LENGTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1 42 0.999 1.74 0.09862 1.59
## .10 .25 .50 .75 .90 .95
## 1.62 1.68 1.75 1.80 1.85 1.88
##
## lowest : 1.53 1.54 1.55 1.56 1.57, highest: 1.90 1.91 1.92 1.93 1.94
## --------------------------------------------------------------------------------
## WEIGHT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 2 75 0.999 80.99 15.41 59
## .10 .25 .50 .75 .90 .95
## 64 72 80 89 99 104
##
## lowest : 50 51 52 53 54, highest: 120 121 122 123 124
## --------------------------------------------------------------------------------
## BMI
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 3 995 1 26.69 4.258 20.96
## .10 .25 .50 .75 .90 .95
## 22.16 24.11 26.30 28.73 31.86 33.90
##
## lowest : 18.70 18.71 18.73 18.78 18.81, highest: 39.25 39.43 39.45 39.64 39.80
## --------------------------------------------------------------------------------
## CHOL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 18 65 0.999 5.191 1.283 3.5
## .10 .25 .50 .75 .90 .95
## 3.8 4.4 5.1 5.9 6.7 7.2
##
## lowest : 2.8 2.9 3.0 3.1 3.2, highest: 8.8 8.9 9.1 9.2 9.4
## --------------------------------------------------------------------------------
## HDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 30 188 1 1.23 0.4031 0.74
## .10 .25 .50 .75 .90 .95
## 0.82 0.96 1.17 1.42 1.73 1.94
##
## lowest : 0.58 0.59 0.60 0.61 0.62, highest: 2.46 2.47 2.48 2.49 2.51
## --------------------------------------------------------------------------------
## LDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 216 478 1 3.129 1.186 1.52
## .10 .25 .50 .75 .90 .95
## 1.82 2.37 3.05 3.83 4.55 4.97
##
## lowest : 1.10 1.11 1.12 1.14 1.15, highest: 6.34 6.37 6.41 6.47 6.60
## --------------------------------------------------------------------------------
## TRIG
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 28 461 1 1.852 1.093 0.760
## .10 .25 .50 .75 .90 .95
## 0.880 1.120 1.530 2.230 3.120 3.904
##
## lowest : 0.56 0.57 0.58 0.59 0.60, highest: 8.28 8.61 8.68 8.91 8.96
## --------------------------------------------------------------------------------
## HOMOC
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 463 255 1 14.1 5.525 8.00
## .10 .25 .50 .75 .90 .95
## 8.80 10.50 12.90 16.00 20.48 24.60
##
## lowest : 6.1 6.2 6.3 6.4 6.5, highest: 35.5 35.9 36.1 37.1 38.3
## --------------------------------------------------------------------------------
## GLUT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 19 125 0.998 6.335 1.704 4.8
## .10 .25 .50 .75 .90 .95
## 5.0 5.3 5.7 6.5 8.4 10.4
##
## lowest : 4.3 4.4 4.5 4.6 4.7, highest: 17.6 17.7 17.9 18.0 18.7
## --------------------------------------------------------------------------------
## CREAT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 17 194 1 98.34 34.54 65.0
## .10 .25 .50 .75 .90 .95
## 69.2 78.0 89.0 101.0 118.0 138.0
##
## lowest : 54 55 56 57 58, highest: 784 799 809 813 825
## --------------------------------------------------------------------------------
## IMT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 98 99 0.999 0.9359 0.2887 0.60
## .10 .25 .50 .75 .90 .95
## 0.65 0.75 0.88 1.07 1.30 1.47
##
## lowest : 0.47 0.48 0.50 0.52 0.53, highest: 1.77 1.78 1.80 1.82 1.83
## --------------------------------------------------------------------------------
## albumin
## n missing imputed distinct
## 3873 0 207 3
##
## Value 1 2 3
## Frequency 3040 695 138
## Proportion 0.785 0.179 0.036
## --------------------------------------------------------------------------------
## SMOKING
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 696 2731 446
## Proportion 0.180 0.705 0.115
## --------------------------------------------------------------------------------
## packyrs
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 21 263 0.994 22.7 22.32 0.0
## .10 .25 .50 .75 .90 .95
## 0.0 5.9 19.5 34.2 51.3 62.0
##
## lowest : 0.0 0.3 0.6 0.7 0.8, highest: 100.0 102.0 104.0 110.0 120.0
## --------------------------------------------------------------------------------
## alcohol
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 754 408 2711
## Proportion 0.195 0.105 0.700
## --------------------------------------------------------------------------------
## SUMSCORE_5LEVELS
## n missing distinct Info Mean Gmd
## 3873 0 5 0.532 1.311 0.511
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 2999 605 211 53 5
## Proportion 0.774 0.156 0.054 0.014 0.001
## --------------------------------------------------------------------------------
describe(SMART.AREGIMPUTED_3)
## SMART.AREGIMPUTED_3
##
## 30 Variables 3873 Observations
## --------------------------------------------------------------------------------
## TEVENT
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 1934 1 1370 1078 98.6 197.0
## .25 .50 .75 .90 .95
## 555.0 1213.0 2165.0 2762.4 3017.4
##
## lowest : 0.1 1.0 2.0 3.0 4.0, highest: 3451.0 3452.0 3463.0 3465.0 3466.0
## --------------------------------------------------------------------------------
## EVENT
## n missing distinct
## 3873 0 2
##
## Value 0 1
## Frequency 3413 460
## Proportion 0.881 0.119
## --------------------------------------------------------------------------------
## SEX
## n missing distinct
## 3873 0 2
##
## Value 1 2
## Frequency 2897 976
## Proportion 0.748 0.252
## --------------------------------------------------------------------------------
## AGE
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 62 0.999 59.56 11.94 41 46
## .25 .50 .75 .90 .95
## 52 60 68 73 76
##
## lowest : 19 20 23 24 25, highest: 78 79 80 81 82
## --------------------------------------------------------------------------------
## DIABETES
## n missing imputed distinct
## 3873 0 40 2
##
## Value 0 1
## Frequency 3024 849
## Proportion 0.781 0.219
## --------------------------------------------------------------------------------
## CEREBRAL
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.625 1147 0.2962 0.417
##
## --------------------------------------------------------------------------------
## CARDIAC
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.74 2160 0.5577 0.4935
##
## --------------------------------------------------------------------------------
## AAA
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.288 416 0.1074 0.1918
##
## --------------------------------------------------------------------------------
## PERIPH
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.551 940 0.2427 0.3677
##
## --------------------------------------------------------------------------------
## STENOSIS
## n missing imputed distinct
## 3873 0 93 2
##
## Value 0 1
## Frequency 3136 737
## Proportion 0.81 0.19
## --------------------------------------------------------------------------------
## SYSTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1223 114 1 140.7 22.07 112
## .10 .25 .50 .75 .90 .95
## 117 126 139 153 167 177
##
## lowest : 96 97 98 99 100, highest: 206 209 211 212 216
## --------------------------------------------------------------------------------
## DIASTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1221 70 0.999 79.71 10.75 65
## .10 .25 .50 .75 .90 .95
## 68 73 79 86 92 97
##
## lowest : 46 48 52 53 54, highest: 117 118 120 124 127
## --------------------------------------------------------------------------------
## SYSTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1498 132 1 143 24.67 111
## .10 .25 .50 .75 .90 .95
## 117 127 141 156 172 182
##
## lowest : 79 88 91 93 94, highest: 222 223 228 242 244
## --------------------------------------------------------------------------------
## DIASTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1499 77 0.999 82.15 13 64
## .10 .25 .50 .75 .90 .95
## 68 74 81 90 97 102
##
## lowest : 45 49 50 52 53, highest: 123 125 126 130 136
## --------------------------------------------------------------------------------
## LENGTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1 42 0.999 1.74 0.09862 1.59
## .10 .25 .50 .75 .90 .95
## 1.62 1.68 1.75 1.80 1.85 1.88
##
## lowest : 1.53 1.54 1.55 1.56 1.57, highest: 1.90 1.91 1.92 1.93 1.94
## --------------------------------------------------------------------------------
## WEIGHT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 2 75 0.999 80.99 15.41 59
## .10 .25 .50 .75 .90 .95
## 64 72 80 89 99 104
##
## lowest : 50 51 52 53 54, highest: 120 121 122 123 124
## --------------------------------------------------------------------------------
## BMI
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 3 995 1 26.69 4.257 20.96
## .10 .25 .50 .75 .90 .95
## 22.16 24.11 26.30 28.73 31.86 33.90
##
## lowest : 18.70 18.71 18.73 18.78 18.81, highest: 39.25 39.43 39.45 39.64 39.80
## --------------------------------------------------------------------------------
## CHOL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 18 65 0.999 5.191 1.283 3.5
## .10 .25 .50 .75 .90 .95
## 3.8 4.4 5.1 5.9 6.7 7.2
##
## lowest : 2.8 2.9 3.0 3.1 3.2, highest: 8.8 8.9 9.1 9.2 9.4
## --------------------------------------------------------------------------------
## HDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 30 188 1 1.23 0.4028 0.74
## .10 .25 .50 .75 .90 .95
## 0.82 0.96 1.17 1.42 1.73 1.94
##
## lowest : 0.58 0.59 0.60 0.61 0.62, highest: 2.46 2.47 2.48 2.49 2.51
## --------------------------------------------------------------------------------
## LDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 216 478 1 3.128 1.186 1.520
## .10 .25 .50 .75 .90 .95
## 1.820 2.370 3.050 3.830 4.550 4.984
##
## lowest : 1.10 1.11 1.12 1.14 1.15, highest: 6.34 6.37 6.41 6.47 6.60
## --------------------------------------------------------------------------------
## TRIG
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 28 461 1 1.853 1.093 0.760
## .10 .25 .50 .75 .90 .95
## 0.880 1.130 1.540 2.230 3.120 3.914
##
## lowest : 0.56 0.57 0.58 0.59 0.60, highest: 8.28 8.61 8.68 8.91 8.96
## --------------------------------------------------------------------------------
## HOMOC
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 463 255 1 14.12 5.548 8.00
## .10 .25 .50 .75 .90 .95
## 8.80 10.50 13.00 16.00 20.50 24.64
##
## lowest : 6.1 6.2 6.3 6.4 6.5, highest: 35.5 35.9 36.1 37.1 38.3
## --------------------------------------------------------------------------------
## GLUT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 19 125 0.998 6.33 1.698 4.8
## .10 .25 .50 .75 .90 .95
## 5.0 5.3 5.7 6.5 8.4 10.4
##
## lowest : 4.3 4.4 4.5 4.6 4.7, highest: 17.6 17.7 17.9 18.0 18.7
## --------------------------------------------------------------------------------
## CREAT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 17 194 1 98.34 34.56 64
## .10 .25 .50 .75 .90 .95
## 69 78 89 101 118 138
##
## lowest : 54 55 56 57 58, highest: 784 799 809 813 825
## --------------------------------------------------------------------------------
## IMT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 98 99 0.999 0.9368 0.2895 0.60
## .10 .25 .50 .75 .90 .95
## 0.65 0.75 0.88 1.07 1.30 1.47
##
## lowest : 0.47 0.48 0.50 0.52 0.53, highest: 1.77 1.78 1.80 1.82 1.83
## --------------------------------------------------------------------------------
## albumin
## n missing imputed distinct
## 3873 0 207 3
##
## Value 1 2 3
## Frequency 3040 696 137
## Proportion 0.785 0.180 0.035
## --------------------------------------------------------------------------------
## SMOKING
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 695 2731 447
## Proportion 0.179 0.705 0.115
## --------------------------------------------------------------------------------
## packyrs
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 21 263 0.994 22.62 22.24 0.0
## .10 .25 .50 .75 .90 .95
## 0.0 5.9 19.5 34.2 50.4 62.0
##
## lowest : 0.0 0.3 0.6 0.7 0.8, highest: 100.0 102.0 104.0 110.0 120.0
## --------------------------------------------------------------------------------
## alcohol
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 759 410 2704
## Proportion 0.196 0.106 0.698
## --------------------------------------------------------------------------------
## SUMSCORE_5LEVELS
## n missing distinct Info Mean Gmd
## 3873 0 5 0.532 1.311 0.511
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 2999 605 211 53 5
## Proportion 0.774 0.156 0.054 0.014 0.001
## --------------------------------------------------------------------------------
describe(SMART.AREGIMPUTED_4)
## SMART.AREGIMPUTED_4
##
## 30 Variables 3873 Observations
## --------------------------------------------------------------------------------
## TEVENT
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 1934 1 1370 1078 98.6 197.0
## .25 .50 .75 .90 .95
## 555.0 1213.0 2165.0 2762.4 3017.4
##
## lowest : 0.1 1.0 2.0 3.0 4.0, highest: 3451.0 3452.0 3463.0 3465.0 3466.0
## --------------------------------------------------------------------------------
## EVENT
## n missing distinct
## 3873 0 2
##
## Value 0 1
## Frequency 3413 460
## Proportion 0.881 0.119
## --------------------------------------------------------------------------------
## SEX
## n missing distinct
## 3873 0 2
##
## Value 1 2
## Frequency 2897 976
## Proportion 0.748 0.252
## --------------------------------------------------------------------------------
## AGE
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 62 0.999 59.56 11.94 41 46
## .25 .50 .75 .90 .95
## 52 60 68 73 76
##
## lowest : 19 20 23 24 25, highest: 78 79 80 81 82
## --------------------------------------------------------------------------------
## DIABETES
## n missing imputed distinct
## 3873 0 40 2
##
## Value 0 1
## Frequency 3022 851
## Proportion 0.78 0.22
## --------------------------------------------------------------------------------
## CEREBRAL
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.625 1147 0.2962 0.417
##
## --------------------------------------------------------------------------------
## CARDIAC
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.74 2160 0.5577 0.4935
##
## --------------------------------------------------------------------------------
## AAA
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.288 416 0.1074 0.1918
##
## --------------------------------------------------------------------------------
## PERIPH
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.551 940 0.2427 0.3677
##
## --------------------------------------------------------------------------------
## STENOSIS
## n missing imputed distinct
## 3873 0 93 2
##
## Value 0 1
## Frequency 3135 738
## Proportion 0.809 0.191
## --------------------------------------------------------------------------------
## SYSTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1223 114 1 140.4 21.93 112.0
## .10 .25 .50 .75 .90 .95
## 117.0 126.0 138.0 152.0 167.0 176.4
##
## lowest : 96 97 98 99 100, highest: 206 209 211 212 216
## --------------------------------------------------------------------------------
## DIASTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1221 70 0.999 79.66 10.82 65
## .10 .25 .50 .75 .90 .95
## 68 73 79 86 92 97
##
## lowest : 46 48 52 53 54, highest: 117 118 120 124 127
## --------------------------------------------------------------------------------
## SYSTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1498 132 1 143.2 24.87 111
## .10 .25 .50 .75 .90 .95
## 117 127 141 157 173 183
##
## lowest : 79 88 91 93 94, highest: 222 223 228 242 244
## --------------------------------------------------------------------------------
## DIASTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1499 77 0.999 82.17 13.01 64
## .10 .25 .50 .75 .90 .95
## 68 74 81 90 97 102
##
## lowest : 45 49 50 52 53, highest: 123 125 126 130 136
## --------------------------------------------------------------------------------
## LENGTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1 42 0.999 1.74 0.09862 1.59
## .10 .25 .50 .75 .90 .95
## 1.62 1.68 1.75 1.80 1.85 1.88
##
## lowest : 1.53 1.54 1.55 1.56 1.57, highest: 1.90 1.91 1.92 1.93 1.94
## --------------------------------------------------------------------------------
## WEIGHT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 2 75 0.999 80.99 15.41 59
## .10 .25 .50 .75 .90 .95
## 64 72 80 89 99 104
##
## lowest : 50 51 52 53 54, highest: 120 121 122 123 124
## --------------------------------------------------------------------------------
## BMI
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 3 995 1 26.69 4.257 20.96
## .10 .25 .50 .75 .90 .95
## 22.17 24.11 26.30 28.73 31.86 33.90
##
## lowest : 18.70 18.71 18.73 18.78 18.81, highest: 39.25 39.43 39.45 39.64 39.80
## --------------------------------------------------------------------------------
## CHOL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 18 65 0.999 5.191 1.283 3.5
## .10 .25 .50 .75 .90 .95
## 3.8 4.4 5.1 5.9 6.7 7.2
##
## lowest : 2.8 2.9 3.0 3.1 3.2, highest: 8.8 8.9 9.1 9.2 9.4
## --------------------------------------------------------------------------------
## HDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 30 188 1 1.23 0.4029 0.74
## .10 .25 .50 .75 .90 .95
## 0.82 0.96 1.17 1.42 1.73 1.94
##
## lowest : 0.58 0.59 0.60 0.61 0.62, highest: 2.46 2.47 2.48 2.49 2.51
## --------------------------------------------------------------------------------
## LDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 216 478 1 3.128 1.187 1.51
## .10 .25 .50 .75 .90 .95
## 1.82 2.37 3.05 3.83 4.55 4.98
##
## lowest : 1.10 1.11 1.12 1.14 1.15, highest: 6.34 6.37 6.41 6.47 6.60
## --------------------------------------------------------------------------------
## TRIG
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 28 461 1 1.853 1.093 0.760
## .10 .25 .50 .75 .90 .95
## 0.880 1.130 1.540 2.230 3.120 3.914
##
## lowest : 0.56 0.57 0.58 0.59 0.60, highest: 8.28 8.61 8.68 8.91 8.96
## --------------------------------------------------------------------------------
## HOMOC
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 463 255 1 14.07 5.533 8.0
## .10 .25 .50 .75 .90 .95
## 8.8 10.5 12.9 16.0 20.4 24.8
##
## lowest : 6.1 6.2 6.3 6.4 6.5, highest: 35.5 35.9 36.1 37.1 38.3
## --------------------------------------------------------------------------------
## GLUT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 19 125 0.998 6.333 1.702 4.8
## .10 .25 .50 .75 .90 .95
## 5.0 5.3 5.7 6.5 8.4 10.4
##
## lowest : 4.3 4.4 4.5 4.6 4.7, highest: 17.6 17.7 17.9 18.0 18.7
## --------------------------------------------------------------------------------
## CREAT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 17 194 1 98.4 34.6 65.0
## .10 .25 .50 .75 .90 .95
## 69.2 78.0 89.0 101.0 118.0 138.4
##
## lowest : 54 55 56 57 58, highest: 784 799 809 813 825
## --------------------------------------------------------------------------------
## IMT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 98 99 0.999 0.9366 0.2889 0.60
## .10 .25 .50 .75 .90 .95
## 0.65 0.75 0.88 1.07 1.30 1.47
##
## lowest : 0.47 0.48 0.50 0.52 0.53, highest: 1.77 1.78 1.80 1.82 1.83
## --------------------------------------------------------------------------------
## albumin
## n missing imputed distinct
## 3873 0 207 3
##
## Value 1 2 3
## Frequency 3046 689 138
## Proportion 0.786 0.178 0.036
## --------------------------------------------------------------------------------
## SMOKING
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 696 2731 446
## Proportion 0.180 0.705 0.115
## --------------------------------------------------------------------------------
## packyrs
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 21 263 0.994 22.64 22.26 0.00
## .10 .25 .50 .75 .90 .95
## 0.00 5.90 19.50 34.20 51.12 62.00
##
## lowest : 0.0 0.3 0.6 0.7 0.8, highest: 100.0 102.0 104.0 110.0 120.0
## --------------------------------------------------------------------------------
## alcohol
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 755 411 2707
## Proportion 0.195 0.106 0.699
## --------------------------------------------------------------------------------
## SUMSCORE_5LEVELS
## n missing distinct Info Mean Gmd
## 3873 0 5 0.532 1.311 0.511
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 2999 605 211 53 5
## Proportion 0.774 0.156 0.054 0.014 0.001
## --------------------------------------------------------------------------------
describe(SMART.AREGIMPUTED_5)
## SMART.AREGIMPUTED_5
##
## 30 Variables 3873 Observations
## --------------------------------------------------------------------------------
## TEVENT
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 1934 1 1370 1078 98.6 197.0
## .25 .50 .75 .90 .95
## 555.0 1213.0 2165.0 2762.4 3017.4
##
## lowest : 0.1 1.0 2.0 3.0 4.0, highest: 3451.0 3452.0 3463.0 3465.0 3466.0
## --------------------------------------------------------------------------------
## EVENT
## n missing distinct
## 3873 0 2
##
## Value 0 1
## Frequency 3413 460
## Proportion 0.881 0.119
## --------------------------------------------------------------------------------
## SEX
## n missing distinct
## 3873 0 2
##
## Value 1 2
## Frequency 2897 976
## Proportion 0.748 0.252
## --------------------------------------------------------------------------------
## AGE
## n missing distinct Info Mean Gmd .05 .10
## 3873 0 62 0.999 59.56 11.94 41 46
## .25 .50 .75 .90 .95
## 52 60 68 73 76
##
## lowest : 19 20 23 24 25, highest: 78 79 80 81 82
## --------------------------------------------------------------------------------
## DIABETES
## n missing imputed distinct
## 3873 0 40 2
##
## Value 0 1
## Frequency 3023 850
## Proportion 0.781 0.219
## --------------------------------------------------------------------------------
## CEREBRAL
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.625 1147 0.2962 0.417
##
## --------------------------------------------------------------------------------
## CARDIAC
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.74 2160 0.5577 0.4935
##
## --------------------------------------------------------------------------------
## AAA
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.288 416 0.1074 0.1918
##
## --------------------------------------------------------------------------------
## PERIPH
## n missing distinct Info Sum Mean Gmd
## 3873 0 2 0.551 940 0.2427 0.3677
##
## --------------------------------------------------------------------------------
## STENOSIS
## n missing imputed distinct
## 3873 0 93 2
##
## Value 0 1
## Frequency 3127 746
## Proportion 0.807 0.193
## --------------------------------------------------------------------------------
## SYSTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1223 114 1 140.3 21.97 112
## .10 .25 .50 .75 .90 .95
## 116 126 138 152 167 176
##
## lowest : 96 97 98 99 100, highest: 206 209 211 212 216
## --------------------------------------------------------------------------------
## DIASTBP
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1221 70 0.999 79.78 10.93 65
## .10 .25 .50 .75 .90 .95
## 68 73 79 86 93 97
##
## lowest : 46 48 52 53 54, highest: 117 118 120 124 127
## --------------------------------------------------------------------------------
## SYSTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1498 132 1 142.9 24.88 110
## .10 .25 .50 .75 .90 .95
## 117 127 140 156 172 183
##
## lowest : 79 88 91 93 94, highest: 222 223 228 242 244
## --------------------------------------------------------------------------------
## DIASTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1499 77 0.999 82.12 12.93 64
## .10 .25 .50 .75 .90 .95
## 68 74 81 89 97 102
##
## lowest : 45 49 50 52 53, highest: 123 125 126 130 136
## --------------------------------------------------------------------------------
## LENGTH
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 1 42 0.999 1.74 0.09862 1.59
## .10 .25 .50 .75 .90 .95
## 1.62 1.68 1.75 1.80 1.85 1.88
##
## lowest : 1.53 1.54 1.55 1.56 1.57, highest: 1.90 1.91 1.92 1.93 1.94
## --------------------------------------------------------------------------------
## WEIGHT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 2 75 0.999 81 15.41 59
## .10 .25 .50 .75 .90 .95
## 64 72 80 89 99 104
##
## lowest : 50 51 52 53 54, highest: 120 121 122 123 124
## --------------------------------------------------------------------------------
## BMI
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 3 995 1 26.69 4.257 20.96
## .10 .25 .50 .75 .90 .95
## 22.17 24.11 26.30 28.73 31.86 33.90
##
## lowest : 18.70 18.71 18.73 18.78 18.81, highest: 39.25 39.43 39.45 39.64 39.80
## --------------------------------------------------------------------------------
## CHOL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 18 65 0.999 5.191 1.283 3.5
## .10 .25 .50 .75 .90 .95
## 3.8 4.4 5.1 5.9 6.7 7.2
##
## lowest : 2.8 2.9 3.0 3.1 3.2, highest: 8.8 8.9 9.1 9.2 9.4
## --------------------------------------------------------------------------------
## HDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 30 188 1 1.229 0.4026 0.74
## .10 .25 .50 .75 .90 .95
## 0.82 0.96 1.17 1.42 1.73 1.94
##
## lowest : 0.58 0.59 0.60 0.61 0.62, highest: 2.46 2.47 2.48 2.49 2.51
## --------------------------------------------------------------------------------
## LDL
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 216 478 1 3.129 1.185 1.52
## .10 .25 .50 .75 .90 .95
## 1.82 2.37 3.05 3.83 4.55 4.98
##
## lowest : 1.10 1.11 1.12 1.14 1.15, highest: 6.34 6.37 6.41 6.47 6.60
## --------------------------------------------------------------------------------
## TRIG
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 28 461 1 1.853 1.092 0.760
## .10 .25 .50 .75 .90 .95
## 0.880 1.130 1.540 2.230 3.120 3.914
##
## lowest : 0.56 0.57 0.58 0.59 0.60, highest: 8.28 8.61 8.68 8.91 8.96
## --------------------------------------------------------------------------------
## HOMOC
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 463 255 1 14.19 5.641 8.0
## .10 .25 .50 .75 .90 .95
## 8.8 10.5 13.0 16.1 20.7 25.5
##
## lowest : 6.1 6.2 6.3 6.4 6.5, highest: 35.5 35.9 36.1 37.1 38.3
## --------------------------------------------------------------------------------
## GLUT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 19 125 0.998 6.334 1.701 4.80
## .10 .25 .50 .75 .90 .95
## 5.00 5.30 5.70 6.50 8.48 10.40
##
## lowest : 4.3 4.4 4.5 4.6 4.7, highest: 17.6 17.7 17.9 18.0 18.7
## --------------------------------------------------------------------------------
## CREAT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 17 194 1 98.38 34.6 64.0
## .10 .25 .50 .75 .90 .95
## 69.0 78.0 89.0 101.0 118.0 138.4
##
## lowest : 54 55 56 57 58, highest: 784 799 809 813 825
## --------------------------------------------------------------------------------
## IMT
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 98 99 0.999 0.9361 0.2889 0.60
## .10 .25 .50 .75 .90 .95
## 0.65 0.75 0.88 1.07 1.30 1.47
##
## lowest : 0.47 0.48 0.50 0.52 0.53, highest: 1.77 1.78 1.80 1.82 1.83
## --------------------------------------------------------------------------------
## albumin
## n missing imputed distinct
## 3873 0 207 3
##
## Value 1 2 3
## Frequency 3040 692 141
## Proportion 0.785 0.179 0.036
## --------------------------------------------------------------------------------
## SMOKING
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 694 2730 449
## Proportion 0.179 0.705 0.116
## --------------------------------------------------------------------------------
## packyrs
## n missing imputed distinct Info Mean Gmd .05
## 3873 0 21 263 0.994 22.65 22.28 0.00
## .10 .25 .50 .75 .90 .95
## 0.00 5.90 19.50 34.20 51.12 62.00
##
## lowest : 0.0 0.3 0.6 0.7 0.8, highest: 100.0 102.0 104.0 110.0 120.0
## --------------------------------------------------------------------------------
## alcohol
## n missing imputed distinct
## 3873 0 25 3
##
## Value 1 2 3
## Frequency 757 411 2705
## Proportion 0.195 0.106 0.698
## --------------------------------------------------------------------------------
## SUMSCORE_5LEVELS
## n missing distinct Info Mean Gmd
## 3873 0 5 0.532 1.311 0.511
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 2999 605 211 53 5
## Proportion 0.774 0.156 0.054 0.014 0.001
## --------------------------------------------------------------------------------
##################################
# Formulating the FULL
# Cox Proportional Hazards Model
# Using the combined complete and
# 1ST imputation results from AREG
##################################
SMART.AREGIMPUTED_1$EVENT <- as.numeric(SMART.AREGIMPUTED_1$EVENT)
SMART.AREGIMPUTED_1$SMOKING <- as.factor(SMART.AREGIMPUTED_1$SMOKING)
SMART.AREGIMPUTED_1$alcohol <- as.factor(SMART.AREGIMPUTED_1$alcohol)
SMART.AREGIMPUTED_1$albumin <- as.factor(SMART.AREGIMPUTED_1$albumin)
dd <- datadist(SMART.AREGIMPUTED_1)
options(datadist="dd")
##################################
# FULL COMPLETE
##################################
COXPH.FULL.COMPLETE.AREGIMPUTED_1 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
SYSTBP +
DIASTH +
DIASTBP +
WEIGHT +
LENGTH +
CHOL +
LDL +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT +
TRIG +
GLUT +
packyrs,
data = SMART.AREGIMPUTED_1,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.COMPLETE.AREGIMPUTED_1)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 36.78 1 <.0001
## SEX 0.88 1 0.3477
## SMOKING 0.13 2 0.9381
## alcohol 1.83 2 0.4004
## BMI 0.70 1 0.4029
## SYSTH 0.27 1 0.6059
## SYSTBP 0.01 1 0.9269
## DIASTH 2.02 1 0.1556
## DIASTBP 0.18 1 0.6745
## WEIGHT 1.28 1 0.2575
## LENGTH 0.64 1 0.4242
## CHOL 0.14 1 0.7100
## LDL 0.19 1 0.6664
## HDL 0.00 1 0.9978
## DIABETES 0.17 1 0.6790
## SUMSCORE_5LEVELS 34.66 1 <.0001
## HOMOC 0.01 1 0.9157
## CREAT 18.21 1 <.0001
## albumin 9.55 2 0.0084
## STENOSIS 2.29 1 0.1302
## IMT 9.33 1 0.0023
## TRIG 0.14 1 0.7067
## GLUT 2.83 1 0.0922
## packyrs 5.29 1 0.0214
## TOTAL 328.92 27 <.0001
summary(COXPH.FULL.COMPLETE.AREGIMPUTED_1)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.4359300 0.071877 0.2950500 0.576800
## Hazard Ratio 52.00 68.00 16.00 1.5464000 NA 1.3432000 1.780300
## BMI 24.11 28.73 4.62 0.4127800 0.493520 -0.5545000 1.380100
## Hazard Ratio 24.11 28.73 4.62 1.5110000 NA 0.5743600 3.975100
## SYSTH 127.00 157.00 30.00 -0.0614390 0.119090 -0.2948400 0.171960
## Hazard Ratio 127.00 157.00 30.00 0.9404100 NA 0.7446500 1.187600
## SYSTBP 126.00 153.00 27.00 -0.0105570 0.115110 -0.2361700 0.215050
## Hazard Ratio 126.00 153.00 27.00 0.9895000 NA 0.7896500 1.239900
## DIASTH 74.00 89.00 15.00 0.1512000 0.106460 -0.0574710 0.359860
## Hazard Ratio 74.00 89.00 15.00 1.1632000 NA 0.9441500 1.433100
## DIASTBP 73.00 86.00 13.00 -0.0410810 0.097805 -0.2327800 0.150610
## Hazard Ratio 73.00 86.00 13.00 0.9597500 NA 0.7923300 1.162500
## WEIGHT 72.00 89.00 17.00 -0.6868900 0.606660 -1.8759000 0.502160
## Hazard Ratio 72.00 89.00 17.00 0.5031400 NA 0.1532100 1.652300
## LENGTH 1.68 1.80 0.12 0.3213700 0.402110 -0.4667600 1.109500
## Hazard Ratio 1.68 1.80 0.12 1.3790000 NA 0.6270300 3.032800
## CHOL 4.40 5.90 1.50 -0.5446400 1.464600 -3.4152000 2.325900
## Hazard Ratio 4.40 5.90 1.50 0.5800500 NA 0.0328700 10.236000
## LDL 2.37 3.83 1.46 0.6199000 1.438000 -2.1985000 3.438300
## Hazard Ratio 2.37 3.83 1.46 1.8587000 NA 0.1109600 31.135000
## HDL 0.96 1.42 0.46 -0.0012456 0.455170 -0.8933600 0.890870
## Hazard Ratio 0.96 1.42 0.46 0.9987600 NA 0.4092800 2.437300
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.3307000 0.226020 0.8876800 1.773700
## Hazard Ratio 1.00 5.00 4.00 3.7836000 NA 2.4295000 5.892400
## HOMOC 10.50 16.20 5.70 -0.0052107 0.049239 -0.1017200 0.091297
## Hazard Ratio 10.50 16.20 5.70 0.9948000 NA 0.9032800 1.095600
## CREAT 78.00 101.00 23.00 0.1653600 0.038752 0.0894030 0.241310
## Hazard Ratio 78.00 101.00 23.00 1.1798000 NA 1.0935000 1.272900
## IMT 0.75 1.07 0.32 0.1772100 0.058007 0.0635150 0.290900
## Hazard Ratio 0.75 1.07 0.32 1.1939000 NA 1.0656000 1.337600
## TRIG 1.12 2.23 1.11 0.1800500 0.478510 -0.7578200 1.117900
## Hazard Ratio 1.12 2.23 1.11 1.1973000 NA 0.4686900 3.058500
## GLUT 5.30 6.50 1.20 0.0593030 0.035222 -0.0097303 0.128340
## Hazard Ratio 5.30 6.50 1.20 1.0611000 NA 0.9903200 1.136900
## packyrs 5.90 34.20 28.30 0.1585500 0.068926 0.0234600 0.293650
## Hazard Ratio 5.90 34.20 28.30 1.1718000 NA 1.0237000 1.341300
## SEX - 2:1 1.00 2.00 NA -0.1524500 0.162350 -0.4706500 0.165750
## Hazard Ratio 1.00 2.00 NA 0.8586000 NA 0.6246000 1.180300
## SMOKING - 1:2 2.00 1.00 NA -0.0262960 0.161320 -0.3424800 0.289890
## Hazard Ratio 2.00 1.00 NA 0.9740500 NA 0.7100000 1.336300
## SMOKING - 3:2 2.00 3.00 NA 0.0602720 0.201840 -0.3353300 0.455880
## Hazard Ratio 2.00 3.00 NA 1.0621000 NA 0.7151000 1.577600
## alcohol - 1:3 3.00 1.00 NA 0.1474700 0.121360 -0.0903840 0.385330
## Hazard Ratio 3.00 1.00 NA 1.1589000 NA 0.9135800 1.470100
## alcohol - 2:3 3.00 2.00 NA -0.0417340 0.148450 -0.3326900 0.249220
## Hazard Ratio 3.00 2.00 NA 0.9591200 NA 0.7169900 1.283000
## DIABETES - 1:0 1.00 2.00 NA 0.0645840 0.156090 -0.2413400 0.370510
## Hazard Ratio 1.00 2.00 NA 1.0667000 NA 0.7855700 1.448500
## albumin - 2:1 1.00 2.00 NA 0.2609800 0.117980 0.0297510 0.492210
## Hazard Ratio 1.00 2.00 NA 1.2982000 NA 1.0302000 1.635900
## albumin - 3:1 1.00 3.00 NA 0.5620000 0.208220 0.1538900 0.970110
## Hazard Ratio 1.00 3.00 NA 1.7542000 NA 1.1664000 2.638200
## STENOSIS - 1:0 1.00 2.00 NA 0.1637700 0.108210 -0.0483250 0.375870
## Hazard Ratio 1.00 2.00 NA 1.1779000 NA 0.9528200 1.456300
vif(COXPH.FULL.COMPLETE.AREGIMPUTED_1)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.422223 1.839738 1.917030 1.535045
## alcohol=2 alcohol=3 BMI SYSTH
## 1.439301 1.576363 63.830100 3.778977
## SYSTBP DIASTH DIASTBP WEIGHT
## 3.466886 3.098436 2.731506 89.258836
## LENGTH CHOL LDL HDL
## 34.868141 499.517309 446.035588 46.254999
## DIABETES=1 SUMSCORE_5LEVELS HOMOC CREAT
## 2.268709 1.173653 1.521747 1.920921
## albumin=2 albumin=3 STENOSIS=1 IMT
## 1.194679 1.573030 1.206110 1.329620
## TRIG GLUT packyrs
## 117.623369 2.191857 1.355974
COXPH.FULL.COMPLETE.AREGIMPUTED_1
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + SYSTBP + DIASTH +
## DIASTBP + WEIGHT + LENGTH + CHOL + LDL + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT + TRIG + GLUT + packyrs, data = SMART.AREGIMPUTED_1,
## x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 291.65 R2 0.087
## Events 460 d.f. 27 Dxy 0.395
## Center 8.2501 Pr(> chi2) 0.0000 g 0.793
## Score chi2 362.97 gr 2.211
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0014 0.0002 6.06 <0.0001
## SEX=2 -0.1524 0.1623 -0.94 0.3477
## SMOKING=2 0.0263 0.1613 0.16 0.8705
## SMOKING=3 0.0866 0.2445 0.35 0.7232
## alcohol=2 -0.1892 0.1673 -1.13 0.2581
## alcohol=3 -0.1475 0.1214 -1.22 0.2243
## BMI 0.0893 0.1068 0.84 0.4029
## SYSTH -0.0020 0.0040 -0.52 0.6059
## SYSTBP -0.0004 0.0043 -0.09 0.9269
## DIASTH 0.0101 0.0071 1.42 0.1556
## DIASTBP -0.0032 0.0075 -0.42 0.6745
## WEIGHT -0.0404 0.0357 -1.13 0.2575
## LENGTH 2.6781 3.3509 0.80 0.4242
## CHOL -0.3631 0.9764 -0.37 0.7100
## LDL 0.4246 0.9849 0.43 0.6664
## HDL -0.0027 0.9895 0.00 0.9978
## DIABETES=1 0.0646 0.1561 0.41 0.6790
## SUMSCORE_5LEVELS 0.3327 0.0565 5.89 <0.0001
## HOMOC -0.0009 0.0086 -0.11 0.9157
## CREAT 0.6399 0.1500 4.27 <0.0001
## albumin=2 0.2610 0.1180 2.21 0.0270
## albumin=3 0.5620 0.2082 2.70 0.0070
## STENOSIS=1 0.1638 0.1082 1.51 0.1302
## IMT 0.5538 0.1813 3.05 0.0023
## TRIG 0.1622 0.4311 0.38 0.7067
## GLUT 0.0494 0.0294 1.68 0.0922
## packyrs 0.0056 0.0024 2.30 0.0214
##
##################################
# FULL
# After removing variables which are:
# High multicollinearity contributors
# Non-standard risk factors
# Minimal predictors of survival outcome based from initial exploration
# Minimal predictors of survival outcome based from domain knowledge and literature
##################################
COXPH.FULL.AREGIMPUTED_1 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT,
data = SMART.AREGIMPUTED_1,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.AREGIMPUTED_1)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 37.92 1 <.0001
## SEX 0.15 1 0.6941
## SMOKING 1.83 2 0.3998
## alcohol 1.31 2 0.5189
## BMI 3.06 1 0.0802
## SYSTH 0.24 1 0.6232
## HDL 5.61 1 0.0178
## DIABETES 3.62 1 0.0570
## SUMSCORE_5LEVELS 35.39 1 <.0001
## HOMOC 0.01 1 0.9047
## CREAT 16.77 1 <.0001
## albumin 9.89 2 0.0071
## STENOSIS 2.56 1 0.1099
## IMT 8.73 1 0.0031
## TOTAL 314.86 17 <.0001
summary(COXPH.FULL.AREGIMPUTED_1)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.422220 0.068568 0.2878300 0.556610
## Hazard Ratio 52.00 68.00 16.00 1.525300 NA 1.3335000 1.744800
## BMI 24.11 28.73 4.62 -0.114360 0.065359 -0.2424600 0.013741
## Hazard Ratio 24.11 28.73 4.62 0.891940 NA 0.7846900 1.013800
## SYSTH 127.00 157.00 30.00 0.032049 0.065222 -0.0957840 0.159880
## Hazard Ratio 127.00 157.00 30.00 1.032600 NA 0.9086600 1.173400
## HDL 0.96 1.42 0.46 -0.173710 0.073314 -0.3174000 -0.030015
## Hazard Ratio 0.96 1.42 0.46 0.840540 NA 0.7280400 0.970430
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.327400 0.223150 0.8900700 1.764800
## Hazard Ratio 1.00 5.00 4.00 3.771400 NA 2.4353000 5.840500
## HOMOC 10.50 16.20 5.70 0.005793 0.048361 -0.0889930 0.100580
## Hazard Ratio 10.50 16.20 5.70 1.005800 NA 0.9148500 1.105800
## CREAT 78.00 101.00 23.00 0.155040 0.037857 0.0808410 0.229240
## Hazard Ratio 78.00 101.00 23.00 1.167700 NA 1.0842000 1.257600
## IMT 0.75 1.07 0.32 0.168820 0.057133 0.0568450 0.280800
## Hazard Ratio 0.75 1.07 0.32 1.183900 NA 1.0585000 1.324200
## SEX - 2:1 1.00 2.00 NA -0.053230 0.135340 -0.3184900 0.212030
## Hazard Ratio 1.00 2.00 NA 0.948160 NA 0.7272400 1.236200
## SMOKING - 1:2 2.00 1.00 NA -0.183620 0.144760 -0.4673500 0.100120
## Hazard Ratio 2.00 1.00 NA 0.832250 NA 0.6266600 1.105300
## SMOKING - 3:2 2.00 3.00 NA 0.066860 0.200970 -0.3270300 0.460750
## Hazard Ratio 2.00 3.00 NA 1.069100 NA 0.7210600 1.585300
## alcohol - 1:3 3.00 1.00 NA 0.126340 0.120810 -0.1104500 0.363130
## Hazard Ratio 3.00 1.00 NA 1.134700 NA 0.8954300 1.437800
## alcohol - 2:3 3.00 2.00 NA -0.029509 0.147220 -0.3180500 0.259030
## Hazard Ratio 3.00 2.00 NA 0.970920 NA 0.7275700 1.295700
## DIABETES - 1:0 1.00 2.00 NA 0.208900 0.109740 -0.0061847 0.423990
## Hazard Ratio 1.00 2.00 NA 1.232300 NA 0.9938300 1.528000
## albumin - 2:1 1.00 2.00 NA 0.264540 0.117310 0.0346040 0.494470
## Hazard Ratio 1.00 2.00 NA 1.302800 NA 1.0352000 1.639600
## albumin - 3:1 1.00 3.00 NA 0.562210 0.205920 0.1586100 0.965820
## Hazard Ratio 1.00 3.00 NA 1.754600 NA 1.1719000 2.626900
## STENOSIS - 1:0 1.00 2.00 NA 0.170850 0.106860 -0.0385980 0.380290
## Hazard Ratio 1.00 2.00 NA 1.186300 NA 0.9621400 1.462700
vif(COXPH.FULL.AREGIMPUTED_1)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.299339 1.278601 1.543592 1.412798
## alcohol=2 alcohol=3 BMI SYSTH
## 1.422216 1.562523 1.108005 1.152175
## HDL DIABETES=1 SUMSCORE_5LEVELS HOMOC
## 1.209756 1.121312 1.156664 1.473997
## CREAT albumin=2 albumin=3 STENOSIS=1
## 1.847485 1.181861 1.539938 1.175423
## IMT
## 1.303815
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT, data = SMART.AREGIMPUTED_1, x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 276.30 R2 0.082
## Events 460 d.f. 17 Dxy 0.392
## Center 3.1178 Pr(> chi2) 0.0000 g 0.748
## Score chi2 347.73 gr 2.114
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0013 0.0002 6.16 <0.0001
## SEX=2 -0.0532 0.1353 -0.39 0.6941
## SMOKING=2 0.1836 0.1448 1.27 0.2047
## SMOKING=3 0.2505 0.2345 1.07 0.2855
## alcohol=2 -0.1559 0.1663 -0.94 0.3488
## alcohol=3 -0.1263 0.1208 -1.05 0.2957
## BMI -0.0248 0.0141 -1.75 0.0802
## SYSTH 0.0011 0.0022 0.49 0.6232
## HDL -0.3776 0.1594 -2.37 0.0178
## DIABETES=1 0.2089 0.1097 1.90 0.0570
## SUMSCORE_5LEVELS 0.3319 0.0558 5.95 <0.0001
## HOMOC 0.0010 0.0085 0.12 0.9047
## CREAT 0.6000 0.1465 4.10 <0.0001
## albumin=2 0.2645 0.1173 2.25 0.0241
## albumin=3 0.5622 0.2059 2.73 0.0063
## STENOSIS=1 0.1708 0.1069 1.60 0.1099
## IMT 0.5276 0.1785 2.95 0.0031
##
##################################
# Formulating the FULL
# Cox Proportional Hazards Model
# Using the combined complete and
# 2ND imputation results from AREG
##################################
SMART.AREGIMPUTED_2$EVENT <- as.numeric(SMART.AREGIMPUTED_2$EVENT)
SMART.AREGIMPUTED_2$SMOKING <- as.factor(SMART.AREGIMPUTED_2$SMOKING)
SMART.AREGIMPUTED_2$alcohol <- as.factor(SMART.AREGIMPUTED_2$alcohol)
SMART.AREGIMPUTED_2$albumin <- as.factor(SMART.AREGIMPUTED_2$albumin)
dd <- datadist(SMART.AREGIMPUTED_2)
options(datadist="dd")
##################################
# FULL COMPLETE
##################################
COXPH.FULL.COMPLETE.AREGIMPUTED_2 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
SYSTBP +
DIASTH +
DIASTBP +
WEIGHT +
LENGTH +
CHOL +
LDL +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT +
TRIG +
GLUT +
packyrs,
data = SMART.AREGIMPUTED_2,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.COMPLETE.AREGIMPUTED_2)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 35.47 1 <.0001
## SEX 0.46 1 0.4990
## SMOKING 0.06 2 0.9682
## alcohol 1.70 2 0.4283
## BMI 0.75 1 0.3850
## SYSTH 1.60 1 0.2055
## SYSTBP 3.89 1 0.0485
## DIASTH 0.04 1 0.8409
## DIASTBP 1.88 1 0.1708
## WEIGHT 1.34 1 0.2479
## LENGTH 0.69 1 0.4045
## CHOL 0.08 1 0.7736
## LDL 0.12 1 0.7307
## HDL 0.01 1 0.9305
## DIABETES 0.09 1 0.7655
## SUMSCORE_5LEVELS 36.02 1 <.0001
## HOMOC 0.09 1 0.7672
## CREAT 15.96 1 0.0001
## albumin 11.13 2 0.0038
## STENOSIS 2.17 1 0.1411
## IMT 10.54 1 0.0012
## TRIG 0.09 1 0.7673
## GLUT 3.16 1 0.0753
## packyrs 5.60 1 0.0180
## TOTAL 332.03 27 <.0001
summary(COXPH.FULL.COMPLETE.AREGIMPUTED_2)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.427070 0.071709 0.28652000 0.5676200
## Hazard Ratio 52.00 68.00 16.00 1.532800 NA 1.33180000 1.7641000
## BMI 24.11 28.73 4.62 0.430730 0.495820 -0.54105000 1.4025000
## Hazard Ratio 24.11 28.73 4.62 1.538400 NA 0.58214000 4.0654000
## SYSTH 127.00 157.00 30.00 0.151300 0.119500 -0.08291300 0.3855200
## Hazard Ratio 127.00 157.00 30.00 1.163300 NA 0.92043000 1.4704000
## SYSTBP 126.00 153.00 27.00 -0.223730 0.113390 -0.44597000 -0.0014791
## Hazard Ratio 126.00 153.00 27.00 0.799530 NA 0.64020000 0.9985200
## DIASTH 74.00 90.00 16.00 -0.022334 0.111270 -0.24041000 0.1957500
## Hazard Ratio 74.00 90.00 16.00 0.977910 NA 0.78630000 1.2162000
## DIASTBP 73.00 86.00 13.00 0.128540 0.093857 -0.05542000 0.3124900
## Hazard Ratio 73.00 86.00 13.00 1.137200 NA 0.94609000 1.3668000
## WEIGHT 72.00 89.00 17.00 -0.704430 0.609600 -1.89920000 0.4903500
## Hazard Ratio 72.00 89.00 17.00 0.494390 NA 0.14968000 1.6329000
## LENGTH 1.68 1.80 0.12 0.336580 0.403770 -0.45478000 1.1279000
## Hazard Ratio 1.68 1.80 0.12 1.400200 NA 0.63458000 3.0893000
## CHOL 4.40 5.90 1.50 -0.422550 1.468700 -3.30110000 2.4560000
## Hazard Ratio 4.40 5.90 1.50 0.655370 NA 0.03684200 11.6580000
## LDL 2.37 3.83 1.46 0.495510 1.439800 -2.32650000 3.3175000
## Hazard Ratio 2.37 3.83 1.46 1.641300 NA 0.09763400 27.5930000
## HDL 0.96 1.42 0.46 -0.039806 0.456530 -0.93459000 0.8549800
## Hazard Ratio 0.96 1.42 0.46 0.960980 NA 0.39275000 2.3513000
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.357300 0.226150 0.91409000 1.8006000
## Hazard Ratio 1.00 5.00 4.00 3.885900 NA 2.49450000 6.0533000
## HOMOC 10.50 16.00 5.50 0.014223 0.048052 -0.07995600 0.1084000
## Hazard Ratio 10.50 16.00 5.50 1.014300 NA 0.92316000 1.1145000
## CREAT 78.00 101.00 23.00 0.155110 0.038821 0.07902000 0.2312000
## Hazard Ratio 78.00 101.00 23.00 1.167800 NA 1.08220000 1.2601000
## IMT 0.75 1.07 0.32 0.188340 0.058019 0.07462800 0.3020600
## Hazard Ratio 0.75 1.07 0.32 1.207200 NA 1.07750000 1.3526000
## TRIG 1.12 2.23 1.11 0.142450 0.481340 -0.80096000 1.0859000
## Hazard Ratio 1.12 2.23 1.11 1.153100 NA 0.44890000 2.9620000
## GLUT 5.30 6.50 1.20 0.061953 0.034827 -0.00630670 0.1302100
## Hazard Ratio 5.30 6.50 1.20 1.063900 NA 0.99371000 1.1391000
## packyrs 5.90 34.20 28.30 0.165940 0.070146 0.02845400 0.3034200
## Hazard Ratio 5.90 34.20 28.30 1.180500 NA 1.02890000 1.3545000
## SEX - 2:1 1.00 2.00 NA -0.109690 0.162250 -0.42770000 0.2083200
## Hazard Ratio 1.00 2.00 NA 0.896110 NA 0.65201000 1.2316000
## SMOKING - 1:2 2.00 1.00 NA -0.017550 0.161910 -0.33488000 0.2997800
## Hazard Ratio 2.00 1.00 NA 0.982600 NA 0.71542000 1.3496000
## SMOKING - 3:2 2.00 3.00 NA 0.043922 0.201980 -0.35195000 0.4397900
## Hazard Ratio 2.00 3.00 NA 1.044900 NA 0.70332000 1.5524000
## alcohol - 1:3 3.00 1.00 NA 0.147610 0.121350 -0.09023100 0.3854400
## Hazard Ratio 3.00 1.00 NA 1.159100 NA 0.91372000 1.4703000
## alcohol - 2:3 3.00 2.00 NA -0.024662 0.148250 -0.31522000 0.2658900
## Hazard Ratio 3.00 2.00 NA 0.975640 NA 0.72963000 1.3046000
## DIABETES - 1:0 1.00 2.00 NA 0.046684 0.156520 -0.26009000 0.3534600
## Hazard Ratio 1.00 2.00 NA 1.047800 NA 0.77098000 1.4240000
## albumin - 2:1 1.00 2.00 NA 0.234650 0.119250 0.00093568 0.4683700
## Hazard Ratio 1.00 2.00 NA 1.264500 NA 1.00090000 1.5974000
## albumin - 3:1 1.00 3.00 NA 0.637920 0.202230 0.24155000 1.0343000
## Hazard Ratio 1.00 3.00 NA 1.892500 NA 1.27320000 2.8131000
## STENOSIS - 1:0 1.00 2.00 NA 0.159590 0.108420 -0.05291900 0.3721000
## Hazard Ratio 1.00 2.00 NA 1.173000 NA 0.94846000 1.4508000
vif(COXPH.FULL.COMPLETE.AREGIMPUTED_2)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.415309 1.837522 1.930927 1.547808
## alcohol=2 alcohol=3 BMI SYSTH
## 1.431119 1.572093 64.453293 3.876986
## SYSTBP DIASTH DIASTBP WEIGHT
## 3.362049 3.035763 2.601137 90.131708
## LENGTH CHOL LDL HDL
## 35.159350 502.529866 449.417395 46.213107
## DIABETES=1 SUMSCORE_5LEVELS HOMOC CREAT
## 2.271060 1.170919 1.542203 1.941807
## albumin=2 albumin=3 STENOSIS=1 IMT
## 1.184876 1.614102 1.209187 1.346155
## TRIG GLUT packyrs
## 119.680408 2.177683 1.362550
COXPH.FULL.COMPLETE.AREGIMPUTED_2
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + SYSTBP + DIASTH +
## DIASTBP + WEIGHT + LENGTH + CHOL + LDL + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT + TRIG + GLUT + packyrs, data = SMART.AREGIMPUTED_2,
## x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 298.32 R2 0.089
## Events 460 d.f. 27 Dxy 0.397
## Center 8.4099 Pr(> chi2) 0.0000 g 0.805
## Score chi2 372.48 gr 2.237
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0013 0.0002 5.96 <0.0001
## SEX=2 -0.1097 0.1623 -0.68 0.4990
## SMOKING=2 0.0175 0.1619 0.11 0.9137
## SMOKING=3 0.0615 0.2454 0.25 0.8022
## alcohol=2 -0.1723 0.1681 -1.02 0.3054
## alcohol=3 -0.1476 0.1213 -1.22 0.2238
## BMI 0.0932 0.1073 0.87 0.3850
## SYSTH 0.0050 0.0040 1.27 0.2055
## SYSTBP -0.0083 0.0042 -1.97 0.0485
## DIASTH -0.0014 0.0070 -0.20 0.8409
## DIASTBP 0.0099 0.0072 1.37 0.1708
## WEIGHT -0.0414 0.0359 -1.16 0.2479
## LENGTH 2.8049 3.3647 0.83 0.4045
## CHOL -0.2817 0.9791 -0.29 0.7736
## LDL 0.3394 0.9862 0.34 0.7307
## HDL -0.0865 0.9925 -0.09 0.9305
## DIABETES=1 0.0467 0.1565 0.30 0.7655
## SUMSCORE_5LEVELS 0.3393 0.0565 6.00 <0.0001
## HOMOC 0.0026 0.0087 0.30 0.7672
## CREAT 0.6002 0.1502 4.00 <0.0001
## albumin=2 0.2347 0.1192 1.97 0.0491
## albumin=3 0.6379 0.2022 3.15 0.0016
## STENOSIS=1 0.1596 0.1084 1.47 0.1411
## IMT 0.5886 0.1813 3.25 0.0012
## TRIG 0.1283 0.4336 0.30 0.7673
## GLUT 0.0516 0.0290 1.78 0.0753
## packyrs 0.0059 0.0025 2.37 0.0180
##
##################################
# FULL
# After removing variables which are:
# High multicollinearity contributors
# Non-standard risk factors
# Minimal predictors of survival outcome based from initial exploration
# Minimal predictors of survival outcome based from domain knowledge and literature
##################################
COXPH.FULL.AREGIMPUTED_2 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT,
data = SMART.AREGIMPUTED_2,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.AREGIMPUTED_2)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 36.20 1 <.0001
## SEX 0.15 1 0.6996
## SMOKING 1.81 2 0.4040
## alcohol 1.25 2 0.5347
## BMI 2.77 1 0.0959
## SYSTH 1.01 1 0.3157
## HDL 5.80 1 0.0161
## DIABETES 2.84 1 0.0919
## SUMSCORE_5LEVELS 35.74 1 <.0001
## HOMOC 0.18 1 0.6730
## CREAT 14.49 1 0.0001
## albumin 11.33 2 0.0035
## STENOSIS 2.63 1 0.1046
## IMT 9.41 1 0.0022
## TOTAL 318.65 17 <.0001
summary(COXPH.FULL.AREGIMPUTED_2)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.412890 0.068624 0.2783900 0.547400
## Hazard Ratio 52.00 68.00 16.00 1.511200 NA 1.3210000 1.728700
## BMI 24.11 28.73 4.62 -0.109170 0.065571 -0.2376900 0.019344
## Hazard Ratio 24.11 28.73 4.62 0.896580 NA 0.7884500 1.019500
## SYSTH 127.00 157.00 30.00 0.066168 0.065951 -0.0630930 0.195430
## Hazard Ratio 127.00 157.00 30.00 1.068400 NA 0.9388600 1.215800
## HDL 0.96 1.42 0.46 -0.176910 0.073475 -0.3209200 -0.032900
## Hazard Ratio 0.96 1.42 0.46 0.837860 NA 0.7254800 0.967640
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.333000 0.222970 0.8959500 1.770000
## Hazard Ratio 1.00 5.00 4.00 3.792300 NA 2.4496000 5.870800
## HOMOC 10.50 16.00 5.50 0.020056 0.047525 -0.0730920 0.113200
## Hazard Ratio 10.50 16.00 5.50 1.020300 NA 0.9295200 1.119900
## CREAT 78.00 101.00 23.00 0.144220 0.037890 0.0699530 0.218480
## Hazard Ratio 78.00 101.00 23.00 1.155100 NA 1.0725000 1.244200
## IMT 0.75 1.07 0.32 0.174920 0.057034 0.0631390 0.286710
## Hazard Ratio 0.75 1.07 0.32 1.191200 NA 1.0652000 1.332000
## SEX - 2:1 1.00 2.00 NA -0.052169 0.135210 -0.3171800 0.212840
## Hazard Ratio 1.00 2.00 NA 0.949170 NA 0.7282000 1.237200
## SMOKING - 1:2 2.00 1.00 NA -0.184270 0.144830 -0.4681400 0.099591
## Hazard Ratio 2.00 1.00 NA 0.831710 NA 0.6261700 1.104700
## SMOKING - 3:2 2.00 3.00 NA 0.060750 0.201060 -0.3333200 0.454820
## Hazard Ratio 2.00 3.00 NA 1.062600 NA 0.7165400 1.575900
## alcohol - 1:3 3.00 1.00 NA 0.119670 0.120890 -0.1172600 0.356600
## Hazard Ratio 3.00 1.00 NA 1.127100 NA 0.8893500 1.428500
## alcohol - 2:3 3.00 2.00 NA -0.040309 0.147650 -0.3297000 0.249080
## Hazard Ratio 3.00 2.00 NA 0.960490 NA 0.7191400 1.282900
## DIABETES - 1:0 1.00 2.00 NA 0.185690 0.110160 -0.0302130 0.401600
## Hazard Ratio 1.00 2.00 NA 1.204100 NA 0.9702400 1.494200
## albumin - 2:1 1.00 2.00 NA 0.230480 0.118490 -0.0017567 0.462710
## Hazard Ratio 1.00 2.00 NA 1.259200 NA 0.9982400 1.588400
## albumin - 3:1 1.00 3.00 NA 0.636100 0.199770 0.2445500 1.027700
## Hazard Ratio 1.00 3.00 NA 1.889100 NA 1.2771000 2.794500
## STENOSIS - 1:0 1.00 2.00 NA 0.174090 0.107260 -0.0361370 0.384320
## Hazard Ratio 1.00 2.00 NA 1.190200 NA 0.9645100 1.468600
vif(COXPH.FULL.AREGIMPUTED_2)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.299593 1.276089 1.544960 1.418226
## alcohol=2 alcohol=3 BMI SYSTH
## 1.417444 1.560499 1.109009 1.190620
## HDL DIABETES=1 SUMSCORE_5LEVELS HOMOC
## 1.209404 1.124695 1.158816 1.507124
## CREAT albumin=2 albumin=3 STENOSIS=1
## 1.869956 1.170582 1.576933 1.182581
## IMT
## 1.309736
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT, data = SMART.AREGIMPUTED_2, x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 280.67 R2 0.084
## Events 460 d.f. 17 Dxy 0.393
## Center 3.1607 Pr(> chi2) 0.0000 g 0.755
## Score chi2 355.08 gr 2.127
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0013 0.0002 6.02 <0.0001
## SEX=2 -0.0522 0.1352 -0.39 0.6996
## SMOKING=2 0.1843 0.1448 1.27 0.2033
## SMOKING=3 0.2450 0.2349 1.04 0.2969
## alcohol=2 -0.1600 0.1673 -0.96 0.3389
## alcohol=3 -0.1197 0.1209 -0.99 0.3222
## BMI -0.0236 0.0142 -1.66 0.0959
## SYSTH 0.0022 0.0022 1.00 0.3157
## HDL -0.3846 0.1597 -2.41 0.0161
## DIABETES=1 0.1857 0.1102 1.69 0.0919
## SUMSCORE_5LEVELS 0.3332 0.0557 5.98 <0.0001
## HOMOC 0.0036 0.0086 0.42 0.6730
## CREAT 0.5581 0.1466 3.81 0.0001
## albumin=2 0.2305 0.1185 1.95 0.0518
## albumin=3 0.6361 0.1998 3.18 0.0015
## STENOSIS=1 0.1741 0.1073 1.62 0.1046
## IMT 0.5466 0.1782 3.07 0.0022
##
##################################
# Formulating the FULL
# Cox Proportional Hazards Model
# Using the combined complete and
# 3RD imputation results from AREG
##################################
SMART.AREGIMPUTED_3$EVENT <- as.numeric(SMART.AREGIMPUTED_3$EVENT)
SMART.AREGIMPUTED_3$SMOKING <- as.factor(SMART.AREGIMPUTED_3$SMOKING)
SMART.AREGIMPUTED_3$alcohol <- as.factor(SMART.AREGIMPUTED_3$alcohol)
SMART.AREGIMPUTED_3$albumin <- as.factor(SMART.AREGIMPUTED_3$albumin)
dd <- datadist(SMART.AREGIMPUTED_3)
options(datadist="dd")
##################################
# FULL COMPLETE
##################################
COXPH.FULL.COMPLETE.AREGIMPUTED_3 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
SYSTBP +
DIASTH +
DIASTBP +
WEIGHT +
LENGTH +
CHOL +
LDL +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT +
TRIG +
GLUT +
packyrs,
data = SMART.AREGIMPUTED_3,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.COMPLETE.AREGIMPUTED_3)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 36.90 1 <.0001
## SEX 0.75 1 0.3869
## SMOKING 0.35 2 0.8388
## alcohol 1.46 2 0.4817
## BMI 0.68 1 0.4083
## SYSTH 0.15 1 0.6983
## SYSTBP 0.44 1 0.5070
## DIASTH 0.66 1 0.4168
## DIASTBP 0.19 1 0.6599
## WEIGHT 1.27 1 0.2590
## LENGTH 0.59 1 0.4439
## CHOL 0.55 1 0.4581
## LDL 0.65 1 0.4218
## HDL 0.09 1 0.7588
## DIABETES 0.19 1 0.6617
## SUMSCORE_5LEVELS 34.76 1 <.0001
## HOMOC 0.06 1 0.8014
## CREAT 17.68 1 <.0001
## albumin 7.20 2 0.0274
## STENOSIS 3.01 1 0.0825
## IMT 7.65 1 0.0057
## TRIG 0.56 1 0.4530
## GLUT 2.49 1 0.1143
## packyrs 5.86 1 0.0155
## TOTAL 320.20 27 <.0001
summary(COXPH.FULL.COMPLETE.AREGIMPUTED_3)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.435920 0.071766 0.295260 0.57658
## Hazard Ratio 52.00 68.00 16.00 1.546400 NA 1.343500 1.77990
## BMI 24.11 28.73 4.62 0.406580 0.491680 -0.557090 1.37030
## Hazard Ratio 24.11 28.73 4.62 1.501700 NA 0.572870 3.93640
## SYSTH 127.00 156.00 29.00 0.045244 0.116720 -0.183520 0.27401
## Hazard Ratio 127.00 156.00 29.00 1.046300 NA 0.832330 1.31520
## SYSTBP 126.00 153.00 27.00 -0.074237 0.111870 -0.293510 0.14503
## Hazard Ratio 126.00 153.00 27.00 0.928450 NA 0.745640 1.15610
## DIASTH 74.00 90.00 16.00 0.088751 0.109310 -0.125490 0.30299
## Hazard Ratio 74.00 90.00 16.00 1.092800 NA 0.882060 1.35390
## DIASTBP 73.00 86.00 13.00 0.041562 0.094439 -0.143530 0.22666
## Hazard Ratio 73.00 86.00 13.00 1.042400 NA 0.866290 1.25440
## WEIGHT 72.00 89.00 17.00 -0.681140 0.603430 -1.863800 0.50155
## Hazard Ratio 72.00 89.00 17.00 0.506040 NA 0.155080 1.65130
## LENGTH 1.68 1.80 0.12 0.306690 0.400570 -0.478400 1.09180
## Hazard Ratio 1.68 1.80 0.12 1.358900 NA 0.619770 2.97960
## CHOL 4.40 5.90 1.50 -0.991960 1.336800 -3.612000 1.62810
## Hazard Ratio 4.40 5.90 1.50 0.370850 NA 0.026997 5.09420
## LDL 2.37 3.83 1.46 1.054400 1.312500 -1.518100 3.62690
## Hazard Ratio 2.37 3.83 1.46 2.870100 NA 0.219120 37.59400
## HDL 0.96 1.42 0.46 0.127730 0.416070 -0.687750 0.94322
## Hazard Ratio 0.96 1.42 0.46 1.136200 NA 0.502700 2.56820
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.337900 0.226920 0.893180 1.78270
## Hazard Ratio 1.00 5.00 4.00 3.811200 NA 2.442900 5.94580
## HOMOC 10.50 16.00 5.50 0.011972 0.047590 -0.081302 0.10525
## Hazard Ratio 10.50 16.00 5.50 1.012000 NA 0.921920 1.11100
## CREAT 78.00 101.00 23.00 0.162680 0.038689 0.086847 0.23850
## Hazard Ratio 78.00 101.00 23.00 1.176700 NA 1.090700 1.26930
## IMT 0.75 1.07 0.32 0.160880 0.058184 0.046842 0.27492
## Hazard Ratio 0.75 1.07 0.32 1.174500 NA 1.048000 1.31640
## TRIG 1.13 2.23 1.10 0.327860 0.436890 -0.528420 1.18410
## Hazard Ratio 1.13 2.23 1.10 1.388000 NA 0.589540 3.26790
## GLUT 5.30 6.50 1.20 0.055650 0.035244 -0.013426 0.12473
## Hazard Ratio 5.30 6.50 1.20 1.057200 NA 0.986660 1.13280
## packyrs 5.90 34.20 28.30 0.172410 0.071214 0.032828 0.31198
## Hazard Ratio 5.90 34.20 28.30 1.188200 NA 1.033400 1.36610
## SEX - 2:1 1.00 2.00 NA -0.141230 0.163230 -0.461150 0.17869
## Hazard Ratio 1.00 2.00 NA 0.868290 NA 0.630560 1.19570
## SMOKING - 1:2 2.00 1.00 NA -0.024508 0.161910 -0.341850 0.29283
## Hazard Ratio 2.00 1.00 NA 0.975790 NA 0.710460 1.34020
## SMOKING - 3:2 2.00 3.00 NA 0.110050 0.198790 -0.279580 0.49967
## Hazard Ratio 2.00 3.00 NA 1.116300 NA 0.756100 1.64820
## alcohol - 1:3 3.00 1.00 NA 0.133760 0.120890 -0.103180 0.37071
## Hazard Ratio 3.00 1.00 NA 1.143100 NA 0.901960 1.44880
## alcohol - 2:3 3.00 2.00 NA -0.029839 0.147830 -0.319570 0.25990
## Hazard Ratio 3.00 2.00 NA 0.970600 NA 0.726460 1.29680
## DIABETES - 1:0 1.00 2.00 NA 0.068163 0.155790 -0.237180 0.37351
## Hazard Ratio 1.00 2.00 NA 1.070500 NA 0.788850 1.45280
## albumin - 2:1 1.00 2.00 NA 0.188130 0.119630 -0.046335 0.42259
## Hazard Ratio 1.00 2.00 NA 1.207000 NA 0.954720 1.52590
## albumin - 3:1 1.00 3.00 NA 0.532280 0.209570 0.121520 0.94303
## Hazard Ratio 1.00 3.00 NA 1.702800 NA 1.129200 2.56770
## STENOSIS - 1:0 1.00 2.00 NA 0.187470 0.107970 -0.024146 0.39908
## Hazard Ratio 1.00 2.00 NA 1.206200 NA 0.976140 1.49050
vif(COXPH.FULL.COMPLETE.AREGIMPUTED_3)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.420179 1.859980 1.945645 1.558441
## alcohol=2 alcohol=3 BMI SYSTH
## 1.426484 1.568374 63.258403 3.781325
## SYSTBP DIASTH DIASTBP WEIGHT
## 3.316955 3.055128 2.581655 88.682439
## LENGTH CHOL LDL HDL
## 34.592113 414.210018 374.656141 38.295659
## DIABETES=1 SUMSCORE_5LEVELS HOMOC CREAT
## 2.249795 1.180905 1.455960 1.929293
## albumin=2 albumin=3 STENOSIS=1 IMT
## 1.184010 1.626924 1.203558 1.339445
## TRIG GLUT packyrs
## 99.397839 2.164191 1.362993
COXPH.FULL.COMPLETE.AREGIMPUTED_3
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + SYSTBP + DIASTH +
## DIASTBP + WEIGHT + LENGTH + CHOL + LDL + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT + TRIG + GLUT + packyrs, data = SMART.AREGIMPUTED_3,
## x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 289.89 R2 0.086
## Events 460 d.f. 27 Dxy 0.393
## Center 8.2833 Pr(> chi2) 0.0000 g 0.804
## Score chi2 357.27 gr 2.234
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0014 0.0002 6.07 <0.0001
## SEX=2 -0.1412 0.1632 -0.87 0.3869
## SMOKING=2 0.0245 0.1619 0.15 0.8797
## SMOKING=3 0.1346 0.2424 0.56 0.5789
## alcohol=2 -0.1636 0.1666 -0.98 0.3260
## alcohol=3 -0.1338 0.1209 -1.11 0.2685
## BMI 0.0880 0.1064 0.83 0.4083
## SYSTH 0.0016 0.0040 0.39 0.6983
## SYSTBP -0.0027 0.0041 -0.66 0.5070
## DIASTH 0.0055 0.0068 0.81 0.4168
## DIASTBP 0.0032 0.0073 0.44 0.6599
## WEIGHT -0.0401 0.0355 -1.13 0.2590
## LENGTH 2.5558 3.3380 0.77 0.4439
## CHOL -0.6613 0.8912 -0.74 0.4581
## LDL 0.7222 0.8990 0.80 0.4218
## HDL 0.2777 0.9045 0.31 0.7588
## DIABETES=1 0.0682 0.1558 0.44 0.6617
## SUMSCORE_5LEVELS 0.3345 0.0567 5.90 <0.0001
## HOMOC 0.0022 0.0087 0.25 0.8014
## CREAT 0.6295 0.1497 4.20 <0.0001
## albumin=2 0.1881 0.1196 1.57 0.1158
## albumin=3 0.5323 0.2096 2.54 0.0111
## STENOSIS=1 0.1875 0.1080 1.74 0.0825
## IMT 0.5027 0.1818 2.77 0.0057
## TRIG 0.2981 0.3972 0.75 0.4530
## GLUT 0.0464 0.0294 1.58 0.1143
## packyrs 0.0061 0.0025 2.42 0.0155
##
##################################
# FULL
# After removing variables which are:
# High multicollinearity contributors
# Non-standard risk factors
# Minimal predictors of survival outcome based from initial exploration
# Minimal predictors of survival outcome based from domain knowledge and literature
##################################
COXPH.FULL.AREGIMPUTED_3 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT,
data = SMART.AREGIMPUTED_3,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.AREGIMPUTED_3)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 37.94 1 <.0001
## SEX 0.12 1 0.7269
## SMOKING 2.25 2 0.3250
## alcohol 1.11 2 0.5753
## BMI 2.88 1 0.0899
## SYSTH 1.69 1 0.1939
## HDL 6.08 1 0.0137
## DIABETES 3.15 1 0.0761
## SUMSCORE_5LEVELS 36.05 1 <.0001
## HOMOC 0.24 1 0.6207
## CREAT 15.67 1 0.0001
## albumin 7.32 2 0.0257
## STENOSIS 3.43 1 0.0642
## IMT 6.57 1 0.0103
## TOTAL 311.06 17 <.0001
summary(COXPH.FULL.AREGIMPUTED_3)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.421290 0.068396 0.287240 0.555340
## Hazard Ratio 52.00 68.00 16.00 1.523900 NA 1.332700 1.742500
## BMI 24.11 28.73 4.62 -0.111310 0.065642 -0.239960 0.017347
## Hazard Ratio 24.11 28.73 4.62 0.894660 NA 0.786660 1.017500
## SYSTH 127.00 156.00 29.00 0.083927 0.064609 -0.042704 0.210560
## Hazard Ratio 127.00 156.00 29.00 1.087500 NA 0.958200 1.234400
## HDL 0.96 1.42 0.46 -0.181520 0.073610 -0.325790 -0.037244
## Hazard Ratio 0.96 1.42 0.46 0.834000 NA 0.721960 0.963440
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.338700 0.222960 0.901750 1.775700
## Hazard Ratio 1.00 5.00 4.00 3.814200 NA 2.463900 5.904600
## HOMOC 10.50 16.00 5.50 0.023263 0.047004 -0.068862 0.115390
## Hazard Ratio 10.50 16.00 5.50 1.023500 NA 0.933460 1.122300
## CREAT 78.00 101.00 23.00 0.150200 0.037942 0.075835 0.224570
## Hazard Ratio 78.00 101.00 23.00 1.162100 NA 1.078800 1.251800
## IMT 0.75 1.07 0.32 0.146240 0.057032 0.034457 0.258020
## Hazard Ratio 0.75 1.07 0.32 1.157500 NA 1.035100 1.294400
## SEX - 2:1 1.00 2.00 NA -0.047213 0.135210 -0.312210 0.217790
## Hazard Ratio 1.00 2.00 NA 0.953880 NA 0.731830 1.243300
## SMOKING - 1:2 2.00 1.00 NA -0.193240 0.144660 -0.476770 0.090286
## Hazard Ratio 2.00 1.00 NA 0.824280 NA 0.620780 1.094500
## SMOKING - 3:2 2.00 3.00 NA 0.105120 0.197840 -0.282640 0.492880
## Hazard Ratio 2.00 3.00 NA 1.110800 NA 0.753790 1.637000
## alcohol - 1:3 3.00 1.00 NA 0.114520 0.120600 -0.121850 0.350880
## Hazard Ratio 3.00 1.00 NA 1.121300 NA 0.885280 1.420300
## alcohol - 2:3 3.00 2.00 NA -0.030120 0.147370 -0.318970 0.258730
## Hazard Ratio 3.00 2.00 NA 0.970330 NA 0.726900 1.295300
## DIABETES - 1:0 1.00 2.00 NA 0.195840 0.110430 -0.020590 0.412270
## Hazard Ratio 1.00 2.00 NA 1.216300 NA 0.979620 1.510200
## albumin - 2:1 1.00 2.00 NA 0.194770 0.118990 -0.038447 0.427990
## Hazard Ratio 1.00 2.00 NA 1.215000 NA 0.962280 1.534200
## albumin - 3:1 1.00 3.00 NA 0.525450 0.207680 0.118400 0.932500
## Hazard Ratio 1.00 3.00 NA 1.691200 NA 1.125700 2.540900
## STENOSIS - 1:0 1.00 2.00 NA 0.197860 0.106910 -0.011678 0.407410
## Hazard Ratio 1.00 2.00 NA 1.218800 NA 0.988390 1.502900
vif(COXPH.FULL.AREGIMPUTED_3)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.295338 1.276244 1.553076 1.428452
## alcohol=2 alcohol=3 BMI SYSTH
## 1.414689 1.560807 1.108995 1.175784
## HDL DIABETES=1 SUMSCORE_5LEVELS HOMOC
## 1.214632 1.130052 1.153692 1.418524
## CREAT albumin=2 albumin=3 STENOSIS=1
## 1.872846 1.172256 1.599649 1.179656
## IMT
## 1.303127
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT, data = SMART.AREGIMPUTED_3, x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 274.70 R2 0.082
## Events 460 d.f. 17 Dxy 0.391
## Center 3.2859 Pr(> chi2) 0.0000 g 0.751
## Score chi2 344.55 gr 2.119
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0013 0.0002 6.16 <0.0001
## SEX=2 -0.0472 0.1352 -0.35 0.7269
## SMOKING=2 0.1932 0.1447 1.34 0.1816
## SMOKING=3 0.2984 0.2320 1.29 0.1985
## alcohol=2 -0.1446 0.1659 -0.87 0.3833
## alcohol=3 -0.1145 0.1206 -0.95 0.3423
## BMI -0.0241 0.0142 -1.70 0.0899
## SYSTH 0.0029 0.0022 1.30 0.1939
## HDL -0.3946 0.1600 -2.47 0.0137
## DIABETES=1 0.1958 0.1104 1.77 0.0761
## SUMSCORE_5LEVELS 0.3347 0.0557 6.00 <0.0001
## HOMOC 0.0042 0.0085 0.49 0.6207
## CREAT 0.5812 0.1468 3.96 <0.0001
## albumin=2 0.1948 0.1190 1.64 0.1017
## albumin=3 0.5255 0.2077 2.53 0.0114
## STENOSIS=1 0.1979 0.1069 1.85 0.0642
## IMT 0.4570 0.1782 2.56 0.0103
##
##################################
# Formulating the FULL
# Cox Proportional Hazards Model
# Using the combined complete and
# 4TH imputation results from AREG
##################################
SMART.AREGIMPUTED_4$EVENT <- as.numeric(SMART.AREGIMPUTED_4$EVENT)
SMART.AREGIMPUTED_4$SMOKING <- as.factor(SMART.AREGIMPUTED_4$SMOKING)
SMART.AREGIMPUTED_4$alcohol <- as.factor(SMART.AREGIMPUTED_4$alcohol)
SMART.AREGIMPUTED_4$albumin <- as.factor(SMART.AREGIMPUTED_4$albumin)
dd <- datadist(SMART.AREGIMPUTED_4)
options(datadist="dd")
##################################
# FULL COMPLETE
##################################
COXPH.FULL.COMPLETE.AREGIMPUTED_4 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
SYSTBP +
DIASTH +
DIASTBP +
WEIGHT +
LENGTH +
CHOL +
LDL +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT +
TRIG +
GLUT +
packyrs,
data = SMART.AREGIMPUTED_4,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.COMPLETE.AREGIMPUTED_4)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 32.02 1 <.0001
## SEX 0.65 1 0.4189
## SMOKING 0.06 2 0.9706
## alcohol 1.76 2 0.4157
## BMI 1.03 1 0.3107
## SYSTH 0.14 1 0.7122
## SYSTBP 0.48 1 0.4866
## DIASTH 1.49 1 0.2221
## DIASTBP 0.01 1 0.9432
## WEIGHT 1.72 1 0.1892
## LENGTH 0.92 1 0.3388
## CHOL 0.00 1 0.9449
## LDL 0.00 1 0.9841
## HDL 0.17 1 0.6797
## DIABETES 0.19 1 0.6617
## SUMSCORE_5LEVELS 32.02 1 <.0001
## HOMOC 2.03 1 0.1541
## CREAT 16.44 1 0.0001
## albumin 8.32 2 0.0156
## STENOSIS 1.89 1 0.1693
## IMT 9.93 1 0.0016
## TRIG 0.01 1 0.9395
## GLUT 3.35 1 0.0673
## packyrs 5.40 1 0.0202
## TOTAL 326.89 27 <.0001
summary(COXPH.FULL.COMPLETE.AREGIMPUTED_4)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.4076500 0.072045 0.2664400 0.54885
## Hazard Ratio 52.00 68.00 16.00 1.5033000 NA 1.3053000 1.73130
## BMI 24.11 28.73 4.62 0.5012000 0.494450 -0.4679000 1.47030
## Hazard Ratio 24.11 28.73 4.62 1.6507000 NA 0.6263100 4.35060
## SYSTH 127.00 157.00 30.00 0.0448550 0.121590 -0.1934600 0.28317
## Hazard Ratio 127.00 157.00 30.00 1.0459000 NA 0.8241100 1.32730
## SYSTBP 126.00 152.00 26.00 -0.0768050 0.110390 -0.2931600 0.13955
## Hazard Ratio 126.00 152.00 26.00 0.9260700 NA 0.7459000 1.14980
## DIASTH 74.00 90.00 16.00 0.1377800 0.112850 -0.0833960 0.35895
## Hazard Ratio 74.00 90.00 16.00 1.1477000 NA 0.9199900 1.43180
## DIASTBP 73.00 86.00 13.00 0.0068640 0.096422 -0.1821200 0.19585
## Hazard Ratio 73.00 86.00 13.00 1.0069000 NA 0.8335000 1.21630
## WEIGHT 72.00 89.00 17.00 -0.7990600 0.608650 -1.9920000 0.39387
## Hazard Ratio 72.00 89.00 17.00 0.4497500 NA 0.1364200 1.48270
## LENGTH 1.68 1.80 0.12 0.3853400 0.402830 -0.4041900 1.17490
## Hazard Ratio 1.68 1.80 0.12 1.4701000 NA 0.6675200 3.23770
## CHOL 4.40 5.90 1.50 0.1124800 1.626600 -3.0756000 3.30060
## Hazard Ratio 4.40 5.90 1.50 1.1191000 NA 0.0461620 27.12800
## LDL 2.37 3.83 1.46 -0.0317260 1.590600 -3.1492000 3.08580
## Hazard Ratio 2.37 3.83 1.46 0.9687700 NA 0.0428860 21.88400
## HDL 0.96 1.42 0.46 -0.2087600 0.505560 -1.1996000 0.78212
## Hazard Ratio 0.96 1.42 0.46 0.8115900 NA 0.3013000 2.18610
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.2765000 0.225590 0.8343900 1.71870
## Hazard Ratio 1.00 5.00 4.00 3.5842000 NA 2.3034000 5.57720
## HOMOC 10.50 16.00 5.50 0.0641290 0.045001 -0.0240710 0.15233
## Hazard Ratio 10.50 16.00 5.50 1.0662000 NA 0.9762200 1.16450
## CREAT 78.00 101.00 23.00 0.1523000 0.037558 0.0786910 0.22591
## Hazard Ratio 78.00 101.00 23.00 1.1645000 NA 1.0819000 1.25350
## IMT 0.75 1.07 0.32 0.1836600 0.058280 0.0694360 0.29789
## Hazard Ratio 0.75 1.07 0.32 1.2016000 NA 1.0719000 1.34700
## TRIG 1.13 2.23 1.10 -0.0404980 0.533860 -1.0869000 1.00590
## Hazard Ratio 1.13 2.23 1.10 0.9603100 NA 0.3372800 2.73420
## GLUT 5.30 6.50 1.20 0.0641980 0.035088 -0.0045735 0.13297
## Hazard Ratio 5.30 6.50 1.20 1.0663000 NA 0.9954400 1.14220
## packyrs 5.90 34.20 28.30 0.1662400 0.071570 0.0259670 0.30652
## Hazard Ratio 5.90 34.20 28.30 1.1809000 NA 1.0263000 1.35870
## SEX - 2:1 1.00 2.00 NA -0.1310400 0.162110 -0.4487700 0.18668
## Hazard Ratio 1.00 2.00 NA 0.8771800 NA 0.6384200 1.20520
## SMOKING - 1:2 2.00 1.00 NA -0.0013686 0.161460 -0.3178100 0.31508
## Hazard Ratio 2.00 1.00 NA 0.9986300 NA 0.7277400 1.37040
## SMOKING - 3:2 2.00 3.00 NA 0.0488110 0.201850 -0.3468100 0.44443
## Hazard Ratio 2.00 3.00 NA 1.0500000 NA 0.7069400 1.55960
## alcohol - 1:3 3.00 1.00 NA 0.1445200 0.120930 -0.0925020 0.38154
## Hazard Ratio 3.00 1.00 NA 1.1555000 NA 0.9116500 1.46450
## alcohol - 2:3 3.00 2.00 NA -0.0393420 0.147710 -0.3288400 0.25016
## Hazard Ratio 3.00 2.00 NA 0.9614200 NA 0.7197600 1.28420
## DIABETES - 1:0 1.00 2.00 NA 0.0680540 0.155510 -0.2367400 0.37285
## Hazard Ratio 1.00 2.00 NA 1.0704000 NA 0.7892000 1.45190
## albumin - 2:1 1.00 2.00 NA 0.2732000 0.117180 0.0435270 0.50287
## Hazard Ratio 1.00 2.00 NA 1.3142000 NA 1.0445000 1.65350
## albumin - 3:1 1.00 3.00 NA 0.4784600 0.209270 0.0683080 0.88862
## Hazard Ratio 1.00 3.00 NA 1.6136000 NA 1.0707000 2.43180
## STENOSIS - 1:0 1.00 2.00 NA 0.1494800 0.108760 -0.0636870 0.36266
## Hazard Ratio 1.00 2.00 NA 1.1612000 NA 0.9383000 1.43710
vif(COXPH.FULL.COMPLETE.AREGIMPUTED_4)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.423801 1.834715 1.936069 1.535325
## alcohol=2 alcohol=3 BMI SYSTH
## 1.429097 1.569112 64.065892 3.937466
## SYSTBP DIASTH DIASTBP WEIGHT
## 3.435346 3.206930 2.673371 89.404506
## LENGTH CHOL LDL HDL
## 35.040767 611.492448 544.551054 56.706677
## DIABETES=1 SUMSCORE_5LEVELS HOMOC CREAT
## 2.251743 1.164305 1.432342 1.777291
## albumin=2 albumin=3 STENOSIS=1 IMT
## 1.178710 1.552418 1.212514 1.352500
## TRIG GLUT packyrs
## 149.510494 2.164995 1.379450
COXPH.FULL.COMPLETE.AREGIMPUTED_4
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + SYSTBP + DIASTH +
## DIASTBP + WEIGHT + LENGTH + CHOL + LDL + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT + TRIG + GLUT + packyrs, data = SMART.AREGIMPUTED_4,
## x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 296.57 R2 0.088
## Events 460 d.f. 27 Dxy 0.402
## Center 9.3809 Pr(> chi2) 0.0000 g 0.813
## Score chi2 363.32 gr 2.255
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0013 0.0002 5.66 <0.0001
## SEX=2 -0.1310 0.1621 -0.81 0.4189
## SMOKING=2 0.0014 0.1615 0.01 0.9932
## SMOKING=3 0.0502 0.2444 0.21 0.8373
## alcohol=2 -0.1839 0.1667 -1.10 0.2702
## alcohol=3 -0.1445 0.1209 -1.20 0.2321
## BMI 0.1085 0.1070 1.01 0.3107
## SYSTH 0.0015 0.0041 0.37 0.7122
## SYSTBP -0.0030 0.0042 -0.70 0.4866
## DIASTH 0.0086 0.0071 1.22 0.2221
## DIASTBP 0.0005 0.0074 0.07 0.9432
## WEIGHT -0.0470 0.0358 -1.31 0.1892
## LENGTH 3.2112 3.3569 0.96 0.3388
## CHOL 0.0750 1.0844 0.07 0.9449
## LDL -0.0217 1.0894 -0.02 0.9841
## HDL -0.4538 1.0990 -0.41 0.6797
## DIABETES=1 0.0681 0.1555 0.44 0.6617
## SUMSCORE_5LEVELS 0.3191 0.0564 5.66 <0.0001
## HOMOC 0.0117 0.0082 1.43 0.1541
## CREAT 0.5894 0.1453 4.06 <0.0001
## albumin=2 0.2732 0.1172 2.33 0.0197
## albumin=3 0.4785 0.2093 2.29 0.0222
## STENOSIS=1 0.1495 0.1088 1.37 0.1693
## IMT 0.5739 0.1821 3.15 0.0016
## TRIG -0.0368 0.4853 -0.08 0.9395
## GLUT 0.0535 0.0292 1.83 0.0673
## packyrs 0.0059 0.0025 2.32 0.0202
##
##################################
# FULL
# After removing variables which are:
# High multicollinearity contributors
# Non-standard risk factors
# Minimal predictors of survival outcome based from initial exploration
# Minimal predictors of survival outcome based from domain knowledge and literature
##################################
COXPH.FULL.AREGIMPUTED_4 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT,
data = SMART.AREGIMPUTED_4,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.AREGIMPUTED_4)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 31.66 1 <.0001
## SEX 0.08 1 0.7798
## SMOKING 1.53 2 0.4659
## alcohol 1.32 2 0.5159
## BMI 3.03 1 0.0816
## SYSTH 1.97 1 0.1606
## HDL 5.63 1 0.0177
## DIABETES 3.77 1 0.0521
## SUMSCORE_5LEVELS 33.70 1 <.0001
## HOMOC 3.03 1 0.0816
## CREAT 14.89 1 0.0001
## albumin 7.74 2 0.0208
## STENOSIS 2.04 1 0.1537
## IMT 8.53 1 0.0035
## TOTAL 315.74 17 <.0001
summary(COXPH.FULL.AREGIMPUTED_4)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.388080 0.068969 0.2529000 0.523250
## Hazard Ratio 52.00 68.00 16.00 1.474100 NA 1.2878000 1.687500
## BMI 24.11 28.73 4.62 -0.114050 0.065492 -0.2424100 0.014314
## Hazard Ratio 24.11 28.73 4.62 0.892210 NA 0.7847300 1.014400
## SYSTH 127.00 157.00 30.00 0.092473 0.065911 -0.0367100 0.221660
## Hazard Ratio 127.00 157.00 30.00 1.096900 NA 0.9639600 1.248100
## HDL 0.96 1.42 0.46 -0.174110 0.073384 -0.3179400 -0.030275
## Hazard Ratio 0.96 1.42 0.46 0.840210 NA 0.7276500 0.970180
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.289000 0.222030 0.8538400 1.724200
## Hazard Ratio 1.00 5.00 4.00 3.629200 NA 2.3487000 5.607900
## HOMOC 10.50 16.00 5.50 0.076810 0.044099 -0.0096231 0.163240
## Hazard Ratio 10.50 16.00 5.50 1.079800 NA 0.9904200 1.177300
## CREAT 78.00 101.00 23.00 0.143120 0.037091 0.0704260 0.215820
## Hazard Ratio 78.00 101.00 23.00 1.153900 NA 1.0730000 1.240900
## IMT 0.75 1.07 0.32 0.167110 0.057217 0.0549680 0.279250
## Hazard Ratio 0.75 1.07 0.32 1.181900 NA 1.0565000 1.322100
## SEX - 2:1 1.00 2.00 NA -0.037842 0.135330 -0.3030800 0.227390
## Hazard Ratio 1.00 2.00 NA 0.962860 NA 0.7385400 1.255300
## SMOKING - 1:2 2.00 1.00 NA -0.167830 0.143840 -0.4497600 0.114090
## Hazard Ratio 2.00 1.00 NA 0.845500 NA 0.6377800 1.120900
## SMOKING - 3:2 2.00 3.00 NA 0.056140 0.200990 -0.3377900 0.450070
## Hazard Ratio 2.00 3.00 NA 1.057700 NA 0.7133400 1.568400
## alcohol - 1:3 3.00 1.00 NA 0.126330 0.120170 -0.1092000 0.361860
## Hazard Ratio 3.00 1.00 NA 1.134700 NA 0.8965500 1.436000
## alcohol - 2:3 3.00 2.00 NA -0.029610 0.146650 -0.3170400 0.257820
## Hazard Ratio 3.00 2.00 NA 0.970820 NA 0.7283000 1.294100
## DIABETES - 1:0 1.00 2.00 NA 0.213620 0.109970 -0.0019123 0.429140
## Hazard Ratio 1.00 2.00 NA 1.238100 NA 0.9980900 1.535900
## albumin - 2:1 1.00 2.00 NA 0.273640 0.116500 0.0452980 0.501980
## Hazard Ratio 1.00 2.00 NA 1.314700 NA 1.0463000 1.652000
## albumin - 3:1 1.00 3.00 NA 0.431190 0.207600 0.0242960 0.838080
## Hazard Ratio 1.00 3.00 NA 1.539100 NA 1.0246000 2.311900
## STENOSIS - 1:0 1.00 2.00 NA 0.153770 0.107790 -0.0574970 0.365040
## Hazard Ratio 1.00 2.00 NA 1.166200 NA 0.9441200 1.440600
vif(COXPH.FULL.AREGIMPUTED_4)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.310056 1.278569 1.536609 1.410042
## alcohol=2 alcohol=3 BMI SYSTH
## 1.413500 1.549665 1.106940 1.173223
## HDL DIABETES=1 SUMSCORE_5LEVELS HOMOC
## 1.206997 1.125698 1.143414 1.378802
## CREAT albumin=2 albumin=3 STENOSIS=1
## 1.735913 1.165891 1.528349 1.190245
## IMT
## 1.315947
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT, data = SMART.AREGIMPUTED_4, x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 280.66 R2 0.084
## Events 460 d.f. 17 Dxy 0.402
## Center 3.3281 Pr(> chi2) 0.0000 g 0.762
## Score chi2 349.00 gr 2.141
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0012 0.0002 5.63 <0.0001
## SEX=2 -0.0378 0.1353 -0.28 0.7798
## SMOKING=2 0.1678 0.1438 1.17 0.2433
## SMOKING=3 0.2240 0.2342 0.96 0.3389
## alcohol=2 -0.1559 0.1658 -0.94 0.3470
## alcohol=3 -0.1263 0.1202 -1.05 0.2932
## BMI -0.0247 0.0142 -1.74 0.0816
## SYSTH 0.0031 0.0022 1.40 0.1606
## HDL -0.3785 0.1595 -2.37 0.0177
## DIABETES=1 0.2136 0.1100 1.94 0.0521
## SUMSCORE_5LEVELS 0.3223 0.0555 5.81 <0.0001
## HOMOC 0.0140 0.0080 1.74 0.0816
## CREAT 0.5539 0.1435 3.86 0.0001
## albumin=2 0.2736 0.1165 2.35 0.0188
## albumin=3 0.4312 0.2076 2.08 0.0378
## STENOSIS=1 0.1538 0.1078 1.43 0.1537
## IMT 0.5222 0.1788 2.92 0.0035
##
##################################
# Formulating the FULL
# Cox Proportional Hazards Model
# Using the combined complete and
# 5TH imputation results from AREG
##################################
SMART.AREGIMPUTED_5$EVENT <- as.numeric(SMART.AREGIMPUTED_5$EVENT)
SMART.AREGIMPUTED_5$SMOKING <- as.factor(SMART.AREGIMPUTED_5$SMOKING)
SMART.AREGIMPUTED_5$alcohol <- as.factor(SMART.AREGIMPUTED_5$alcohol)
SMART.AREGIMPUTED_5$albumin <- as.factor(SMART.AREGIMPUTED_5$albumin)
dd <- datadist(SMART.AREGIMPUTED_5)
options(datadist="dd")
##################################
# FULL COMPLETE
##################################
COXPH.FULL.COMPLETE.AREGIMPUTED_5 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
SYSTBP +
DIASTH +
DIASTBP +
WEIGHT +
LENGTH +
CHOL +
LDL +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT +
TRIG +
GLUT +
packyrs,
data = SMART.AREGIMPUTED_5,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.COMPLETE.AREGIMPUTED_5)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 35.82 1 <.0001
## SEX 0.69 1 0.4062
## SMOKING 0.08 2 0.9595
## alcohol 2.09 2 0.3509
## BMI 0.80 1 0.3712
## SYSTH 0.53 1 0.4685
## SYSTBP 1.28 1 0.2581
## DIASTH 0.09 1 0.7600
## DIASTBP 0.44 1 0.5092
## WEIGHT 1.39 1 0.2376
## LENGTH 0.76 1 0.3844
## CHOL 0.26 1 0.6099
## LDL 0.21 1 0.6498
## HDL 0.74 1 0.3886
## DIABETES 0.10 1 0.7462
## SUMSCORE_5LEVELS 33.23 1 <.0001
## HOMOC 0.02 1 0.8773
## CREAT 15.93 1 0.0001
## albumin 14.22 2 0.0008
## STENOSIS 1.98 1 0.1590
## IMT 8.67 1 0.0032
## TRIG 0.25 1 0.6152
## GLUT 2.79 1 0.0950
## packyrs 4.68 1 0.0305
## TOTAL 328.34 27 <.0001
summary(COXPH.FULL.COMPLETE.AREGIMPUTED_5)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.4301400 0.071865 0.289280 0.570990
## Hazard Ratio 52.00 68.00 16.00 1.5375000 NA 1.335500 1.770000
## BMI 24.11 28.73 4.62 0.4403300 0.492380 -0.524720 1.405400
## Hazard Ratio 24.11 28.73 4.62 1.5532000 NA 0.591720 4.077100
## SYSTH 127.00 156.00 29.00 0.0844850 0.116530 -0.143920 0.312890
## Hazard Ratio 127.00 156.00 29.00 1.0882000 NA 0.865960 1.367400
## SYSTBP 126.00 152.00 26.00 -0.1252400 0.110750 -0.342300 0.091818
## Hazard Ratio 126.00 152.00 26.00 0.8822800 NA 0.710140 1.096200
## DIASTH 74.00 89.00 15.00 0.0319010 0.104430 -0.172780 0.236580
## Hazard Ratio 74.00 89.00 15.00 1.0324000 NA 0.841330 1.266900
## DIASTBP 73.00 86.00 13.00 0.0640560 0.097036 -0.126130 0.254240
## Hazard Ratio 73.00 86.00 13.00 1.0662000 NA 0.881500 1.289500
## WEIGHT 72.00 89.00 17.00 -0.7144200 0.604960 -1.900100 0.471290
## Hazard Ratio 72.00 89.00 17.00 0.4894800 NA 0.149550 1.602100
## LENGTH 1.68 1.80 0.12 0.3486800 0.400830 -0.436950 1.134300
## Hazard Ratio 1.68 1.80 0.12 1.4172000 NA 0.646010 3.109000
## CHOL 4.40 5.90 1.50 0.7892000 1.546700 -2.242200 3.820600
## Hazard Ratio 4.40 5.90 1.50 2.2016000 NA 0.106230 45.631000
## LDL 2.37 3.83 1.46 -0.6877900 1.515000 -3.657100 2.281500
## Hazard Ratio 2.37 3.83 1.46 0.5026900 NA 0.025808 9.791300
## HDL 0.96 1.42 0.46 -0.4164300 0.483040 -1.363200 0.530310
## Hazard Ratio 0.96 1.42 0.46 0.6594000 NA 0.255850 1.699500
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.3091000 0.227090 0.863980 1.754100
## Hazard Ratio 1.00 5.00 4.00 3.7027000 NA 2.372600 5.778500
## HOMOC 10.50 16.10 5.60 0.0071533 0.046316 -0.083623 0.097930
## Hazard Ratio 10.50 16.10 5.60 1.0072000 NA 0.919780 1.102900
## CREAT 78.00 101.00 23.00 0.1488100 0.037288 0.075728 0.221900
## Hazard Ratio 78.00 101.00 23.00 1.1605000 NA 1.078700 1.248400
## IMT 0.75 1.07 0.32 0.1701200 0.057789 0.056857 0.283390
## Hazard Ratio 0.75 1.07 0.32 1.1855000 NA 1.058500 1.327600
## TRIG 1.13 2.23 1.10 -0.2556900 0.508600 -1.252500 0.741160
## Hazard Ratio 1.13 2.23 1.10 0.7743900 NA 0.285780 2.098400
## GLUT 5.30 6.50 1.20 0.0588280 0.035239 -0.010239 0.127900
## Hazard Ratio 5.30 6.50 1.20 1.0606000 NA 0.989810 1.136400
## packyrs 5.90 34.20 28.30 0.1556900 0.071942 0.014681 0.296690
## Hazard Ratio 5.90 34.20 28.30 1.1685000 NA 1.014800 1.345400
## SEX - 2:1 1.00 2.00 NA -0.1345300 0.161970 -0.451990 0.182920
## Hazard Ratio 1.00 2.00 NA 0.8741200 NA 0.636360 1.200700
## SMOKING - 1:2 2.00 1.00 NA -0.0140640 0.161680 -0.330940 0.302820
## Hazard Ratio 2.00 1.00 NA 0.9860300 NA 0.718250 1.353700
## SMOKING - 3:2 2.00 3.00 NA 0.0520460 0.198480 -0.336970 0.441060
## Hazard Ratio 2.00 3.00 NA 1.0534000 NA 0.713930 1.554400
## alcohol - 1:3 3.00 1.00 NA 0.1590900 0.121030 -0.078122 0.396300
## Hazard Ratio 3.00 1.00 NA 1.1724000 NA 0.924850 1.486300
## alcohol - 2:3 3.00 2.00 NA -0.0402250 0.147920 -0.330130 0.249680
## Hazard Ratio 3.00 2.00 NA 0.9605700 NA 0.718830 1.283600
## DIABETES - 1:0 1.00 2.00 NA 0.0505060 0.156070 -0.255380 0.356390
## Hazard Ratio 1.00 2.00 NA 1.0518000 NA 0.774620 1.428200
## albumin - 2:1 1.00 2.00 NA 0.2777100 0.118500 0.045455 0.509960
## Hazard Ratio 1.00 2.00 NA 1.3201000 NA 1.046500 1.665200
## albumin - 3:1 1.00 3.00 NA 0.6964900 0.197790 0.308820 1.084200
## Hazard Ratio 1.00 3.00 NA 2.0067000 NA 1.361800 2.956900
## STENOSIS - 1:0 1.00 2.00 NA 0.1528100 0.108490 -0.059828 0.365450
## Hazard Ratio 1.00 2.00 NA 1.1651000 NA 0.941930 1.441200
vif(COXPH.FULL.COMPLETE.AREGIMPUTED_5)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.418819 1.831725 1.955859 1.544054
## alcohol=2 alcohol=3 BMI SYSTH
## 1.435126 1.571437 63.692998 3.876737
## SYSTBP DIASTH DIASTBP WEIGHT
## 3.436950 3.081005 2.682241 88.457160
## LENGTH CHOL LDL HDL
## 34.762923 558.992648 495.027328 52.120441
## DIABETES=1 SUMSCORE_5LEVELS HOMOC CREAT
## 2.257665 1.183474 1.509397 1.793220
## albumin=2 albumin=3 STENOSIS=1 IMT
## 1.192460 1.610680 1.211036 1.337456
## TRIG GLUT packyrs
## 134.677350 2.172496 1.385593
COXPH.FULL.COMPLETE.AREGIMPUTED_5
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + SYSTBP + DIASTH +
## DIASTBP + WEIGHT + LENGTH + CHOL + LDL + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT + TRIG + GLUT + packyrs, data = SMART.AREGIMPUTED_5,
## x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 293.29 R2 0.087
## Events 460 d.f. 27 Dxy 0.396
## Center 8.4236 Pr(> chi2) 0.0000 g 0.794
## Score chi2 368.04 gr 2.212
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0013 0.0002 5.99 <0.0001
## SEX=2 -0.1345 0.1620 -0.83 0.4062
## SMOKING=2 0.0141 0.1617 0.09 0.9307
## SMOKING=3 0.0661 0.2412 0.27 0.7840
## alcohol=2 -0.1993 0.1671 -1.19 0.2329
## alcohol=3 -0.1591 0.1210 -1.31 0.1887
## BMI 0.0953 0.1066 0.89 0.3712
## SYSTH 0.0029 0.0040 0.72 0.4685
## SYSTBP -0.0048 0.0043 -1.13 0.2581
## DIASTH 0.0021 0.0070 0.31 0.7600
## DIASTBP 0.0049 0.0075 0.66 0.5092
## WEIGHT -0.0420 0.0356 -1.18 0.2376
## LENGTH 2.9056 3.3403 0.87 0.3844
## CHOL 0.5261 1.0311 0.51 0.6099
## LDL -0.4711 1.0376 -0.45 0.6498
## HDL -0.9053 1.0501 -0.86 0.3886
## DIABETES=1 0.0505 0.1561 0.32 0.7462
## SUMSCORE_5LEVELS 0.3273 0.0568 5.76 <0.0001
## HOMOC 0.0013 0.0083 0.15 0.8773
## CREAT 0.5759 0.1443 3.99 <0.0001
## albumin=2 0.2777 0.1185 2.34 0.0191
## albumin=3 0.6965 0.1978 3.52 0.0004
## STENOSIS=1 0.1528 0.1085 1.41 0.1590
## IMT 0.5316 0.1806 2.94 0.0032
## TRIG -0.2324 0.4624 -0.50 0.6152
## GLUT 0.0490 0.0294 1.67 0.0950
## packyrs 0.0055 0.0025 2.16 0.0305
##
##################################
# FULL
# After removing variables which are:
# High multicollinearity contributors
# Non-standard risk factors
# Minimal predictors of survival outcome based from initial exploration
# Minimal predictors of survival outcome based from domain knowledge and literature
##################################
COXPH.FULL.AREGIMPUTED_5 <-cph(Surv(TEVENT,EVENT) ~ ifelse(AGE>50, (AGE-50)^2,0) +
SEX +
SMOKING +
alcohol +
BMI +
SYSTH +
HDL+
DIABETES +
SUMSCORE_5LEVELS +
HOMOC +
log(CREAT) +
albumin +
STENOSIS +
IMT,
data = SMART.AREGIMPUTED_5,
x=T,
y=T,
surv=T)
anova(COXPH.FULL.AREGIMPUTED_5)
## Wald Statistics Response: Surv(TEVENT, EVENT)
##
## Factor Chi-Square d.f. P
## AGE 36.75 1 <.0001
## SEX 0.23 1 0.6330
## SMOKING 1.54 2 0.4621
## alcohol 1.65 2 0.4376
## BMI 2.85 1 0.0913
## SYSTH 0.73 1 0.3927
## HDL 5.79 1 0.0161
## DIABETES 2.87 1 0.0902
## SUMSCORE_5LEVELS 34.24 1 <.0001
## HOMOC 0.12 1 0.7297
## CREAT 14.31 1 0.0002
## albumin 14.00 2 0.0009
## STENOSIS 2.29 1 0.1301
## IMT 8.16 1 0.0043
## TOTAL 319.93 17 <.0001
summary(COXPH.FULL.AREGIMPUTED_5)
## Effects Response : Surv(TEVENT, EVENT)
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## AGE 52.00 68.00 16.00 0.417560 0.068876 0.282560 0.552550
## Hazard Ratio 52.00 68.00 16.00 1.518300 NA 1.326500 1.737700
## BMI 24.11 28.73 4.62 -0.110470 0.065425 -0.238700 0.017763
## Hazard Ratio 24.11 28.73 4.62 0.895420 NA 0.787650 1.017900
## SYSTH 127.00 156.00 29.00 0.054260 0.063487 -0.070172 0.178690
## Hazard Ratio 127.00 156.00 29.00 1.055800 NA 0.932230 1.195700
## HDL 0.96 1.42 0.46 -0.176580 0.073406 -0.320450 -0.032708
## Hazard Ratio 0.96 1.42 0.46 0.838130 NA 0.725820 0.967820
## SUMSCORE_5LEVELS 1.00 5.00 4.00 1.309800 0.223860 0.871080 1.748600
## Hazard Ratio 1.00 5.00 4.00 3.705600 NA 2.389500 5.746600
## HOMOC 10.50 16.10 5.60 0.015627 0.045224 -0.073011 0.104260
## Hazard Ratio 10.50 16.10 5.60 1.015700 NA 0.929590 1.109900
## CREAT 78.00 101.00 23.00 0.137640 0.036383 0.066330 0.208950
## Hazard Ratio 78.00 101.00 23.00 1.147600 NA 1.068600 1.232400
## IMT 0.75 1.07 0.32 0.161310 0.056455 0.050656 0.271960
## Hazard Ratio 0.75 1.07 0.32 1.175000 NA 1.052000 1.312500
## SEX - 2:1 1.00 2.00 NA -0.064458 0.135000 -0.329050 0.200140
## Hazard Ratio 1.00 2.00 NA 0.937580 NA 0.719600 1.221600
## SMOKING - 1:2 2.00 1.00 NA -0.167940 0.144060 -0.450300 0.114420
## Hazard Ratio 2.00 1.00 NA 0.845410 NA 0.637440 1.121200
## SMOKING - 3:2 2.00 3.00 NA 0.058064 0.197470 -0.328970 0.445100
## Hazard Ratio 2.00 3.00 NA 1.059800 NA 0.719670 1.560600
## alcohol - 1:3 3.00 1.00 NA 0.139280 0.120460 -0.096822 0.375380
## Hazard Ratio 3.00 1.00 NA 1.149400 NA 0.907720 1.455500
## alcohol - 2:3 3.00 2.00 NA -0.039480 0.147280 -0.328150 0.249190
## Hazard Ratio 3.00 2.00 NA 0.961290 NA 0.720260 1.283000
## DIABETES - 1:0 1.00 2.00 NA 0.186040 0.109820 -0.029193 0.401270
## Hazard Ratio 1.00 2.00 NA 1.204500 NA 0.971230 1.493700
## albumin - 2:1 1.00 2.00 NA 0.280910 0.117820 0.049979 0.511840
## Hazard Ratio 1.00 2.00 NA 1.324300 NA 1.051200 1.668400
## albumin - 3:1 1.00 3.00 NA 0.673130 0.195120 0.290710 1.055500
## Hazard Ratio 1.00 3.00 NA 1.960400 NA 1.337400 2.873500
## STENOSIS - 1:0 1.00 2.00 NA 0.162680 0.107470 -0.047954 0.373320
## Hazard Ratio 1.00 2.00 NA 1.176700 NA 0.953180 1.452500
vif(COXPH.FULL.AREGIMPUTED_5)
## AGE SEX=2 SMOKING=2 SMOKING=3
## 1.309269 1.272356 1.552807 1.413467
## alcohol=2 alcohol=3 BMI SYSTH
## 1.422649 1.556864 1.108079 1.161651
## HDL DIABETES=1 SUMSCORE_5LEVELS HOMOC
## 1.212141 1.117513 1.165569 1.443350
## CREAT albumin=2 albumin=3 STENOSIS=1
## 1.723397 1.179223 1.567982 1.188038
## IMT
## 1.294708
## Cox Proportional Hazards Model
##
## cph(formula = Surv(TEVENT, EVENT) ~ ifelse(AGE > 50, (AGE - 50)^2,
## 0) + SEX + SMOKING + alcohol + BMI + SYSTH + HDL + DIABETES +
## SUMSCORE_5LEVELS + HOMOC + log(CREAT) + albumin + STENOSIS +
## IMT, data = SMART.AREGIMPUTED_5, x = T, y = T, surv = T)
##
## Model Tests Discrimination
## Indexes
## Obs 3873 LR chi2 279.73 R2 0.083
## Events 460 d.f. 17 Dxy 0.394
## Center 2.9113 Pr(> chi2) 0.0000 g 0.748
## Score chi2 356.53 gr 2.112
## Pr(> chi2) 0.0000
##
## Coef S.E. Wald Z Pr(>|Z|)
## AGE 0.0013 0.0002 6.06 <0.0001
## SEX=2 -0.0645 0.1350 -0.48 0.6330
## SMOKING=2 0.1679 0.1441 1.17 0.2437
## SMOKING=3 0.2260 0.2307 0.98 0.3273
## alcohol=2 -0.1788 0.1664 -1.07 0.2826
## alcohol=3 -0.1393 0.1205 -1.16 0.2476
## BMI -0.0239 0.0142 -1.69 0.0913
## SYSTH 0.0019 0.0022 0.85 0.3927
## HDL -0.3839 0.1596 -2.41 0.0161
## DIABETES=1 0.1860 0.1098 1.69 0.0902
## SUMSCORE_5LEVELS 0.3275 0.0560 5.85 <0.0001
## HOMOC 0.0028 0.0081 0.35 0.7297
## CREAT 0.5326 0.1408 3.78 0.0002
## albumin=2 0.2809 0.1178 2.38 0.0171
## albumin=3 0.6731 0.1951 3.45 0.0006
## STENOSIS=1 0.1627 0.1075 1.51 0.1301
## IMT 0.5041 0.1764 2.86 0.0043
##
##################################
# Consolidating all coefficients from the
# FULL Cox Proportional Hazards Model
# Using the combined complete and
# 1ST to 5TH imputation results from AREG
##################################
(COXPH.FULL.AREGIMPUTED_12345.Coefficients <- rbind(coef(COXPH.FULL.AREGIMPUTED_1),
coef(COXPH.FULL.AREGIMPUTED_2),
coef(COXPH.FULL.AREGIMPUTED_3),
coef(COXPH.FULL.AREGIMPUTED_4),
coef(COXPH.FULL.AREGIMPUTED_5)))
## AGE SEX=2 SMOKING=2 SMOKING=3 alcohol=2 alcohol=3
## [1,] 0.001319438 -0.05323006 0.1836178 0.2504782 -0.1558516 -0.1263426
## [2,] 0.001290295 -0.05216943 0.1842736 0.2450232 -0.1599791 -0.1196699
## [3,] 0.001316533 -0.04721299 0.1932424 0.2983591 -0.1446361 -0.1145161
## [4,] 0.001212739 -0.03784236 0.1678314 0.2239712 -0.1559366 -0.1263267
## [5,] 0.001304874 -0.06445816 0.1679385 0.2260025 -0.1787601 -0.1392797
## BMI SYSTH HDL DIABETES=1 SUMSCORE_5LEVELS HOMOC
## [1,] -0.02475359 0.001068306 -0.3776243 0.2089031 0.3318611 0.001016311
## [2,] -0.02363049 0.002205609 -0.3845823 0.1856939 0.3332411 0.003646549
## [3,] -0.02409281 0.002894025 -0.3946006 0.1958399 0.3346853 0.004229653
## [4,] -0.02468578 0.003082448 -0.3784896 0.2136157 0.3222527 0.013965456
## [5,] -0.02391059 0.001871029 -0.3838719 0.1860407 0.3274619 0.002790467
## CREAT albumin=2 albumin=3 STENOSIS=1 IMT
## [1,] 0.5999677 0.2645359 0.5622142 0.1708450 0.5275760
## [2,] 0.5580850 0.2304765 0.6361029 0.1740932 0.5466388
## [3,] 0.5812481 0.1947722 0.5254523 0.1978645 0.4569895
## [4,] 0.5538597 0.2736406 0.4311872 0.1537693 0.5222199
## [5,] 0.5326395 0.2809080 0.6731279 0.1626805 0.5040841
rownames(COXPH.FULL.AREGIMPUTED_12345.Coefficients) <- c("aregImpute_1",
"aregImpute_2",
"aregImpute_3",
"aregImpute_4",
"aregImpute_5")
barchart(COXPH.FULL.AREGIMPUTED_12345.Coefficients,
groups=rownames(COXPH.FULL.AREGIMPUTED_12345.Coefficients),
scales=list(x="free"),
auto.key = list(columns = 5),
layout = c(4,5),
xlab = "Estimated Coefficients",)
