This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
Question #2.) Carefully explain the differences between the KNN classifier and KNN regression methods. Answer: A KNN regression method is a nonparametric, K-nearest neighbors regression. KNN regression identifies first the K training observations that are closest to x0, then estimates the average for f(x0) using the average of all training responses. A KNN classifier differs in that it classifies a result into qualitative (categorical) group using the most common group found among the K nearest neighbors.Using a positive integer K points in the training data that are closest to x0, then estimates the conditional probability for class j as the fraction of points, then classifies the test observation x0 to the class with the alrgest possibility.
Question #9.)This question involves the use of multiple linear regression on the Auto data set. (a) Produce a scatterplot matrix which includes all of the variables in the data set. Answer:
library(ISLR2)
data("Auto", package = "ISLR2")
pairs(Auto)
Answer:
cor(subset(Auto, select = -name))
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## acceleration year origin
## mpg 0.4233285 0.5805410 0.5652088
## cylinders -0.5046834 -0.3456474 -0.5689316
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower -0.6891955 -0.4163615 -0.4551715
## weight -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
## year 0.2903161 1.0000000 0.1815277
## origin 0.2127458 0.1815277 1.0000000
lm.fit1 <- lm(mpg ~ . - name, data = Auto)
summary(lm.fit1)
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
Is there a relationship between the predictors and the response? Answer: Yes, by testing the hypothesis to verify if all regression coefficients are zero, we can see there is a relationship between the predictors and the response.
Which predictors appear to have a statistically significant relationship to the response? Answer: From the graphs we can see that weight, year, and displacement and origin have a significant relationship shown by their p-value of less than 0.5 f. We can see that acceleration, cylinders and horsepower do not have any statistical relationship.
What does the coefficient for the year variable suggest? Answer: The coefficient for the ‘year’ variable means that for every one year and it is also positive if every other variable is constant then then it means that the mpg increases as well by the coefficient. We can conclude that cars become more efficient every year by nearly 1mpg/year which we can see the relationship between them by their p-values.
View(Auto)
par(mfrow = c(2, 2))
plot(lm.fit1)
plot(predict(lm.fit1), rstudent(lm.fit1))
There seems to be a nonlinear pattern.
Do the residual plots suggest any unusually large outliers? Answer: The Normal Q-Q plot we can see some outliers by the end from (2,2) to (3,4). Also the scale location plot we can see outliers by (30,1.5) to (35,2.0). The residuals vs Leverage plot we can see outliers starting from the beginning (0.025,2) to (0.05,4).
Does the leverage plot identify any observations with unusually high leverage? Answer: Yes, we can observe on Residuals vs Leverage plot that point 14 appears to have an unusually high leverage.
lm.fit2 <- lm(mpg ~ cylinders * displacement + displacement * weight, data = Auto)
summary(lm.fit2)
##
## Call:
## lm(formula = mpg ~ cylinders * displacement + displacement *
## weight, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.2934 -2.5184 -0.3476 1.8399 17.7723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.262e+01 2.237e+00 23.519 < 2e-16 ***
## cylinders 7.606e-01 7.669e-01 0.992 0.322
## displacement -7.351e-02 1.669e-02 -4.403 1.38e-05 ***
## weight -9.888e-03 1.329e-03 -7.438 6.69e-13 ***
## cylinders:displacement -2.986e-03 3.426e-03 -0.872 0.384
## displacement:weight 2.128e-05 5.002e-06 4.254 2.64e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.103 on 386 degrees of freedom
## Multiple R-squared: 0.7272, Adjusted R-squared: 0.7237
## F-statistic: 205.8 on 5 and 386 DF, p-value: < 2.2e-16
y4<-lm(mpg~weight+I((weight)^2),Auto)
summary(y4)
##
## Call:
## lm(formula = mpg ~ weight + I((weight)^2), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.6246 -2.7134 -0.3485 1.8267 16.0866
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.226e+01 2.993e+00 20.800 < 2e-16 ***
## weight -1.850e-02 1.972e-03 -9.379 < 2e-16 ***
## I((weight)^2) 1.697e-06 3.059e-07 5.545 5.43e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.176 on 389 degrees of freedom
## Multiple R-squared: 0.7151, Adjusted R-squared: 0.7137
## F-statistic: 488.3 on 2 and 389 DF, p-value: < 2.2e-16