1. I understand my life’s meaning.
  2. I am looking for something that makes my life feel meaningful.
  3. I am always looking to find my life’s purpose.
  4. My life has a clear sense of purpose.
  5. I have a good sense of what makes my life meaningful.
  6. I have discovered a satisfying life purpose.
  7. I am always searching for something that makes my life feel significant.
  8. I am seeking a purpose or mission for my life.
  9. My life has no clear purpose. (reverse coded)
  10. I am searching for meaning in my life.

library(lavaan)
## This is lavaan 0.5-18
## lavaan is BETA software! Please report any bugs.
library(semPlot)
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GPArotation)
library(psych)
library(car)
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
library(GGally)
## 
## Attaching package: 'GGally'
## 
## The following object is masked from 'package:dplyr':
## 
##     nasa

loadthedata

data <- read.csv("~/Psychometric_study_data/allsurveysT1.csv")
data<-tbl_df(data)
MLQ<-select(data, MLQ_1, MLQ_2, MLQ_3, MLQ_4, MLQ_5, MLQ_6,MLQ_7, MLQ_8, MLQ_9, MLQ_10)
MLQ$MLQ_9  <-  8- MLQ$MLQ_9
MLQ<-tbl_df(MLQ)
MLQ
## Source: local data frame [757 x 10]
## 
##    MLQ_1 MLQ_2 MLQ_3 MLQ_4 MLQ_5 MLQ_6 MLQ_7 MLQ_8 MLQ_9 MLQ_10
## 1      4     7     7     5     6     4     5     7     3      7
## 2      3     5     5     5     4     3     5     4     3      5
## 3      4     7     5     4     4     4     4     5     4      4
## 4      5     6     7     3     5     5     5     5     3      6
## 5      4     6     5     4     4     4     5     5     5      5
## 6      5     5     3     4     5     5     3     4     7      3
## 7      6     2     2     3     6     3     5     4     5      4
## 8      3     7     7     5     5     4     5     7     4      5
## 9      6     5     2     7     6     6     5     7     7      2
## 10     1     7     1     3     5     1     5     5     6      1
## ..   ...   ...   ...   ...   ...   ...   ...   ...   ...    ...

create plots

#ggpairs(MLQ, columns = 1:15, title="Big 5 Marsh" )

create the models

two.model= ' Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6 + MLQ_9   
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10'  #Models two factors:Purpose and Seraching for Purpose     
              

one.model= 'MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_9 + MLQ_10' #Models as a single purpose factor

Second order models

second.model = ' Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6 + MLQ_9   
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
              MLQ =~ NA*Purpose + Searching' #Second order models as Purpose being the higher factor made up of Purpose and Searching

Bifactor Models (similar to Models 6, 7 & 8 in Marsh, Scalas & Nagengast, 2010)

bifactor.model = 'Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6 + MLQ_9   
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
              MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_9 + MLQ_10
'#Models bifactor with Searching and Purpose as factors corolated with the main factor

bifactor.modelWO9 = 'Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6  
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
              MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_10
'#Models bifactor with Searching and Purpose as factors corolated with the main factor leaving negatively worded questions out

Bifactor (like model 7 in Marsh, Scalas & Nagengast, 2010)

bifactor.negative.model = 'Negative =~ MLQ_9  
                                     MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_9 + MLQ_10
'#Models bifactor as the negatively worded item as a factor uncorolated with the main factor

bifactor.model1 = 'MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_9 + MLQ_10
                Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6 + MLQ_9    
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
                MLQ ~~ 0*Purpose
                MLQ ~~ 0*Searching
                Purpose~~0*Searching
'#Models bifactor with Searching and Purpose as factors uncorolated with the main factor
bifactor.model1WO9 = 'MLQ =~ MLQ_1 +  MLQ_2  + MLQ_3 + MLQ_4 + MLQ_5 + MLQ_6 + MLQ_7 + MLQ_8 + MLQ_10
                Purpose  =~ MLQ_1 +  MLQ_4  + MLQ_5 + MLQ_6    
              Searching =~   MLQ_2 + MLQ_3 + MLQ_7 + MLQ_8  +MLQ_10
                MLQ ~~ 0*Purpose
                MLQ ~~ 0*Searching
                Purpose~~0*Searching
'#Models bifactor with Searching and Purpose as factors uncorolated with the main factor leaving negatively worded questions out

run the models

two.fit=cfa(two.model, data=MLQ)
one.fit=cfa(one.model, data=MLQ)
second.fit=cfa(second.model, data=MLQ)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING: could not compute standard errors!
##   lavaan NOTE: this may be a symptom that the model is not identified.
## Warning in lavaan::lavaan(model = second.model, data = MLQ, model.type =
## "cfa", : lavaan WARNING: some estimated variances are negative
## Warning in lavaan::lavaan(model = second.model, data = MLQ, model.type
## = "cfa", : lavaan WARNING: covariance matrix of latent variables is not
## positive definite; use inspect(fit,"cov.lv") to investigate.
bifactor.fit=cfa(bifactor.model, data=MLQ)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING: could not compute standard errors!
##   lavaan NOTE: this may be a symptom that the model is not identified.
bifactor1.fit=cfa(bifactor.model1, data=MLQ)
bifactorWO9.fit=cfa(bifactor.modelWO9, data=MLQ)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING: could not compute standard errors!
##   lavaan NOTE: this may be a symptom that the model is not identified.
## Warning in lavaan::lavaan(model = bifactor.modelWO9, data = MLQ, model.type
## = "cfa", : lavaan WARNING: covariance matrix of latent variables is not
## positive definite; use inspect(fit,"cov.lv") to investigate.
bifactor1WO9.fit=cfa(bifactor.model1WO9, data=MLQ)
bifactor.negative.fit=cfa(bifactor.negative.model, data=MLQ)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING: could not compute standard errors!
##   lavaan NOTE: this may be a symptom that the model is not identified.

create pictures

semPaths(two.fit, whatLabels = "std", layout = "tree")

semPaths(one.fit, whatLabels = "std", layout = "tree")

semPaths(second.fit, whatLabels = "std", layout = "tree")
## Warning in sqrt(ETA2): NaNs produced
## Warning in sqrt(ETA2): NaNs produced
## Warning in sqrt(ETA2): NaNs produced

semPaths(bifactor.fit, whatLabels = "std", layout = "tree")

semPaths(bifactor1.fit, whatLabels = "std", layout = "tree")

semPaths(bifactorWO9.fit, whatLabels = "std", layout = "tree")

semPaths(bifactor1WO9.fit, whatLabels = "std", layout = "tree")

semPaths(bifactor.negative.fit, whatLabels = "std", layout = "tree")

#summaries

summary(two.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  35 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              210.725
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Purpose =~
##     MLQ_1             1.000                               1.344    0.766
##     MLQ_4             1.002    0.057   17.445    0.000    1.346    0.812
##     MLQ_5             0.815    0.052   15.539    0.000    1.095    0.725
##     MLQ_6             1.046    0.060   17.514    0.000    1.405    0.816
##     MLQ_9             0.698    0.074    9.420    0.000    0.938    0.452
##   Searching =~
##     MLQ_2             1.000                               1.339    0.803
##     MLQ_3             0.933    0.055   16.993    0.000    1.250    0.743
##     MLQ_7             0.893    0.054   16.651    0.000    1.196    0.730
##     MLQ_8             0.954    0.054   17.795    0.000    1.277    0.772
##     MLQ_10            1.099    0.059   18.705    0.000    1.472    0.806
## 
## Covariances:
##   Purpose ~~
##     Searching        -0.167    0.094   -1.774    0.076   -0.093   -0.093
## 
## Variances:
##     MLQ_1             1.270    0.105                      1.270    0.413
##     MLQ_4             0.934    0.087                      0.934    0.340
##     MLQ_5             1.084    0.084                      1.084    0.475
##     MLQ_6             0.991    0.093                      0.991    0.334
##     MLQ_9             3.432    0.230                      3.432    0.796
##     MLQ_2             0.986    0.085                      0.986    0.355
##     MLQ_3             1.270    0.098                      1.270    0.448
##     MLQ_7             1.252    0.096                      1.252    0.467
##     MLQ_8             1.105    0.089                      1.105    0.404
##     MLQ_10            1.171    0.101                      1.171    0.351
##     Purpose           1.806    0.192                      1.000    1.000
##     Searching         1.794    0.177                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.587
##     MLQ_4             0.660
##     MLQ_5             0.525
##     MLQ_6             0.666
##     MLQ_9             0.204
##     MLQ_2             0.645
##     MLQ_3             0.552
##     MLQ_7             0.533
##     MLQ_8             0.596
##     MLQ_10            0.649
summary(one.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  30 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic             1343.770
##   Degrees of freedom                                35
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   MLQ =~
##     MLQ_1             1.000                               1.345    0.767
##     MLQ_2            -0.202    0.060   -3.336    0.001   -0.271   -0.163
##     MLQ_3            -0.016    0.061   -0.258    0.796   -0.021   -0.013
##     MLQ_4             0.994    0.057   17.339    0.000    1.337    0.807
##     MLQ_5             0.811    0.052   15.490    0.000    1.091    0.722
##     MLQ_6             1.041    0.060   17.464    0.000    1.401    0.813
##     MLQ_7             0.006    0.060    0.103    0.918    0.008    0.005
##     MLQ_8            -0.104    0.060   -1.728    0.084   -0.140   -0.085
##     MLQ_9             0.721    0.074    9.753    0.000    0.970    0.467
##     MLQ_10           -0.298    0.066   -4.499    0.000   -0.400   -0.219
## 
## Variances:
##     MLQ_1             1.266    0.105                      1.266    0.412
##     MLQ_2             2.706    0.175                      2.706    0.973
##     MLQ_3             2.833    0.183                      2.833    1.000
##     MLQ_4             0.959    0.087                      0.959    0.349
##     MLQ_5             1.091    0.085                      1.091    0.478
##     MLQ_6             1.004    0.093                      1.004    0.339
##     MLQ_7             2.683    0.173                      2.683    1.000
##     MLQ_8             2.717    0.176                      2.717    0.993
##     MLQ_9             3.372    0.227                      3.372    0.782
##     MLQ_10            3.178    0.207                      3.178    0.952
##     MLQ               1.810    0.193                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.588
##     MLQ_2             0.027
##     MLQ_3             0.000
##     MLQ_4             0.651
##     MLQ_5             0.522
##     MLQ_6             0.661
##     MLQ_7             0.000
##     MLQ_8             0.007
##     MLQ_9             0.218
##     MLQ_10            0.048
summary(second.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  33 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              210.725
##   Degrees of freedom                                32
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## Warning in sqrt(ETA2): NaNs produced
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Purpose =~
##     MLQ_1             1.000                               1.344    0.766
##     MLQ_4             1.002                               1.346    0.812
##     MLQ_5             0.815                               1.095    0.725
##     MLQ_6             1.046                               1.405    0.816
##     MLQ_9             0.698                               0.938    0.452
##   Searching =~
##     MLQ_2             1.000                               1.339    0.803
##     MLQ_3             0.933                               1.250    0.743
##     MLQ_7             0.893                               1.196    0.730
##     MLQ_8             0.954                               1.277    0.772
##     MLQ_10            1.099                               1.472    0.806
##   MLQ =~
##     Purpose           0.522                                 NaN      NaN
##     Searching         0.508                                 NaN      NaN
## 
## Variances:
##     MLQ_1             1.270                               1.270    0.413
##     MLQ_4             0.934                               0.934    0.340
##     MLQ_5             1.084                               1.084    0.475
##     MLQ_6             0.991                               0.991    0.334
##     MLQ_9             3.432                               3.432    0.796
##     MLQ_2             0.986                               0.986    0.355
##     MLQ_3             1.270                               1.270    0.448
##     MLQ_7             1.252                               1.252    0.467
##     MLQ_8             1.105                               1.105    0.404
##     MLQ_10            1.171                               1.171    0.351
##     Purpose           1.978                               1.095    1.095
##     Searching         1.957                               1.091    1.091
##     MLQ              -0.631                                 NaN      NaN
## 
## R-Square:
## 
##     MLQ_1             0.587
##     MLQ_4             0.660
##     MLQ_5             0.525
##     MLQ_6             0.666
##     MLQ_9             0.204
##     MLQ_2             0.645
##     MLQ_3             0.552
##     MLQ_7             0.533
##     MLQ_8             0.596
##     MLQ_10            0.649
##     Purpose          -0.095
##     Searching        -0.091
summary(bifactor.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after 251 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic               87.956
##   Degrees of freedom                                22
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Purpose =~
##     MLQ_1             1.000                               0.056    0.032
##     MLQ_4             7.156                               0.403    0.243
##     MLQ_5            -0.256                              -0.014   -0.010
##     MLQ_6             7.596                               0.427    0.248
##     MLQ_9           -33.215                              -1.868   -0.900
##   Searching =~
##     MLQ_2             1.000                               1.476    0.885
##     MLQ_3             0.969                               1.430    0.849
##     MLQ_7             0.923                               1.363    0.832
##     MLQ_8             0.962                               1.420    0.859
##     MLQ_10            1.095                               1.616    0.884
##   MLQ =~
##     MLQ_1             1.000                               1.345    0.767
##     MLQ_2            -0.697                              -0.937   -0.562
##     MLQ_3            -0.480                              -0.646   -0.384
##     MLQ_4             1.159                               1.559    0.941
##     MLQ_5             0.797                               1.073    0.710
##     MLQ_6             1.216                               1.636    0.950
##     MLQ_7            -0.431                              -0.580   -0.354
##     MLQ_8            -0.559                              -0.752   -0.455
##     MLQ_9             0.129                               0.173    0.084
##     MLQ_10           -0.848                              -1.141   -0.625
## 
## Covariances:
##   Purpose ~~
##     Searching        -0.000                              -0.001   -0.001
##     MLQ              -0.041                              -0.545   -0.545
##   Searching ~~
##     MLQ               0.902                               0.454    0.454
## 
## Variances:
##     MLQ_1             1.346                               1.346    0.438
##     MLQ_4             0.838                               0.838    0.305
##     MLQ_5             1.115                               1.115    0.488
##     MLQ_6             0.870                               0.870    0.293
##     MLQ_9             0.438                               0.438    0.101
##     MLQ_2             0.980                               0.980    0.352
##     MLQ_3             1.211                               1.211    0.428
##     MLQ_7             1.207                               1.207    0.450
##     MLQ_8             1.124                               1.124    0.411
##     MLQ_10            1.101                               1.101    0.330
##     Purpose           0.003                               1.000    1.000
##     Searching         2.179                               1.000    1.000
##     MLQ               1.809                               1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.562
##     MLQ_4             0.695
##     MLQ_5             0.512
##     MLQ_6             0.707
##     MLQ_9             0.899
##     MLQ_2             0.648
##     MLQ_3             0.572
##     MLQ_7             0.550
##     MLQ_8             0.589
##     MLQ_10            0.670
summary(bifactor1.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  59 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              111.380
##   Degrees of freedom                                25
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   MLQ =~
##     MLQ_1             1.000                               0.946    0.539
##     MLQ_2            -0.598    0.148   -4.036    0.000   -0.566   -0.339
##     MLQ_3            -0.380    0.122   -3.118    0.002   -0.360   -0.214
##     MLQ_4             0.670    0.119    5.606    0.000    0.634    0.382
##     MLQ_5             0.860    0.088    9.788    0.000    0.813    0.538
##     MLQ_6             0.715    0.121    5.902    0.000    0.676    0.393
##     MLQ_7            -0.171    0.102   -1.683    0.092   -0.162   -0.099
##     MLQ_8            -0.334    0.116   -2.878    0.004   -0.316   -0.191
##     MLQ_9             1.692    0.277    6.112    0.000    1.601    0.771
##     MLQ_10           -0.684    0.166   -4.108    0.000   -0.647   -0.354
##   Purpose =~
##     MLQ_1             1.000                               0.942    0.537
##     MLQ_4             1.315    0.133    9.918    0.000    1.240    0.748
##     MLQ_5             0.783    0.080    9.822    0.000    0.737    0.488
##     MLQ_6             1.359    0.135   10.052    0.000    1.281    0.744
##     MLQ_9             0.025    0.276    0.090    0.929    0.023    0.011
##   Searching =~
##     MLQ_2             1.000                               1.224    0.734
##     MLQ_3             0.980    0.063   15.527    0.000    1.199    0.712
##     MLQ_7             0.999    0.066   15.187    0.000    1.222    0.746
##     MLQ_8             1.016    0.063   16.198    0.000    1.243    0.752
##     MLQ_10            1.089    0.064   17.011    0.000    1.332    0.729
## 
## Covariances:
##   MLQ ~~
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
##   Purpose ~~
##     Searching         0.000                               0.000    0.000
## 
## Variances:
##     MLQ_1             1.293    0.104                      1.293    0.420
##     MLQ_2             0.963    0.082                      0.963    0.346
##     MLQ_3             1.267    0.098                      1.267    0.447
##     MLQ_4             0.809    0.097                      0.809    0.295
##     MLQ_5             1.077    0.084                      1.077    0.472
##     MLQ_6             0.868    0.103                      0.868    0.293
##     MLQ_7             1.163    0.096                      1.163    0.434
##     MLQ_8             1.091    0.090                      1.091    0.399
##     MLQ_9             1.750    0.505                      1.750    0.406
##     MLQ_10            1.146    0.098                      1.146    0.343
##     MLQ               0.895    0.264                      1.000    1.000
##     Purpose           0.888    0.252                      1.000    1.000
##     Searching         1.497    0.169                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.580
##     MLQ_2             0.654
##     MLQ_3             0.553
##     MLQ_4             0.705
##     MLQ_5             0.528
##     MLQ_6             0.707
##     MLQ_7             0.566
##     MLQ_8             0.601
##     MLQ_9             0.594
##     MLQ_10            0.657
summary(bifactorWO9.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after 1796 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic               54.474
##   Degrees of freedom                                15
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Purpose =~
##     MLQ_1             1.000                               0.606    0.346
##     MLQ_4           154.649                              93.779   56.582
##     MLQ_5          1125.291                             682.375  451.719
##     MLQ_6           217.850                             132.104   76.710
##   Searching =~
##     MLQ_2             1.000                              26.464   15.873
##     MLQ_3             0.956                              25.296   15.028
##     MLQ_7             0.914                              24.189   14.767
##     MLQ_8             0.961                              25.441   15.380
##     MLQ_10            1.101                              29.144   15.950
##   MLQ =~
##     MLQ_1             1.000                               1.830    1.043
##     MLQ_2           -14.546                             -26.619  -15.966
##     MLQ_3           -13.772                             -25.203  -14.973
##     MLQ_4            52.008                              95.178   57.426
##     MLQ_5           373.595                             683.701  452.597
##     MLQ_6            73.021                             133.632   77.597
##     MLQ_7           -13.163                             -24.088  -14.706
##     MLQ_8           -13.921                             -25.476  -15.401
##     MLQ_10          -16.076                             -29.421  -16.102
## 
## Covariances:
##   Purpose ~~
##     Searching       -16.028                              -0.999   -0.999
##     MLQ              -1.110                              -1.000   -1.000
##   Searching ~~
##     MLQ              48.370                               0.999    0.999
## 
## Variances:
##     MLQ_1             1.579                               1.579    0.513
##     MLQ_4             0.850                               0.850    0.310
##     MLQ_5             3.659                               3.659    1.604
##     MLQ_6             0.749                               0.749    0.253
##     MLQ_2             0.990                               0.990    0.356
##     MLQ_3             1.227                               1.227    0.433
##     MLQ_7             1.213                               1.213    0.452
##     MLQ_8             1.111                               1.111    0.406
##     MLQ_10            1.114                               1.114    0.334
##     Purpose           0.368                               1.000    1.000
##     Searching       700.347                               1.000    1.000
##     MLQ               3.349                               1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.487
##     MLQ_4             0.690
##     MLQ_5            -0.604
##     MLQ_6             0.747
##     MLQ_2             0.644
##     MLQ_3             0.567
##     MLQ_7             0.548
##     MLQ_8             0.594
##     MLQ_10            0.666
summary(bifactor1WO9.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  71 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic               51.412
##   Degrees of freedom                                18
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   MLQ =~
##     MLQ_1             1.000                               1.171    0.667
##     MLQ_2            -0.144    0.072   -2.006    0.045   -0.169   -0.101
##     MLQ_3             0.094    0.071    1.322    0.186    0.110    0.065
##     MLQ_4             1.124    0.106   10.557    0.000    1.315    0.794
##     MLQ_5             0.766    0.104    7.358    0.000    0.897    0.594
##     MLQ_6             1.333    0.171    7.816    0.000    1.561    0.906
##     MLQ_7             0.066    0.069    0.965    0.335    0.078    0.047
##     MLQ_8            -0.044    0.069   -0.630    0.529   -0.051   -0.031
##     MLQ_10           -0.289    0.084   -3.444    0.001   -0.339   -0.185
##   Purpose =~
##     MLQ_1             1.000                               0.617    0.352
##     MLQ_4             0.409    0.263    1.555    0.120    0.252    0.152
##     MLQ_5             1.558    1.146    1.360    0.174    0.961    0.636
##     MLQ_6             0.026    0.537    0.049    0.961    0.016    0.009
##   Searching =~
##     MLQ_2             1.000                               1.325    0.794
##     MLQ_3             0.960    0.056   17.292    0.000    1.272    0.756
##     MLQ_7             0.912    0.054   16.786    0.000    1.208    0.737
##     MLQ_8             0.960    0.054   17.669    0.000    1.272    0.769
##     MLQ_10            1.104    0.058   18.883    0.000    1.463    0.801
## 
## Covariances:
##   MLQ ~~
##     Purpose           0.000                               0.000    0.000
##     Searching         0.000                               0.000    0.000
##   Purpose ~~
##     Searching         0.000                               0.000    0.000
## 
## Variances:
##     MLQ_1             1.325    0.235                      1.325    0.431
##     MLQ_2             0.997    0.084                      0.997    0.359
##     MLQ_3             1.203    0.095                      1.203    0.425
##     MLQ_4             0.954    0.138                      0.954    0.347
##     MLQ_5             0.555    0.644                      0.555    0.243
##     MLQ_6             0.530    0.312                      0.530    0.179
##     MLQ_7             1.219    0.094                      1.219    0.454
##     MLQ_8             1.116    0.089                      1.116    0.408
##     MLQ_10            1.084    0.096                      1.084    0.325
##     MLQ               1.370    0.309                      1.000    1.000
##     Purpose           0.380    0.361                      1.000    1.000
##     Searching         1.754    0.174                      1.000    1.000
## 
## R-Square:
## 
##     MLQ_1             0.569
##     MLQ_2             0.641
##     MLQ_3             0.575
##     MLQ_4             0.653
##     MLQ_5             0.757
##     MLQ_6             0.821
##     MLQ_7             0.546
##     MLQ_8             0.592
##     MLQ_10            0.675
summary(bifactor.negative.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  29 iterations
## 
##                                                   Used       Total
##   Number of observations                           480         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic             1343.770
##   Degrees of freedom                                33
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Negative =~
##     MLQ_9             1.000                               0.521    0.251
##   MLQ =~
##     MLQ_1             1.000                               1.345    0.767
##     MLQ_2            -0.202                              -0.271   -0.163
##     MLQ_3            -0.016                              -0.021   -0.013
##     MLQ_4             0.994                               1.337    0.807
##     MLQ_5             0.811                               1.091    0.722
##     MLQ_6             1.041                               1.401    0.813
##     MLQ_7             0.006                               0.008    0.005
##     MLQ_8            -0.104                              -0.140   -0.085
##     MLQ_9             0.941                               1.266    0.609
##     MLQ_10           -0.298                              -0.400   -0.219
## 
## Covariances:
##   Negative ~~
##     MLQ              -0.398                              -0.567   -0.567
## 
## Variances:
##     MLQ_9             3.187                               3.187    0.739
##     MLQ_1             1.266                               1.266    0.412
##     MLQ_2             2.706                               2.706    0.973
##     MLQ_3             2.833                               2.833    1.000
##     MLQ_4             0.959                               0.959    0.349
##     MLQ_5             1.091                               1.091    0.478
##     MLQ_6             1.004                               1.004    0.339
##     MLQ_7             2.683                               2.683    1.000
##     MLQ_8             2.717                               2.717    0.993
##     MLQ_10            3.178                               3.178    0.952
##     Negative          0.272                               1.000    1.000
##     MLQ               1.810                               1.000    1.000
## 
## R-Square:
## 
##     MLQ_9             0.261
##     MLQ_1             0.588
##     MLQ_2             0.027
##     MLQ_3             0.000
##     MLQ_4             0.651
##     MLQ_5             0.522
##     MLQ_6             0.661
##     MLQ_7             0.000
##     MLQ_8             0.007
##     MLQ_10            0.048

Residual correlations

correl = residuals(two.fit, type="cor")
correl
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.040  0.000                                                 
## MLQ_5   0.065 -0.021  0.000                                          
## MLQ_6  -0.016  0.057 -0.048  0.000                                   
## MLQ_9   0.061 -0.055  0.089 -0.057  0.000                            
## MLQ_2  -0.066  0.004 -0.025 -0.027 -0.277  0.000                     
## MLQ_3   0.027  0.140  0.075  0.119 -0.194 -0.040  0.000              
## MLQ_7   0.109  0.090  0.145  0.089 -0.127  0.004  0.023  0.000       
## MLQ_8   0.006  0.038  0.052  0.032 -0.161  0.018 -0.017  0.026  0.000
## MLQ_10 -0.069 -0.082 -0.025 -0.111 -0.289  0.010  0.042 -0.038 -0.022
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl$cor)
correl1 = residuals(one.fit, type="cor")
correl1
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 
## MLQ_1   0.000                                                        
## MLQ_2   0.002  0.000                                                 
## MLQ_3  -0.016  0.554  0.000                                          
## MLQ_4  -0.036  0.074  0.094  0.000                                   
## MLQ_5   0.066  0.039  0.034 -0.015  0.000                            
## MLQ_6  -0.015  0.044  0.073  0.064 -0.044  0.000                     
## MLQ_7   0.053  0.592  0.565  0.030  0.093  0.029  0.000              
## MLQ_8   0.016  0.624  0.555  0.048  0.061  0.042  0.590  0.000       
## MLQ_9   0.049 -0.235 -0.219 -0.065  0.079 -0.069 -0.160 -0.154  0.000
## MLQ_10  0.042  0.621  0.638  0.034  0.079  0.006  0.551  0.582 -0.220
##        MLQ_10
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_9        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl1$cor)
correl0 = residuals(second.fit, type="cor")
correl0
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.040  0.000                                                 
## MLQ_5   0.065 -0.021  0.000                                          
## MLQ_6  -0.016  0.057 -0.048  0.000                                   
## MLQ_9   0.061 -0.055  0.089 -0.057  0.000                            
## MLQ_2  -0.066  0.004 -0.025 -0.027 -0.277  0.000                     
## MLQ_3   0.027  0.140  0.075  0.119 -0.194 -0.040  0.000              
## MLQ_7   0.109  0.090  0.145  0.089 -0.127  0.004  0.023  0.000       
## MLQ_8   0.006  0.038  0.052  0.032 -0.161  0.018 -0.017  0.026  0.000
## MLQ_10 -0.069 -0.082 -0.025 -0.111 -0.289  0.010  0.042 -0.038 -0.022
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl0$cor)
correl2 = residuals(bifactor.fit, type="cor")
correl2
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.028  0.000                                                 
## MLQ_5   0.084 -0.009  0.000                                          
## MLQ_6  -0.007  0.019 -0.037  0.000                                   
## MLQ_9  -0.003  0.001  0.000  0.000  0.000                            
## MLQ_2  -0.010  0.019  0.038 -0.012 -0.022  0.000                     
## MLQ_3  -0.034  0.031  0.026  0.009 -0.038 -0.040  0.000              
## MLQ_7   0.032 -0.035  0.081 -0.037  0.014  0.010  0.004  0.000       
## MLQ_8  -0.007 -0.020  0.048 -0.027  0.034  0.024 -0.023  0.024  0.000
## MLQ_10  0.033 -0.015  0.082 -0.045  0.002  0.000  0.045 -0.028 -0.016
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl2$cor)
correl4 = residuals(bifactor1.fit, type="cor")
correl4
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 
## MLQ_1   0.000                                                        
## MLQ_2   0.060  0.000                                                 
## MLQ_3   0.090 -0.039  0.000                                          
## MLQ_4  -0.025  0.073  0.166  0.000                                   
## MLQ_5   0.067  0.104  0.140 -0.003  0.000                            
## MLQ_6  -0.002  0.045  0.147  0.014 -0.031  0.000                     
## MLQ_7   0.110  0.010  0.013  0.072  0.149  0.072  0.000              
## MLQ_8   0.054  0.021 -0.020  0.053  0.103  0.048  0.010  0.000       
## MLQ_9  -0.015 -0.049 -0.061  0.009 -0.004  0.000 -0.081 -0.047  0.000
## MLQ_10  0.064  0.002  0.046 -0.007  0.111 -0.033 -0.029 -0.015 -0.050
##        MLQ_10
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_9        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl4$cor)
correl5 = residuals(bifactorWO9.fit, type="cor")
correl5
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_2  MLQ_3  MLQ_7  MLQ_8  MLQ_10
## MLQ_1   0.000                                                        
## MLQ_4  -0.005  0.000                                                 
## MLQ_5   0.010  0.000  0.000                                          
## MLQ_6  -0.009  0.001 -0.001  0.000                                   
## MLQ_2  -0.044  0.033 -0.024  0.004  0.000                            
## MLQ_3  -0.051  0.048 -0.049  0.023 -0.037  0.000                     
## MLQ_7   0.027 -0.007  0.017 -0.012  0.009  0.008  0.000              
## MLQ_8  -0.020  0.008 -0.008  0.002  0.022 -0.021  0.023  0.000       
## MLQ_10 -0.007 -0.004  0.026 -0.028  0.004  0.047 -0.032 -0.021  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0
View(correl5$cor)
correl6 = residuals(bifactor1WO9.fit, type="cor")
correl6
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_10
## MLQ_1   0.000                                                        
## MLQ_2  -0.055  0.000                                                 
## MLQ_3  -0.069 -0.037  0.000                                          
## MLQ_4   0.000  0.023  0.032  0.000                                   
## MLQ_5   0.000 -0.019 -0.014  0.000  0.000                            
## MLQ_6   0.001  0.003  0.003 -0.001  0.000  0.000                     
## MLQ_7   0.025  0.010  0.005 -0.003  0.068 -0.010  0.000              
## MLQ_8  -0.028  0.024 -0.023  0.004  0.018  0.001  0.024  0.000       
## MLQ_10 -0.003  0.002  0.048  0.005  0.031 -0.004 -0.031 -0.021  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0
View(correl6$cor)
correl3 = residuals(bifactor.negative.fit, type="cor")
correl3
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 
## MLQ_9   0.000                                                        
## MLQ_1   0.049  0.000                                                 
## MLQ_2  -0.235  0.002  0.000                                          
## MLQ_3  -0.219 -0.016  0.554  0.000                                   
## MLQ_4  -0.065 -0.036  0.074  0.094  0.000                            
## MLQ_5   0.079  0.066  0.039  0.034 -0.015  0.000                     
## MLQ_6  -0.069 -0.015  0.044  0.073  0.064 -0.044  0.000              
## MLQ_7  -0.160  0.053  0.592  0.565  0.030  0.093  0.029  0.000       
## MLQ_8  -0.154  0.016  0.624  0.555  0.048  0.061  0.042  0.590  0.000
## MLQ_10 -0.220  0.042  0.621  0.638  0.034  0.079  0.006  0.551  0.582
##        MLQ_10
## MLQ_9        
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(correl3$cor)

zscore correlation anything over 1.96 is going to be statistically significant at the .05 level

zcorrels = residuals(two.fit, type = "standardized")
View(zcorrels$cov)
zcorrels1 = residuals(one.fit, type = "standardized")
View(zcorrels1$cov)
zcorrel0 = residuals(second.fit, type="cor")
zcorrel0
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.040  0.000                                                 
## MLQ_5   0.065 -0.021  0.000                                          
## MLQ_6  -0.016  0.057 -0.048  0.000                                   
## MLQ_9   0.061 -0.055  0.089 -0.057  0.000                            
## MLQ_2  -0.066  0.004 -0.025 -0.027 -0.277  0.000                     
## MLQ_3   0.027  0.140  0.075  0.119 -0.194 -0.040  0.000              
## MLQ_7   0.109  0.090  0.145  0.089 -0.127  0.004  0.023  0.000       
## MLQ_8   0.006  0.038  0.052  0.032 -0.161  0.018 -0.017  0.026  0.000
## MLQ_10 -0.069 -0.082 -0.025 -0.111 -0.289  0.010  0.042 -0.038 -0.022
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(zcorrel0$cor)
zcorrel2 = residuals(bifactor.fit, type="cor")
zcorrel2
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 
## MLQ_1   0.000                                                        
## MLQ_4  -0.028  0.000                                                 
## MLQ_5   0.084 -0.009  0.000                                          
## MLQ_6  -0.007  0.019 -0.037  0.000                                   
## MLQ_9  -0.003  0.001  0.000  0.000  0.000                            
## MLQ_2  -0.010  0.019  0.038 -0.012 -0.022  0.000                     
## MLQ_3  -0.034  0.031  0.026  0.009 -0.038 -0.040  0.000              
## MLQ_7   0.032 -0.035  0.081 -0.037  0.014  0.010  0.004  0.000       
## MLQ_8  -0.007 -0.020  0.048 -0.027  0.034  0.024 -0.023  0.024  0.000
## MLQ_10  0.033 -0.015  0.082 -0.045  0.002  0.000  0.045 -0.028 -0.016
##        MLQ_10
## MLQ_1        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_9        
## MLQ_2        
## MLQ_3        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_9  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(zcorrel2$cor)
zcorrel5 = residuals(bifactorWO9.fit, type="cor")
zcorrel5
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_2  MLQ_3  MLQ_7  MLQ_8  MLQ_10
## MLQ_1   0.000                                                        
## MLQ_4  -0.005  0.000                                                 
## MLQ_5   0.010  0.000  0.000                                          
## MLQ_6  -0.009  0.001 -0.001  0.000                                   
## MLQ_2  -0.044  0.033 -0.024  0.004  0.000                            
## MLQ_3  -0.051  0.048 -0.049  0.023 -0.037  0.000                     
## MLQ_7   0.027 -0.007  0.017 -0.012  0.009  0.008  0.000              
## MLQ_8  -0.020  0.008 -0.008  0.002  0.022 -0.021  0.023  0.000       
## MLQ_10 -0.007 -0.004  0.026 -0.028  0.004  0.047 -0.032 -0.021  0.000
## 
## $mean
##  MLQ_1  MLQ_4  MLQ_5  MLQ_6  MLQ_2  MLQ_3  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0
View(zcorrel5$cor)
correl6 = residuals(bifactor1WO9.fit, type="cor")
correl6
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_10
## MLQ_1   0.000                                                        
## MLQ_2  -0.055  0.000                                                 
## MLQ_3  -0.069 -0.037  0.000                                          
## MLQ_4   0.000  0.023  0.032  0.000                                   
## MLQ_5   0.000 -0.019 -0.014  0.000  0.000                            
## MLQ_6   0.001  0.003  0.003 -0.001  0.000  0.000                     
## MLQ_7   0.025  0.010  0.005 -0.003  0.068 -0.010  0.000              
## MLQ_8  -0.028  0.024 -0.023  0.004  0.018  0.001  0.024  0.000       
## MLQ_10 -0.003  0.002  0.048  0.005  0.031 -0.004 -0.031 -0.021  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0
View(correl6$cor)
zcorrel3 = residuals(bifactor.negative.fit, type="cor")
zcorrel3
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 
## MLQ_9   0.000                                                        
## MLQ_1   0.049  0.000                                                 
## MLQ_2  -0.235  0.002  0.000                                          
## MLQ_3  -0.219 -0.016  0.554  0.000                                   
## MLQ_4  -0.065 -0.036  0.074  0.094  0.000                            
## MLQ_5   0.079  0.066  0.039  0.034 -0.015  0.000                     
## MLQ_6  -0.069 -0.015  0.044  0.073  0.064 -0.044  0.000              
## MLQ_7  -0.160  0.053  0.592  0.565  0.030  0.093  0.029  0.000       
## MLQ_8  -0.154  0.016  0.624  0.555  0.048  0.061  0.042  0.590  0.000
## MLQ_10 -0.220  0.042  0.621  0.638  0.034  0.079  0.006  0.551  0.582
##        MLQ_10
## MLQ_9        
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_10  0.000
## 
## $mean
##  MLQ_9  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(zcorrel3$cor)
zcorrel4 = residuals(bifactor1.fit, type="cor")
zcorrel4
## $type
## [1] "cor.bollen"
## 
## $cor
##        MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 
## MLQ_1   0.000                                                        
## MLQ_2   0.060  0.000                                                 
## MLQ_3   0.090 -0.039  0.000                                          
## MLQ_4  -0.025  0.073  0.166  0.000                                   
## MLQ_5   0.067  0.104  0.140 -0.003  0.000                            
## MLQ_6  -0.002  0.045  0.147  0.014 -0.031  0.000                     
## MLQ_7   0.110  0.010  0.013  0.072  0.149  0.072  0.000              
## MLQ_8   0.054  0.021 -0.020  0.053  0.103  0.048  0.010  0.000       
## MLQ_9  -0.015 -0.049 -0.061  0.009 -0.004  0.000 -0.081 -0.047  0.000
## MLQ_10  0.064  0.002  0.046 -0.007  0.111 -0.033 -0.029 -0.015 -0.050
##        MLQ_10
## MLQ_1        
## MLQ_2        
## MLQ_3        
## MLQ_4        
## MLQ_5        
## MLQ_6        
## MLQ_7        
## MLQ_8        
## MLQ_9        
## MLQ_10  0.000
## 
## $mean
##  MLQ_1  MLQ_2  MLQ_3  MLQ_4  MLQ_5  MLQ_6  MLQ_7  MLQ_8  MLQ_9 MLQ_10 
##      0      0      0      0      0      0      0      0      0      0
View(zcorrel4$cor)

Modification indicies

modindices(two.fit, sort. = TRUE, minimum.value = 3.84)
##          lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1      MLQ_4 ~~  MLQ_6 57.467  0.680   0.680    0.238    0.238
## 2  Searching =~  MLQ_9 44.312 -0.459  -0.614   -0.296   -0.296
## 3    Purpose =~ MLQ_10 22.408 -0.216  -0.290   -0.159   -0.159
## 4      MLQ_1 ~~  MLQ_5 19.694  0.330   0.330    0.125    0.125
## 5      MLQ_5 ~~  MLQ_6 17.138 -0.309  -0.309   -0.119   -0.119
## 6      MLQ_1 ~~  MLQ_4 15.970 -0.344  -0.344   -0.118   -0.118
## 7    Purpose =~  MLQ_7 14.467  0.169   0.227    0.139    0.139
## 8      MLQ_5 ~~  MLQ_9 12.859  0.358   0.358    0.114    0.114
## 9    Purpose =~  MLQ_3 11.559  0.153   0.206    0.122    0.122
## 10     MLQ_3 ~~ MLQ_10 11.189  0.266   0.266    0.087    0.087
## 11     MLQ_4 ~~  MLQ_3 10.140  0.198   0.198    0.071    0.071
## 12     MLQ_2 ~~  MLQ_3  9.962 -0.229  -0.229   -0.082   -0.082
## 13     MLQ_6 ~~  MLQ_9  9.413 -0.325  -0.325   -0.091   -0.091
## 14     MLQ_7 ~~ MLQ_10  8.535 -0.227  -0.227   -0.076   -0.076
## 15     MLQ_4 ~~  MLQ_9  8.374 -0.296  -0.296   -0.086   -0.086
## 16     MLQ_6 ~~ MLQ_10  8.353 -0.187  -0.187   -0.059   -0.059
## 17     MLQ_6 ~~  MLQ_3  8.137  0.183   0.183    0.063    0.063
## 18     MLQ_1 ~~  MLQ_9  7.422  0.305   0.305    0.084    0.084
## 19     MLQ_9 ~~  MLQ_2  6.877 -0.252  -0.252   -0.073   -0.073
## 20     MLQ_5 ~~  MLQ_7  5.403  0.144   0.144    0.058    0.058
## 21     MLQ_1 ~~  MLQ_7  5.121  0.155   0.155    0.054    0.054
## 22   Purpose =~  MLQ_2  4.867 -0.092  -0.124   -0.074   -0.074
## 23     MLQ_1 ~~  MLQ_3  4.152 -0.141  -0.141   -0.048   -0.048
## 24     MLQ_9 ~~ MLQ_10  4.010 -0.211  -0.211   -0.056   -0.056
## 25     MLQ_9 ~~  MLQ_3  3.980 -0.209  -0.209   -0.060   -0.060
modindices(one.fit, sort. = TRUE, minimum.value = 3.84)
##      lhs op    rhs      mi    epc sepc.lv sepc.all sepc.nox
## 1  MLQ_3 ~~ MLQ_10 206.875  1.977   1.977    0.643    0.643
## 2  MLQ_2 ~~ MLQ_10 202.261  1.915   1.915    0.629    0.629
## 3  MLQ_2 ~~  MLQ_8 194.372  1.730   1.730    0.627    0.627
## 4  MLQ_8 ~~ MLQ_10 173.514  1.774   1.774    0.587    0.587
## 5  MLQ_2 ~~  MLQ_7 173.432  1.623   1.623    0.594    0.594
## 6  MLQ_7 ~~  MLQ_8 168.697  1.601   1.601    0.591    0.591
## 7  MLQ_7 ~~ MLQ_10 154.355  1.662   1.662    0.555    0.555
## 8  MLQ_3 ~~  MLQ_7 153.437  1.559   1.559    0.565    0.565
## 9  MLQ_2 ~~  MLQ_3 152.145  1.562   1.562    0.557    0.557
## 10 MLQ_3 ~~  MLQ_8 149.116  1.547   1.547    0.556    0.556
## 11 MLQ_4 ~~  MLQ_6  63.350  0.697   0.697    0.244    0.244
## 12 MLQ_2 ~~  MLQ_9  36.386 -0.852  -0.852   -0.246   -0.246
## 13 MLQ_9 ~~ MLQ_10  32.929 -0.880  -0.880   -0.232   -0.232
## 14 MLQ_3 ~~  MLQ_9  30.864 -0.801  -0.801   -0.229   -0.229
## 15 MLQ_1 ~~  MLQ_5  20.283  0.335   0.335    0.126    0.126
## 16 MLQ_3 ~~  MLQ_4  16.906  0.364   0.364    0.131    0.131
## 17 MLQ_7 ~~  MLQ_9  16.347 -0.567  -0.567   -0.167   -0.167
## 18 MLQ_8 ~~  MLQ_9  15.353 -0.553  -0.553   -0.161   -0.161
## 19 MLQ_5 ~~  MLQ_6  13.709 -0.274  -0.274   -0.105   -0.105
## 20 MLQ_6 ~~  MLQ_9  13.518 -0.389  -0.389   -0.109   -0.109
## 21 MLQ_1 ~~  MLQ_4  12.190 -0.297  -0.297   -0.102   -0.102
## 22 MLQ_4 ~~  MLQ_9  11.440 -0.345  -0.345   -0.100   -0.100
## 23 MLQ_2 ~~  MLQ_4  10.951  0.288   0.288    0.104    0.104
## 24 MLQ_3 ~~  MLQ_6  10.666  0.299   0.299    0.103    0.103
## 25 MLQ_5 ~~  MLQ_9  10.269  0.319   0.319    0.102    0.102
## 26 MLQ_5 ~~  MLQ_7  10.265  0.273   0.273    0.111    0.111
## 27 MLQ_5 ~~ MLQ_10   7.912  0.263   0.263    0.095    0.095
## 28 MLQ_1 ~~  MLQ_9   4.911  0.247   0.247    0.068    0.068
## 29 MLQ_5 ~~  MLQ_8   4.533  0.183   0.183    0.073    0.073
## 30 MLQ_4 ~~  MLQ_8   4.387  0.182   0.182    0.066    0.066
## 31 MLQ_1 ~~  MLQ_7   4.159  0.193   0.193    0.067    0.067
## 32 MLQ_2 ~~  MLQ_6   4.052  0.181   0.181    0.063    0.063
#modindices(second.fit, sort. = TRUE, minimum.value = 3.84)
#modindices(bifactor.fit, sort. = TRUE, minimum.value = 3.84)
modindices(bifactor1WO9.fit, sort. = TRUE, minimum.value = 3.84)
##       lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1   MLQ_3 ~~ MLQ_10 17.547  0.323   0.323    0.105    0.105
## 2 Purpose =~  MLQ_7  9.046  0.389   0.240    0.147    0.147
## 3   MLQ_2 ~~  MLQ_3  8.944 -0.213  -0.213   -0.076   -0.076
## 4   MLQ_7 ~~ MLQ_10  6.597 -0.193  -0.193   -0.065   -0.065
## 5   MLQ_1 ~~  MLQ_3  4.625 -0.149  -0.149   -0.050   -0.050
## 6   MLQ_3 ~~  MLQ_4  4.432  0.143   0.143    0.051    0.051
## 7   MLQ_5 ~~  MLQ_7  4.261  0.136   0.136    0.055    0.055
## 8 Purpose =~  MLQ_2  3.953 -0.227  -0.140   -0.084   -0.084
## 9   MLQ_2 ~~  MLQ_8  3.905  0.138   0.138    0.050    0.050
#modindices(bifactor.fitWO9, sort. = TRUE, minimum.value = 3.84)
modindices(bifactor1.fit, sort. = TRUE, minimum.value = 3.84)
##          lhs op       rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1  Searching =~     MLQ_9 34.800 -0.730  -0.893   -0.430   -0.430
## 2      MLQ_4 ~~     MLQ_6 22.375  0.838   0.838    0.294    0.294
## 3      MLQ_1 ~~     MLQ_5 22.331  0.364   0.364    0.137    0.137
## 4    Purpose =~     MLQ_3 19.161  0.309   0.291    0.173    0.173
## 5    Purpose ~~ Searching 14.881  0.350   0.304    0.304    0.304
## 6  Searching =~     MLQ_5 14.303  0.188   0.230    0.152    0.152
## 7      MLQ_3 ~~    MLQ_10 13.022  0.278   0.278    0.090    0.090
## 8    Purpose =~    MLQ_10 12.617 -0.298  -0.281   -0.154   -0.154
## 9      MLQ_7 ~~     MLQ_9 12.242 -0.487  -0.487   -0.143   -0.143
## 10     MLQ_6 ~~    MLQ_10 10.335 -0.207  -0.207   -0.066   -0.066
## 11     MLQ_1 ~~     MLQ_4  9.960 -0.299  -0.299   -0.103   -0.103
## 12     MLQ_5 ~~     MLQ_6  9.904 -0.241  -0.241   -0.092   -0.092
## 13     MLQ_2 ~~     MLQ_3  9.135 -0.213  -0.213   -0.076   -0.076
## 14     MLQ_1 ~~     MLQ_9  6.876 -0.600  -0.600   -0.165   -0.165
## 15     MLQ_3 ~~     MLQ_4  6.550  0.155   0.155    0.055    0.055
## 16     MLQ_5 ~~    MLQ_10  6.346  0.165   0.165    0.060    0.060
## 17     MLQ_1 ~~    MLQ_10  5.685  0.173   0.173    0.054    0.054
## 18     MLQ_7 ~~    MLQ_10  5.650 -0.182  -0.182   -0.061   -0.061
## 19     MLQ_3 ~~     MLQ_6  4.698  0.136   0.136    0.047    0.047
## 20     MLQ_4 ~~     MLQ_9  4.535  0.431   0.431    0.125    0.125
## 21     MLQ_4 ~~    MLQ_10  4.190 -0.128  -0.128   -0.042   -0.042
#modindices(bifactor.negative.fit, sort. = TRUE, minimum.value = 3.84)

Fit Measures

fitmeasures(two.fit)#Models two factors:Purpose and Seraching for Purpose  
##                npar                fmin               chisq 
##              21.000               0.220             210.725 
##                  df              pvalue      baseline.chisq 
##              34.000               0.000            2327.115 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.923 
##                 tli                nnfi                 rfi 
##               0.898               0.898               0.880 
##                 nfi                pnfi                 ifi 
##               0.909               0.687               0.923 
##                 rni                logl   unrestricted.logl 
##               0.923           -8337.651           -8232.289 
##                 aic                 bic              ntotal 
##           16717.302           16804.952             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           16738.300               0.104               0.091 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.118               0.000               0.283 
##          rmr_nomean                srmr        srmr_bentler 
##               0.283               0.085               0.085 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.085               0.085               0.085 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.085               0.085             111.709 
##               cn_01                 gfi                agfi 
##             128.698               0.918               0.868 
##                pgfi                 mfi                ecvi 
##               0.568               0.832               0.527
fitmeasures(one.fit) #Models as a single purpose factor
##                npar                fmin               chisq 
##              20.000               1.400            1343.770 
##                  df              pvalue      baseline.chisq 
##              35.000               0.000            2327.115 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.427 
##                 tli                nnfi                 rfi 
##               0.263               0.263               0.258 
##                 nfi                pnfi                 ifi 
##               0.423               0.329               0.429 
##                 rni                logl   unrestricted.logl 
##               0.427           -8904.173           -8232.289 
##                 aic                 bic              ntotal 
##           17848.347           17931.823             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           17868.345               0.279               0.266 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.292               0.000               0.761 
##          rmr_nomean                srmr        srmr_bentler 
##               0.761               0.261               0.261 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.261               0.261               0.261 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.261               0.261              18.789 
##               cn_01                 gfi                agfi 
##              21.483               0.548               0.290 
##                pgfi                 mfi                ecvi 
##               0.349               0.256               2.883
fitmeasures(second.fit)#Second order models as Purpose being the higher factor made up of Purpose and Searching
##                npar                fmin               chisq 
##              23.000               0.220             210.725 
##                  df              pvalue      baseline.chisq 
##              32.000               0.000            2327.115 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.922 
##                 tli                nnfi                 rfi 
##               0.890               0.890               0.873 
##                 nfi                pnfi                 ifi 
##               0.909               0.647               0.922 
##                 rni                logl   unrestricted.logl 
##               0.922           -8337.651           -8232.289 
##                 aic                 bic              ntotal 
##           16721.302           16817.299             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           16744.300               0.108               0.094 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.122               0.000               0.283 
##          rmr_nomean                srmr        srmr_bentler 
##               0.283               0.085               0.085 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.085               0.085               0.085 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.085               0.085             106.224 
##               cn_01                 gfi                agfi 
##             122.832               0.918               0.859 
##                pgfi                 mfi                ecvi 
##               0.534               0.830               0.535
fitmeasures(bifactor.fit)#Models bifactor with Searching and Purpose as factors corolated with the main factor
##                npar                fmin               chisq 
##              33.000               0.092              87.956 
##                  df              pvalue      baseline.chisq 
##              22.000               0.000            2327.115 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.971 
##                 tli                nnfi                 rfi 
##               0.941               0.941               0.923 
##                 nfi                pnfi                 ifi 
##               0.962               0.470               0.971 
##                 rni                logl   unrestricted.logl 
##               0.971           -8276.267           -8232.289 
##                 aic                 bic              ntotal 
##           16618.533           16756.268             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           16651.530               0.079               0.062 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.097               0.003               0.083 
##          rmr_nomean                srmr        srmr_bentler 
##               0.083               0.030               0.030 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.030               0.030               0.030 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.030               0.030             186.135 
##               cn_01                 gfi                agfi 
##             220.870               0.965               0.911 
##                pgfi                 mfi                ecvi 
##               0.386               0.934               0.321
fitmeasures(bifactor1.fit)#Models bifactor with Searching and Purpose as factors uncorolated with the main factor
##                npar                fmin               chisq 
##              30.000               0.116             111.380 
##                  df              pvalue      baseline.chisq 
##              25.000               0.000            2327.115 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.962 
##                 tli                nnfi                 rfi 
##               0.932               0.932               0.914 
##                 nfi                pnfi                 ifi 
##               0.952               0.529               0.962 
##                 rni                logl   unrestricted.logl 
##               0.962           -8287.979           -8232.289 
##                 aic                 bic              ntotal 
##           16635.957           16761.171             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           16665.954               0.085               0.069 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.101               0.000               0.173 
##          rmr_nomean                srmr        srmr_bentler 
##               0.173               0.062               0.062 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.062               0.062               0.062 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.062               0.062             163.266 
##               cn_01                 gfi                agfi 
##             191.974               0.957               0.906 
##                pgfi                 mfi                ecvi 
##               0.435               0.914               0.357
fitmeasures(bifactorWO9.fit)#Models bifactor with Searching and Purpose as factors corolated with the main factor leaving negatively worded questions out
##                npar                fmin               chisq 
##              30.000               0.057              54.474 
##                  df              pvalue      baseline.chisq 
##              15.000               0.000            2156.393 
##         baseline.df     baseline.pvalue                 cfi 
##              36.000               0.000               0.981 
##                 tli                nnfi                 rfi 
##               0.955               0.955               0.939 
##                 nfi                pnfi                 ifi 
##               0.975               0.406               0.982 
##                 rni                logl   unrestricted.logl 
##               0.981           -7313.047           -7285.810 
##                 aic                 bic              ntotal 
##           14686.095           14811.308             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           14716.091               0.074               0.053 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.096               0.028               0.062 
##          rmr_nomean                srmr        srmr_bentler 
##               0.062               0.022               0.022 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.022               0.022               0.022 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.022               0.022             221.252 
##               cn_01                 gfi                agfi 
##             270.439               0.978               0.933 
##                pgfi                 mfi                ecvi 
##               0.326               0.960               0.238
fitmeasures(bifactor1WO9.fit)#Models bifactor with Searching and Purpose as factors uncorolated with the main factor leaving negatively worded questions out
##                npar                fmin               chisq 
##              27.000               0.054              51.412 
##                  df              pvalue      baseline.chisq 
##              18.000               0.000            2156.393 
##         baseline.df     baseline.pvalue                 cfi 
##              36.000               0.000               0.984 
##                 tli                nnfi                 rfi 
##               0.968               0.968               0.952 
##                 nfi                pnfi                 ifi 
##               0.976               0.488               0.984 
##                 rni                logl   unrestricted.logl 
##               0.984           -7311.516           -7285.810 
##                 aic                 bic              ntotal 
##           14677.033           14789.725             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           14704.030               0.062               0.043 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.082               0.143               0.066 
##          rmr_nomean                srmr        srmr_bentler 
##               0.066               0.023               0.023 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.023               0.023               0.023 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.023               0.023             270.533 
##               cn_01                 gfi                agfi 
##             325.953               0.979               0.947 
##                pgfi                 mfi                ecvi 
##               0.391               0.966               0.220
fitmeasures(bifactor.negative.fit)#Models bifactor as the negatively worded item as a factor uncorolated with the main factor
##                npar                fmin               chisq 
##              22.000               1.400            1343.770 
##                  df              pvalue      baseline.chisq 
##              33.000               0.000            2327.115 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.426 
##                 tli                nnfi                 rfi 
##               0.217               0.217               0.213 
##                 nfi                pnfi                 ifi 
##               0.423               0.310               0.429 
##                 rni                logl   unrestricted.logl 
##               0.426           -8904.173           -8232.289 
##                 aic                 bic              ntotal 
##           17852.347           17944.170             480.000 
##                bic2               rmsea      rmsea.ci.lower 
##           17874.345               0.288               0.275 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.301               0.000               0.761 
##          rmr_nomean                srmr        srmr_bentler 
##               0.761               0.261               0.261 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.261               0.261               0.261 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.261               0.261              17.931 
##               cn_01                 gfi                agfi 
##              20.566               0.548               0.247 
##                pgfi                 mfi                ecvi 
##               0.329               0.255               2.891

Create dataset for Target rotation

all_surveys<-read.csv("allsurveys.csv")
MLQ<-select(all_surveys, MLQ_1, MLQ_4,MLQ_5,MLQ_6,MLQ_9,MLQ_2,MLQ_3,MLQ_7,MLQ_8,MLQ_10)
MLQ<- data.frame(apply(MLQ,2, as.numeric))
library(GPArotation)
library(psych)
library(dplyr)

MLQ<-tbl_df(MLQ)
MLQ$MLQ_9  <-  8- MLQ$MLQ_9
MLQ
## Source: local data frame [757 x 10]
## 
##    MLQ_1 MLQ_4 MLQ_5 MLQ_6 MLQ_9 MLQ_2 MLQ_3 MLQ_7 MLQ_8 MLQ_10
## 1      4     5     6     4     3     7     7     5     7      7
## 2      3     5     4     3     3     5     5     5     4      5
## 3      4     4     4     4     4     7     5     4     5      4
## 4      5     3     5     5     3     6     7     5     5      6
## 5      4     4     4     4     5     6     5     5     5      5
## 6      5     4     5     5     7     5     3     3     4      3
## 7      6     3     6     3     5     2     2     5     4      4
## 8      3     5     5     4     4     7     7     5     7      5
## 9      6     7     6     6     7     5     2     5     7      2
## 10     1     3     5     1     6     7     1     5     5      1
## ..   ...   ...   ...   ...   ...   ...   ...   ...   ...    ...
str(MLQ)
## Classes 'tbl_df', 'tbl' and 'data.frame':    757 obs. of  10 variables:
##  $ MLQ_1 : num  4 3 4 5 4 5 6 3 6 1 ...
##  $ MLQ_4 : num  5 5 4 3 4 4 3 5 7 3 ...
##  $ MLQ_5 : num  6 4 4 5 4 5 6 5 6 5 ...
##  $ MLQ_6 : num  4 3 4 5 4 5 3 4 6 1 ...
##  $ MLQ_9 : num  3 3 4 3 5 7 5 4 7 6 ...
##  $ MLQ_2 : num  7 5 7 6 6 5 2 7 5 7 ...
##  $ MLQ_3 : num  7 5 5 7 5 3 2 7 2 1 ...
##  $ MLQ_7 : num  5 5 4 5 5 3 5 5 5 5 ...
##  $ MLQ_8 : num  7 4 5 5 5 4 4 7 7 5 ...
##  $ MLQ_10: num  7 5 4 6 5 3 4 5 2 1 ...
colnames(MLQ) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10")
#Target rotation: choose "simple structure" a priori and can be applied to oblique and orthogonal rotation based on 
#what paper says facotrs should be MLQ
Targ_key <- make.keys(10,list(f1=1:5,f2=6:10))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
out_targetQ <- fa(MLQ,2,rotate="TargetQ",Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA")]
## $loadings
## 
## Loadings:
##    MR2    MR1   
## 1          0.763
## 2          0.815
## 3          0.729
## 4          0.818
## 5  -0.274  0.438
## 6   0.793       
## 7   0.761       
## 8   0.743  0.106
## 9   0.767       
## 10  0.794 -0.133
## 
##                  MR2   MR1
## SS loadings    3.060 2.683
## Proportion Var 0.306 0.268
## Cumulative Var 0.306 0.574
## 
## $score.cor
##            [,1]       [,2]
## [1,]  1.0000000 -0.1127662
## [2,] -0.1127662  1.0000000
## 
## $TLI
## [1] 0.9234499
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.09030479 0.07791644 0.10227615 0.10000000
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = MLQ, nfactors = 2, rotate = "TargetQ", Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR2   MR1   h2   u2 com
## 1   0.00  0.76 0.58 0.42 1.0
## 2   0.06  0.82 0.66 0.34 1.0
## 3   0.06  0.73 0.53 0.47 1.0
## 4   0.03  0.82 0.67 0.33 1.0
## 5  -0.27  0.44 0.29 0.71 1.7
## 6   0.79 -0.07 0.65 0.35 1.0
## 7   0.76  0.09 0.57 0.43 1.0
## 8   0.74  0.11 0.55 0.45 1.0
## 9   0.77  0.01 0.59 0.41 1.0
## 10  0.79 -0.13 0.67 0.33 1.1
## 
##                        MR2  MR1
## SS loadings           3.06 2.68
## Proportion Var        0.31 0.27
## Cumulative Var        0.31 0.57
## Proportion Explained  0.53 0.47
## Cumulative Proportion 0.53 1.00
## 
##  With factor correlations of 
##      MR2  MR1
## MR2  1.0 -0.1
## MR1 -0.1  1.0
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  45  and the objective function was  4.85 with Chi Square of  3645.01
## The degrees of freedom for the model are 26  and the objective function was  0.25 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  480 with the empirical chi square  49.41  with prob <  0.0037 
## The total number of observations was  757  with MLE Chi Square =  184.94  with prob <  6.5e-26 
## 
## Tucker Lewis Index of factoring reliability =  0.923
## RMSEA index =  0.09  and the 90 % confidence intervals are  0.078 0.102
## BIC =  12.58
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 MR2  MR1
## Correlation of scores with factors             0.94 0.93
## Multiple R square of scores with factors       0.88 0.87
## Minimum correlation of possible factor scores  0.77 0.74

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.9558505

Droping MLQ_9 which is a reversed scoded question

Create dataset for Target rotation

all_surveys<-read.csv("allsurveys.csv")
MLQ<-select(all_surveys, MLQ_1, MLQ_4,MLQ_5,MLQ_6,MLQ_2,MLQ_3,MLQ_7,MLQ_8,MLQ_10)
MLQ<- data.frame(apply(MLQ,2, as.numeric))
library(GPArotation)
library(psych)
library(dplyr)

MLQ<-tbl_df(MLQ)
MLQ
## Source: local data frame [757 x 9]
## 
##    MLQ_1 MLQ_4 MLQ_5 MLQ_6 MLQ_2 MLQ_3 MLQ_7 MLQ_8 MLQ_10
## 1      4     5     6     4     7     7     5     7      7
## 2      3     5     4     3     5     5     5     4      5
## 3      4     4     4     4     7     5     4     5      4
## 4      5     3     5     5     6     7     5     5      6
## 5      4     4     4     4     6     5     5     5      5
## 6      5     4     5     5     5     3     3     4      3
## 7      6     3     6     3     2     2     5     4      4
## 8      3     5     5     4     7     7     5     7      5
## 9      6     7     6     6     5     2     5     7      2
## 10     1     3     5     1     7     1     5     5      1
## ..   ...   ...   ...   ...   ...   ...   ...   ...    ...
str(MLQ)
## Classes 'tbl_df', 'tbl' and 'data.frame':    757 obs. of  9 variables:
##  $ MLQ_1 : num  4 3 4 5 4 5 6 3 6 1 ...
##  $ MLQ_4 : num  5 5 4 3 4 4 3 5 7 3 ...
##  $ MLQ_5 : num  6 4 4 5 4 5 6 5 6 5 ...
##  $ MLQ_6 : num  4 3 4 5 4 5 3 4 6 1 ...
##  $ MLQ_2 : num  7 5 7 6 6 5 2 7 5 7 ...
##  $ MLQ_3 : num  7 5 5 7 5 3 2 7 2 1 ...
##  $ MLQ_7 : num  5 5 4 5 5 3 5 5 5 5 ...
##  $ MLQ_8 : num  7 4 5 5 5 4 4 7 7 5 ...
##  $ MLQ_10: num  7 5 4 6 5 3 4 5 2 1 ...
colnames(MLQ) <- c("1","2", "3", "4", "5", "6", "7", "8", "9")
#Target rotation: choose "simple structure" a priori and can be applied to oblique and orthogonal rotation based on 
#what paper says facotrs should be MLQ
Targ_key <- make.keys(9,list(f1=1:4,f2=6:9))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
out_targetQ <- fa(MLQ,2,rotate="TargetQ",Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA")]
## $loadings
## 
## Loadings:
##   MR2    MR1   
## 1         0.744
## 2         0.830
## 3         0.704
## 4         0.836
## 5  0.794       
## 6  0.756       
## 7  0.742       
## 8  0.770       
## 9  0.797 -0.143
## 
##                  MR2   MR1
## SS loadings    2.985 2.481
## Proportion Var 0.332 0.276
## Cumulative Var 0.332 0.607
## 
## $score.cor
##             [,1]        [,2]
## [1,]  1.00000000 -0.04316592
## [2,] -0.04316592  1.00000000
## 
## $TLI
## [1] 0.9345899
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.08991438 0.07557203 0.10406370 0.10000000
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = MLQ, nfactors = 2, rotate = "TargetQ", Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##     MR2   MR1   h2   u2 com
## 1 -0.01  0.74 0.56 0.44 1.0
## 2  0.04  0.83 0.69 0.31 1.0
## 3  0.04  0.70 0.49 0.51 1.0
## 4  0.01  0.84 0.70 0.30 1.0
## 5  0.79 -0.08 0.64 0.36 1.0
## 6  0.76  0.09 0.57 0.43 1.0
## 7  0.74  0.09 0.55 0.45 1.0
## 8  0.77  0.00 0.59 0.41 1.0
## 9  0.80 -0.14 0.67 0.33 1.1
## 
##                        MR2  MR1
## SS loadings           2.98 2.48
## Proportion Var        0.33 0.28
## Cumulative Var        0.33 0.61
## Proportion Explained  0.55 0.45
## Cumulative Proportion 0.55 1.00
## 
##  With factor correlations of 
##       MR2   MR1
## MR2  1.00 -0.06
## MR1 -0.06  1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  36  and the objective function was  4.49 with Chi Square of  3379.1
## The degrees of freedom for the model are 19  and the objective function was  0.18 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  480 with the empirical chi square  29.72  with prob <  0.055 
## The total number of observations was  757  with MLE Chi Square =  134.2  with prob <  2.3e-19 
## 
## Tucker Lewis Index of factoring reliability =  0.935
## RMSEA index =  0.09  and the 90 % confidence intervals are  0.076 0.104
## BIC =  8.25
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 MR2  MR1
## Correlation of scores with factors             0.94 0.93
## Multiple R square of scores with factors       0.89 0.87
## Minimum correlation of possible factor scores  0.77 0.75

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.9655399