library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
airquality <- airquality
head (airquality,10)
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
## 7 23 299 8.6 65 5 7
## 8 19 99 13.8 59 5 8
## 9 8 19 20.1 61 5 9
## 10 NA 194 8.6 69 5 10
summary(airquality)
## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7
## Month Day
## Min. :5.000 Min. : 1.0
## 1st Qu.:6.000 1st Qu.: 8.0
## Median :7.000 Median :16.0
## Mean :6.993 Mean :15.8
## 3rd Qu.:8.000 3rd Qu.:23.0
## Max. :9.000 Max. :31.0
##
airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"
airquality$Month<-factor(airquality$Month, levels=c("May", "June","July", "August", "September"))
p1 <- qplot(data = airquality,Temp,fill = Month,geom = "histogram", bins = 20)
p1
p2 <- airquality %>%
ggplot(aes(x=Temp, fill=Month)) +
ggtitle("A histogram Temp by Month using ggplot")+
geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p2
p3 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Boxplots of Average Temperature by Month") +
xlab("Monthly Temperatures") +
ylab("Frequency") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3
p4 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Side by Side Boxplots (grey-scale) of monthly Temperature Variations") +
xlab("Monthly Temperatures") +
ylab("Frequency") +
geom_boxplot()+
scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4
pscatter <- airquality %>%
ggplot(aes(Temp, Ozone)) +
ggtitle("Temperature Variations by Ozone and regression line (95% CI) ") +
xlab("Monthly Temperatures") +
ylab("Ozone") +
geom_point()+
geom_smooth(method=lm)
pscatter
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 37 rows containing non-finite values (stat_smooth).
## Warning: Removed 37 rows containing missing values (geom_point).
model <- lm(Ozone ~ Temp, data = airquality)
summary(model)
##
## Call:
## lm(formula = Ozone ~ Temp, data = airquality)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.729 -17.409 -0.587 11.306 118.271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -146.9955 18.2872 -8.038 9.37e-13 ***
## Temp 2.4287 0.2331 10.418 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.71 on 114 degrees of freedom
## (37 observations deleted due to missingness)
## Multiple R-squared: 0.4877, Adjusted R-squared: 0.4832
## F-statistic: 108.5 on 1 and 114 DF, p-value: < 2.2e-16
According to Dr. Shen, there is an association between temperature and ozone. Specifically, global climate change and specific geographical locations may bring about more heat waves during the summer, which could bring about a 70 to 100 percent increase in high ozone episodes. The graph below suggests a strong association between temperature and ozone R^2=.47. Also, the data suggest that a 2.4 increase in temp is associated with one Dobson unit increase in ozone Source: https://news.harvard.edu/gazette/story/2016/04/the-complex-relationship-between-heat-and-ozone/