SDQI Please select from the list below to what extent you think each / item is true or untrue. 1. I do lots of important things
2. Overall I am no good 3. In general, I like being the way I am
4. Overall I have a lot to be proud of
5. I can’t do anything right
6. I can do things as well as most other people 7. Other people think I am a good person
8. A lot of things about me are good
9. I am as good as most other people
10. When I do something, I do it well

library(lavaan)
## This is lavaan 0.5-18
## lavaan is BETA software! Please report any bugs.
library(semPlot)
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GPArotation)
library(psych)
library(car)
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
library(GGally)
## 
## Attaching package: 'GGally'
## 
## The following object is masked from 'package:dplyr':
## 
##     nasa

loadthedata

data <- read.csv("~/Psychometric_study_data/allsurveysT1.csv")
data<-tbl_df(data)
SDQI<-select(data, SDQI_1, SDQI_2, SDQI_3, SDQI_4, SDQI_5, SDQI_6,SDQI_7, SDQI_8, SDQI_9, SDQI_9.1)
names(SDQI)[10] <- "SDQI_10"
SDQI$SDQI_2  <-  9- SDQI$SDQI_2
SDQI$SDQI_5  <-  9- SDQI$SDQI_5
SDQI<-tbl_df(SDQI)
SDQI
## Source: local data frame [757 x 10]
## 
##    SDQI_1 SDQI_2 SDQI_3 SDQI_4 SDQI_5 SDQI_6 SDQI_7 SDQI_8 SDQI_9 SDQI_10
## 1       6      6      6      7      6      7      7      7      7       7
## 2       5      6      6      6      6      6      8      7      7       6
## 3       5      8      5      5      8      6      5      6      6       8
## 4       6      8      7      6      6      7      7      7      7       6
## 5       4      6      5      5      6      4      6      6      6       4
## 6       7      6      6      5      8      5      4      6      4       5
## 7       4      4      7      6      6      7      7      7      7       5
## 8       5      8      5      6      7      4      6      6      6       7
## 9       7      8      7      8      8      7      8      8      8       7
## 10      5      6      5      7      4      5      7      7      6       7
## ..    ...    ...    ...    ...    ...    ...    ...    ...    ...     ...

create plots

#ggpairs(SDQI, columns = 1:15, title="Big 5 Marsh" )

create the models

two.model= ' Factor1  =~ SDQI_1 +  SDQI_2  + SDQI_3 + SDQI_4 + SDQI_5   
              Factor2 =~   SDQI_6 + SDQI_7 + SDQI_8 + SDQI_9  +SDQI_10'       
              

one.model= 'SDQI =~ SDQI_1 +  SDQI_2  + SDQI_3 + SDQI_4 + SDQI_5 + SDQI_6 + SDQI_7 + SDQI_8 + SDQI_9 + SDQI_10'

run the models

two.fit=cfa(two.model, data=SDQI)
one.fit=cfa(one.model, data=SDQI)

create pictures

semPaths(two.fit, whatLabels = "std", layout = "tree")

semPaths(one.fit, whatLabels = "std", layout = "tree")

#summaries

summary(two.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  34 iterations
## 
##                                                   Used       Total
##   Number of observations                           105         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic               95.750
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Factor1 =~
##     SDQI_1            1.000                               1.120    0.728
##     SDQI_2            0.886    0.148    6.000    0.000    0.993    0.610
##     SDQI_3            0.884    0.127    6.985    0.000    0.991    0.708
##     SDQI_4            1.166    0.134    8.709    0.000    1.307    0.897
##     SDQI_5            0.924    0.150    6.169    0.000    1.035    0.627
##   Factor2 =~
##     SDQI_6            1.000                               0.917    0.599
##     SDQI_7            1.134    0.186    6.103    0.000    1.040    0.729
##     SDQI_8            1.258    0.174    7.212    0.000    1.154    0.962
##     SDQI_9            1.290    0.194    6.639    0.000    1.184    0.826
##     SDQI_10           1.084    0.168    6.444    0.000    0.995    0.789
## 
## Covariances:
##   Factor1 ~~
##     Factor2           0.834    0.192    4.347    0.000    0.812    0.812
## 
## Variances:
##     SDQI_1            1.117    0.177                      1.117    0.471
##     SDQI_2            1.663    0.246                      1.663    0.628
##     SDQI_3            0.976    0.152                      0.976    0.499
##     SDQI_4            0.417    0.108                      0.417    0.196
##     SDQI_5            1.653    0.246                      1.653    0.607
##     SDQI_6            1.504    0.214                      1.504    0.641
##     SDQI_7            0.954    0.141                      0.954    0.469
##     SDQI_8            0.106    0.044                      0.106    0.074
##     SDQI_9            0.652    0.104                      0.652    0.318
##     SDQI_10           0.599    0.092                      0.599    0.377
##     Factor1           1.255    0.302                      1.000    1.000
##     Factor2           0.841    0.254                      1.000    1.000
## 
## R-Square:
## 
##     SDQI_1            0.529
##     SDQI_2            0.372
##     SDQI_3            0.501
##     SDQI_4            0.804
##     SDQI_5            0.393
##     SDQI_6            0.359
##     SDQI_7            0.531
##     SDQI_8            0.926
##     SDQI_9            0.682
##     SDQI_10           0.623
summary(one.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  26 iterations
## 
##                                                   Used       Total
##   Number of observations                           105         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              147.093
##   Degrees of freedom                                35
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   SDQI =~
##     SDQI_1            1.000                               1.084    0.704
##     SDQI_2            0.792    0.152    5.213    0.000    0.859    0.528
##     SDQI_3            0.792    0.131    6.057    0.000    0.859    0.614
##     SDQI_4            1.074    0.137    7.843    0.000    1.164    0.799
##     SDQI_5            0.772    0.154    5.016    0.000    0.837    0.507
##     SDQI_6            0.877    0.143    6.124    0.000    0.951    0.621
##     SDQI_7            0.931    0.134    6.962    0.000    1.009    0.707
##     SDQI_8            1.026    0.114    9.020    0.000    1.113    0.928
##     SDQI_9            1.052    0.135    7.815    0.000    1.141    0.796
##     SDQI_10           0.937    0.118    7.907    0.000    1.015    0.806
## 
## Variances:
##     SDQI_1            1.197    0.177                      1.197    0.504
##     SDQI_2            1.912    0.271                      1.912    0.722
##     SDQI_3            1.220    0.175                      1.220    0.623
##     SDQI_4            0.768    0.120                      0.768    0.362
##     SDQI_5            2.022    0.286                      2.022    0.743
##     SDQI_6            1.441    0.207                      1.441    0.615
##     SDQI_7            1.017    0.150                      1.017    0.500
##     SDQI_8            0.200    0.047                      0.200    0.139
##     SDQI_9            0.752    0.117                      0.752    0.366
##     SDQI_10           0.557    0.088                      0.557    0.351
##     SDQI              1.175    0.289                      1.000    1.000
## 
## R-Square:
## 
##     SDQI_1            0.496
##     SDQI_2            0.278
##     SDQI_3            0.377
##     SDQI_4            0.638
##     SDQI_5            0.257
##     SDQI_6            0.385
##     SDQI_7            0.500
##     SDQI_8            0.861
##     SDQI_9            0.634
##     SDQI_10           0.649

Residual correlations

correl = residuals(two.fit, type="cor")
correl
## $type
## [1] "cor.bollen"
## 
## $cor
##         SDQI_1 SDQI_2 SDQI_3 SDQI_4 SDQI_5 SDQI_6 SDQI_7 SDQI_8 SDQI_9
## SDQI_1   0.000                                                        
## SDQI_2  -0.010  0.000                                                 
## SDQI_3   0.022 -0.135  0.000                                          
## SDQI_4  -0.037 -0.002  0.037  0.000                                   
## SDQI_5   0.028  0.268  0.003 -0.028  0.000                            
## SDQI_6   0.111 -0.048  0.077  0.082  0.013  0.000                     
## SDQI_7   0.022 -0.111 -0.013 -0.059 -0.095 -0.062  0.000              
## SDQI_8   0.055 -0.024 -0.041  0.027 -0.080 -0.029  0.008  0.000       
## SDQI_9  -0.059 -0.001 -0.102 -0.045 -0.125  0.134  0.013  0.005  0.000
## SDQI_10  0.174  0.003  0.047  0.048 -0.045 -0.007  0.014 -0.003 -0.036
##         SDQI_10
## SDQI_1         
## SDQI_2         
## SDQI_3         
## SDQI_4         
## SDQI_5         
## SDQI_6         
## SDQI_7         
## SDQI_8         
## SDQI_9         
## SDQI_10  0.000 
## 
## $mean
##  SDQI_1  SDQI_2  SDQI_3  SDQI_4  SDQI_5  SDQI_6  SDQI_7  SDQI_8  SDQI_9 
##       0       0       0       0       0       0       0       0       0 
## SDQI_10 
##       0
View(correl$cor)
correl1 = residuals(one.fit, type="cor")
correl1
## $type
## [1] "cor.bollen"
## 
## $cor
##         SDQI_1 SDQI_2 SDQI_3 SDQI_4 SDQI_5 SDQI_6 SDQI_7 SDQI_8 SDQI_9
## SDQI_1   0.000                                                        
## SDQI_2   0.062  0.000                                                 
## SDQI_3   0.105 -0.027  0.000                                          
## SDQI_4   0.052  0.124  0.181  0.000                                   
## SDQI_5   0.127  0.383  0.135  0.129  0.000                            
## SDQI_6   0.028 -0.079  0.041  0.022  0.003  0.000                     
## SDQI_7  -0.045 -0.124 -0.028 -0.094 -0.083 -0.065  0.000              
## SDQI_8  -0.030 -0.037 -0.057 -0.014 -0.061 -0.029  0.053  0.000       
## SDQI_9  -0.131 -0.012 -0.116 -0.080 -0.109  0.135  0.052  0.061  0.000
## SDQI_10  0.073 -0.031  0.006 -0.021 -0.052 -0.034  0.020  0.009 -0.026
##         SDQI_10
## SDQI_1         
## SDQI_2         
## SDQI_3         
## SDQI_4         
## SDQI_5         
## SDQI_6         
## SDQI_7         
## SDQI_8         
## SDQI_9         
## SDQI_10  0.000 
## 
## $mean
##  SDQI_1  SDQI_2  SDQI_3  SDQI_4  SDQI_5  SDQI_6  SDQI_7  SDQI_8  SDQI_9 
##       0       0       0       0       0       0       0       0       0 
## SDQI_10 
##       0
View(correl1$cor)

zscore correlation anything over 1.96 is going to be statistically significant at the .05 level

zcorrels = residuals(two.fit, type = "standardized")
View(zcorrels$cov)
zcorrels1 = residuals(one.fit, type = "standardized")
View(zcorrels1$cov)

Modification indicies

modindices(two.fit, sort. = TRUE, minimum.value = 3.84)
##       lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1  SDQI_2 ~~  SDQI_5 23.304  0.849   0.849    0.316    0.316
## 2  SDQI_6 ~~  SDQI_9 11.254  0.357   0.357    0.163    0.163
## 3  SDQI_2 ~~  SDQI_3  7.721 -0.387  -0.387   -0.170   -0.170
## 4  SDQI_1 ~~ SDQI_10  6.999  0.234   0.234    0.121    0.121
## 5  SDQI_6 ~~  SDQI_8  6.709 -0.190  -0.190   -0.104   -0.104
## 6 Factor1 =~  SDQI_9  5.697 -0.400  -0.448   -0.313   -0.313
## 7  SDQI_1 ~~  SDQI_4  5.105 -0.270  -0.270   -0.120   -0.120
## 8 Factor2 =~  SDQI_5  4.939 -0.675  -0.619   -0.375   -0.375
## 9  SDQI_3 ~~  SDQI_4  4.405  0.226   0.226    0.111    0.111
modindices(one.fit, sort. = TRUE, minimum.value = 3.84)
##       lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1  SDQI_2 ~~  SDQI_5 30.144  1.080   1.080    0.402    0.402
## 2  SDQI_8 ~~  SDQI_9 19.096  0.261   0.261    0.152    0.152
## 3  SDQI_3 ~~  SDQI_4 18.402  0.444   0.444    0.218    0.218
## 4  SDQI_1 ~~  SDQI_9 12.181 -0.361  -0.361   -0.164   -0.164
## 5  SDQI_6 ~~  SDQI_9 10.139  0.354   0.354    0.162    0.162
## 6  SDQI_7 ~~  SDQI_8  8.747  0.188   0.188    0.110    0.110
## 7  SDQI_4 ~~  SDQI_5  7.640  0.363   0.363    0.151    0.151
## 8  SDQI_3 ~~  SDQI_8  7.600 -0.183  -0.183   -0.109   -0.109
## 9  SDQI_3 ~~  SDQI_9  7.363 -0.278  -0.278   -0.138   -0.138
## 10 SDQI_2 ~~  SDQI_4  7.236  0.345   0.345    0.145    0.145
## 11 SDQI_4 ~~  SDQI_9  7.004 -0.229  -0.229   -0.110   -0.110
## 12 SDQI_5 ~~  SDQI_8  6.715 -0.215  -0.215   -0.109   -0.109
## 13 SDQI_4 ~~  SDQI_7  6.381 -0.244  -0.244   -0.117   -0.117
## 14 SDQI_5 ~~  SDQI_9  5.317 -0.300  -0.300   -0.127   -0.127
## 15 SDQI_1 ~~  SDQI_5  4.964  0.355   0.355    0.140    0.140
## 16 SDQI_2 ~~  SDQI_7  4.905 -0.317  -0.317   -0.136   -0.136
## 17 SDQI_3 ~~  SDQI_5  4.432  0.334   0.334    0.144    0.144
## 18 SDQI_1 ~~  SDQI_3  4.114  0.254   0.254    0.118    0.118
## 19 SDQI_1 ~~ SDQI_10  3.997  0.179   0.179    0.092    0.092

Fit Measures

fitmeasures(two.fit)
##                npar                fmin               chisq 
##              21.000               0.456              95.750 
##                  df              pvalue      baseline.chisq 
##              34.000               0.000             693.269 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.905 
##                 tli                nnfi                 rfi 
##               0.874               0.874               0.817 
##                 nfi                pnfi                 ifi 
##               0.862               0.651               0.906 
##                 rni                logl   unrestricted.logl 
##               0.905           -1578.199           -1530.324 
##                 aic                 bic              ntotal 
##            3198.398            3254.132             105.000 
##                bic2               rmsea      rmsea.ci.lower 
##            3187.789               0.132               0.101 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.163               0.000               0.158 
##          rmr_nomean                srmr        srmr_bentler 
##               0.158               0.068               0.068 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.068               0.068               0.068 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.068               0.068              54.297 
##               cn_01                 gfi                agfi 
##              62.476               0.870               0.790 
##                pgfi                 mfi                ecvi 
##               0.538               0.745               1.312
fitmeasures(one.fit)
##                npar                fmin               chisq 
##              20.000               0.700             147.093 
##                  df              pvalue      baseline.chisq 
##              35.000               0.000             693.269 
##         baseline.df     baseline.pvalue                 cfi 
##              45.000               0.000               0.827 
##                 tli                nnfi                 rfi 
##               0.778               0.778               0.727 
##                 nfi                pnfi                 ifi 
##               0.788               0.613               0.830 
##                 rni                logl   unrestricted.logl 
##               0.827           -1603.871           -1530.324 
##                 aic                 bic              ntotal 
##            3247.741            3300.820             105.000 
##                bic2               rmsea      rmsea.ci.lower 
##            3237.637               0.175               0.146 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.204               0.000               0.206 
##          rmr_nomean                srmr        srmr_bentler 
##               0.206               0.086               0.086 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.086               0.086               0.086 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.086               0.086              36.550 
##               cn_01                 gfi                agfi 
##              41.933               0.773               0.643 
##                pgfi                 mfi                ecvi 
##               0.492               0.586               1.782

Create dataset for Target rotation

SDQITR<-select(SDQI, SDQI_1  , SDQI_2 , SDQI_3, SDQI_4 ,  SDQI_5 , SDQI_6 ,SDQI_7 , SDQI_8 , SDQI_9 , SDQI_10)
colnames(SDQITR) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10")
#Target Roration
Targ_key <- make.keys(10,list(f1=1:5,f2=6:10))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
out_targetQ <- fa(SDQITR,2,rotate="TargetQ",Target=Targ_key) #TargetT for orthogonal rotation
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A Heywood case was detected. Examine the loadings carefully.
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA","uniquenesses")]
## $loadings
## 
## Loadings:
##    MR2    MR1   
## 1          0.753
## 2   0.349  0.410
## 3          0.660
## 4   0.799  0.172
## 5  -0.320  0.680
## 6   0.665  0.188
## 7   0.788       
## 8   0.836  0.221
## 9   1.019 -0.119
## 10  0.600  0.372
## 
##                  MR2   MR1
## SS loadings    4.033 1.900
## Proportion Var 0.403 0.190
## Cumulative Var 0.403 0.593
## 
## $score.cor
##           [,1]      [,2]
## [1,] 1.0000000 0.5421326
## [2,] 0.5421326 1.0000000
## 
## $TLI
## [1] 0.6891925
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
##  0.2513522  0.2385670  0.2621346  0.1000000 
## 
## $uniquenesses
##          1          2          3          4          5          6 
## 0.44474586 0.57361999 0.49293033 0.20116271 0.64328390 0.40270116 
##          7          8          9         10 
## 0.37266517 0.07485861 0.06338803 0.28862137
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = SDQITR, nfactors = 2, rotate = "TargetQ", Target = Targ_key)
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR2   MR1   h2    u2 com
## 1  -0.02  0.75 0.56 0.445 1.0
## 2   0.35  0.41 0.43 0.574 2.0
## 3   0.10  0.66 0.51 0.493 1.0
## 4   0.80  0.17 0.80 0.201 1.1
## 5  -0.32  0.68 0.36 0.643 1.4
## 6   0.66  0.19 0.60 0.403 1.2
## 7   0.79  0.01 0.63 0.373 1.0
## 8   0.84  0.22 0.93 0.075 1.1
## 9   1.02 -0.12 0.94 0.063 1.0
## 10  0.60  0.37 0.71 0.289 1.7
## 
##                        MR2  MR1
## SS loadings           4.29 2.15
## Proportion Var        0.43 0.22
## Cumulative Var        0.43 0.64
## Proportion Explained  0.67 0.33
## Cumulative Proportion 0.67 1.00
## 
##  With factor correlations of 
##      MR2  MR1
## MR2 1.00 0.48
## MR1 0.48 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  45  and the objective function was  9.21 with Chi Square of  6921.17
## The degrees of freedom for the model are 26  and the objective function was  1.68 
## 
## The root mean square of the residuals (RMSR) is  0.06 
## The df corrected root mean square of the residuals is  0.08 
## 
## The harmonic number of observations is  122 with the empirical chi square  37.18  with prob <  0.072 
## The total number of observations was  757  with MLE Chi Square =  1258.6  with prob <  4.1e-249 
## 
## Tucker Lewis Index of factoring reliability =  0.689
## RMSEA index =  0.251  and the 90 % confidence intervals are  0.239 0.262
## BIC =  1086.24
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 MR2  MR1
## Correlation of scores with factors             0.99 0.91
## Multiple R square of scores with factors       0.97 0.83
## Minimum correlation of possible factor scores  0.94 0.67

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.8207429

As one Factor

Targ_key <- make.keys(10,list(f1=1:10))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
out_targetQ <- fa(SDQITR,1,rotate="TargetQ",Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA","uniquenesses")]
## $loadings
## 
## Loadings:
##    MR1  
## 1  0.456
## 2  0.597
## 3  0.520
## 4  0.891
## 5  0.114
## 6  0.743
## 7  0.791
## 8  0.978
## 9  0.900
## 10 0.818
## 
##                  MR1
## SS loadings    5.255
## Proportion Var 0.525
## 
## $<NA>
## NULL
## 
## $TLI
## [1] 0.6479753
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
##  0.2674960  0.2563662  0.2766677  0.1000000 
## 
## $uniquenesses
##         1         2         3         4         5         6         7 
## 0.7921042 0.6432833 0.7299681 0.2067172 0.9870978 0.4485997 0.3739752 
##         8         9        10 
## 0.0436710 0.1895581 0.3304892
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = SDQITR, nfactors = 1, rotate = "TargetQ", Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##     MR1    h2    u2 com
## 1  0.46 0.208 0.792   1
## 2  0.60 0.357 0.643   1
## 3  0.52 0.270 0.730   1
## 4  0.89 0.793 0.207   1
## 5  0.11 0.013 0.987   1
## 6  0.74 0.551 0.449   1
## 7  0.79 0.626 0.374   1
## 8  0.98 0.956 0.044   1
## 9  0.90 0.810 0.190   1
## 10 0.82 0.670 0.330   1
## 
##                 MR1
## SS loadings    5.25
## Proportion Var 0.53
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  45  and the objective function was  9.21 with Chi Square of  6921.17
## The degrees of freedom for the model are 35  and the objective function was  2.55 
## 
## The root mean square of the residuals (RMSR) is  0.12 
## The df corrected root mean square of the residuals is  0.14 
## 
## The harmonic number of observations is  122 with the empirical chi square  155.86  with prob <  3.5e-17 
## The total number of observations was  757  with MLE Chi Square =  1915.99  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.648
## RMSEA index =  0.267  and the 90 % confidence intervals are  0.256 0.277
## BIC =  1683.97
## Fit based upon off diagonal values = 0.95
## Measures of factor score adequacy             
##                                                 MR1
## Correlation of scores with factors             0.99
## Multiple R square of scores with factors       0.97
## Minimum correlation of possible factor scores  0.95

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.7264474