Importar base de datos

#file.choose()
bd <- read.csv("/Users/vanessaelizondo/Desktop/Tec/Semestre 7/CSV/cancer_de_mama.csv")

Entender base de datos

resumen<-summary(bd)
resumen
##   diagnosis          radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave.points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave.points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave.points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750
Cancer_de_Mama <-bd

Crear el Arbol de decisión

#install.packages("rpart.plot")
library(rpart.plot)
## Loading required package: rpart
arbol<- rpart(formula =diagnosis ~. , data=Cancer_de_Mama)
arbol
## n= 569 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 569 212 B (0.62741652 0.37258348)  
##    2) radius_worst< 16.795 379  33 B (0.91292876 0.08707124)  
##      4) concave.points_worst< 0.1358 333   5 B (0.98498498 0.01501502) *
##      5) concave.points_worst>=0.1358 46  18 M (0.39130435 0.60869565)  
##       10) texture_worst< 25.67 19   4 B (0.78947368 0.21052632) *
##       11) texture_worst>=25.67 27   3 M (0.11111111 0.88888889) *
##    3) radius_worst>=16.795 190  11 M (0.05789474 0.94210526) *
#install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(arbol)

prp(arbol,extra=7,prefix="fraccion/n")

#install.packages("ggplot")
library("ggplot2")

library("tidyverse")
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.0      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ✔ purrr   0.3.4      
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()

Gráfica

Puntos azules MALIGNOS

Puntos rojos BENIGNOS:

ggplot(data=Cancer_de_Mama, mapping =aes(radius_worst, concave.points_worst))+geom_point(aes(color=diagnosis)) + theme_bw()

Conclusiones

Este caso es del Cancer de Mama, a través de los datos de un excel pudimos extraer información y conertirla en un gráfico que nos permite visualizar y entender de manera más simple los datos.

Usamos la codificación de “Crear un Arbol de Decisiones” para extraer gráficos. En el arbol de decisión podemos ver que del 100% de los tumores, cuando su radius es menor a 17 son Benignos representando el 67% y cuando es mayor a 17 son malignos, representando el 33%. De ese 67% cuando su concave es menor a 0.14 permanecen benignos representando el 59% y cuando el concave es mayoa 0.14 tienen mayor probabilidad de ser Malignos lo que viene siendo un 8%, de ese 8%, 3% de ellos permanecen benignos al tener una mala textura menor a 26 puntos y aquellos que tienen la textura mayor a 26 puntos vienen siendo malignos representando el 5%.

Para visualizar la última gráfica se usaron las variables de “Concave points wors” y “Radius worst” y estas nos pueden indicar en que angulo se encuentra cada tumor y cuál es su estado de ser maligno o benigno y podemos ver que aquellos que se encuentran entre 20 puntos de radius worst y .2 de concave point worst son identificados como Malignos.

LS0tCnRpdGxlOiA8c3BhbiBzdHlsZSA9ICJjb2xvcjpwaW5rIj4qKkNhbmNlciBkZSBNYW1hKioKYXV0aG9yOiAiVmFuZXNzYSBFbGl6b25kbyAtIEEwMDgyNzY3MiIKZGF0ZTogIjIwMjItMDktMDgiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRoZW1lOiBjb3NtbwogICAgaGlnaGxpZ2h0OiBrYXRlCiAgICBjc3M6IHN0eWxlcy5jc3MKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCi0tLQo8aW1nIHNyYz0iL1VzZXJzL3ZhbmVzc2FlbGl6b25kby9EZXNrdG9wL1RlYy9TZW1lc3RyZSA3L0VudHJlZ2EgMy4xL2ZvdG9zL2NhbmNlciBkZSBtYW1hLmpwZWciPgoKIyMgSW1wb3J0YXIgYmFzZSBkZSBkYXRvcwpgYGB7cn0KI2ZpbGUuY2hvb3NlKCkKYmQgPC0gcmVhZC5jc3YoIi9Vc2Vycy92YW5lc3NhZWxpem9uZG8vRGVza3RvcC9UZWMvU2VtZXN0cmUgNy9DU1YvY2FuY2VyX2RlX21hbWEuY3N2IikKYGBgCgojIyBFbnRlbmRlciBiYXNlIGRlIGRhdG9zCmBgYHtyfQpyZXN1bWVuPC1zdW1tYXJ5KGJkKQpyZXN1bWVuCgpDYW5jZXJfZGVfTWFtYSA8LWJkCmBgYAoKIyMgQ3JlYXIgZWwgQXJib2wgZGUgZGVjaXNpw7NuCmBgYHtyfQojaW5zdGFsbC5wYWNrYWdlcygicnBhcnQucGxvdCIpCmxpYnJhcnkocnBhcnQucGxvdCkKYXJib2w8LSBycGFydChmb3JtdWxhID1kaWFnbm9zaXMgfi4gLCBkYXRhPUNhbmNlcl9kZV9NYW1hKQphcmJvbAojaW5zdGFsbC5wYWNrYWdlcygicnBhcnQucGxvdCIpCmxpYnJhcnkocnBhcnQucGxvdCkKcnBhcnQucGxvdChhcmJvbCkKCnBycChhcmJvbCxleHRyYT03LHByZWZpeD0iZnJhY2Npb24vbiIpCgojaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90IikKbGlicmFyeSgiZ2dwbG90MiIpCmxpYnJhcnkoInRpZHl2ZXJzZSIpCmBgYAoKIyMgR3LDoWZpY2EgCjxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWUiPlB1bnRvcyBhenVsZXMgTUFMSUdOT1M8L3NwYW4+Cgo8c3BhbiBzdHlsZSA9ICJjb2xvcjpyZWQiPlB1bnRvcyByb2pvcyBCRU5JR05PUzo8L3NwYW4+CgpgYGB7cn0KZ2dwbG90KGRhdGE9Q2FuY2VyX2RlX01hbWEsIG1hcHBpbmcgPWFlcyhyYWRpdXNfd29yc3QsIGNvbmNhdmUucG9pbnRzX3dvcnN0KSkrZ2VvbV9wb2ludChhZXMoY29sb3I9ZGlhZ25vc2lzKSkgKyB0aGVtZV9idygpCmBgYAoKIyMgKipDb25jbHVzaW9uZXMqKgpFc3RlIGNhc28gZXMgZGVsICpDYW5jZXIgZGUgTWFtYSosIGEgdHJhdsOpcyBkZSBsb3MgZGF0b3MgZGUgdW4gZXhjZWwgcHVkaW1vcyBleHRyYWVyIGluZm9ybWFjacOzbiB5IGNvbmVydGlybGEgZW4gdW4gZ3LDoWZpY28gcXVlIG5vcyBwZXJtaXRlIHZpc3VhbGl6YXIgeSBlbnRlbmRlciBkZSBtYW5lcmEgbcOhcyBzaW1wbGUgbG9zIGRhdG9zLiAKClVzYW1vcyBsYSBjb2RpZmljYWNpw7NuIGRlICoqIkNyZWFyIHVuIEFyYm9sIGRlIERlY2lzaW9uZXMiKiogcGFyYSBleHRyYWVyIGdyw6FmaWNvcy4gRW4gZWwgYXJib2wgZGUgZGVjaXNpw7NuIHBvZGVtb3MgdmVyIHF1ZSBkZWwgMTAwJSBkZSBsb3MgdHVtb3JlcywgY3VhbmRvIHN1IHJhZGl1cyBlcyBtZW5vciBhIDE3IHNvbiBCZW5pZ25vcyByZXByZXNlbnRhbmRvIGVsIDY3JSB5IGN1YW5kbyBlcyBtYXlvciBhIDE3IHNvbiBtYWxpZ25vcywgcmVwcmVzZW50YW5kbyBlbCAzMyUuIERlIGVzZSA2NyUgY3VhbmRvIHN1IGNvbmNhdmUgZXMgbWVub3IgYSAwLjE0IHBlcm1hbmVjZW4gYmVuaWdub3MgcmVwcmVzZW50YW5kbyBlbCA1OSUgeSBjdWFuZG8gZWwgY29uY2F2ZSBlcyBtYXlvYSAwLjE0IHRpZW5lbiBtYXlvciBwcm9iYWJpbGlkYWQgZGUgc2VyIE1hbGlnbm9zIGxvIHF1ZSB2aWVuZSBzaWVuZG8gdW4gOCUsIGRlIGVzZSA4JSwgMyUgZGUgZWxsb3MgcGVybWFuZWNlbiBiZW5pZ25vcyBhbCB0ZW5lciB1bmEgbWFsYSB0ZXh0dXJhIG1lbm9yIGEgMjYgcHVudG9zIHkgYXF1ZWxsb3MgcXVlIHRpZW5lbiBsYSB0ZXh0dXJhIG1heW9yIGEgMjYgcHVudG9zIHZpZW5lbiBzaWVuZG8gbWFsaWdub3MgcmVwcmVzZW50YW5kbyBlbCA1JS4gIAoKUGFyYSB2aXN1YWxpemFyIGxhIMO6bHRpbWEgZ3LDoWZpY2Egc2UgdXNhcm9uIGxhcyB2YXJpYWJsZXMgZGUgIkNvbmNhdmUgcG9pbnRzIHdvcnMiIHkgIlJhZGl1cyB3b3JzdCIgeSBlc3RhcyBub3MgcHVlZGVuIGluZGljYXIgZW4gcXVlIGFuZ3VsbyBzZSBlbmN1ZW50cmEgY2FkYSB0dW1vciB5IGN1w6FsIGVzIHN1IGVzdGFkbyBkZSBzZXIgbWFsaWdubyBvIGJlbmlnbm8geSBwb2RlbW9zIHZlciBxdWUgYXF1ZWxsb3MgcXVlIHNlIGVuY3VlbnRyYW4gZW50cmUgMjAgcHVudG9zIGRlIHJhZGl1cyB3b3JzdCB5IC4yIGRlIGNvbmNhdmUgcG9pbnQgd29yc3Qgc29uIGlkZW50aWZpY2Fkb3MgY29tbyAqKk1hbGlnbm9zKiouIAo=