#file.choose()
stores <- read.csv("/Users/vanessaelizondo/Desktop/Tec/Semestre 7/Walmart/stores.csv")
features <- read.csv("/Users/vanessaelizondo/Desktop/Tec/Semestre 7/Walmart/features.csv")
train <- read.csv("/Users/vanessaelizondo/Desktop/Tec/Semestre 7/Walmart/train.csv")
test <- read.csv("/Users/vanessaelizondo/Desktop/Tec/Semestre 7/Walmart/test.csv")#install.packages("dplyr")
library(dplyr)##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
summary(stores)## Store Type Size
## Min. : 1 Length:45 Min. : 34875
## 1st Qu.:12 Class :character 1st Qu.: 70713
## Median :23 Mode :character Median :126512
## Mean :23 Mean :130288
## 3rd Qu.:34 3rd Qu.:202307
## Max. :45 Max. :219622
count(stores, Type, sort=TRUE)## Type n
## 1 A 22
## 2 B 17
## 3 C 6
str(stores)## 'data.frame': 45 obs. of 3 variables:
## $ Store: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Type : chr "A" "A" "B" "A" ...
## $ Size : int 151315 202307 37392 205863 34875 202505 70713 155078 125833 126512 ...
summary(features)## Store Date Temperature Fuel_Price
## Min. : 1 Length:8190 Min. : -7.29 Min. :2.472
## 1st Qu.:12 Class :character 1st Qu.: 45.90 1st Qu.:3.041
## Median :23 Mode :character Median : 60.71 Median :3.513
## Mean :23 Mean : 59.36 Mean :3.406
## 3rd Qu.:34 3rd Qu.: 73.88 3rd Qu.:3.743
## Max. :45 Max. :101.95 Max. :4.468
##
## MarkDown1 MarkDown2 MarkDown3 MarkDown4
## Min. : -2781 Min. : -265.76 Min. : -179.26 Min. : 0.22
## 1st Qu.: 1578 1st Qu.: 68.88 1st Qu.: 6.60 1st Qu.: 304.69
## Median : 4744 Median : 364.57 Median : 36.26 Median : 1176.42
## Mean : 7032 Mean : 3384.18 Mean : 1760.10 Mean : 3292.94
## 3rd Qu.: 8923 3rd Qu.: 2153.35 3rd Qu.: 163.15 3rd Qu.: 3310.01
## Max. :103185 Max. :104519.54 Max. :149483.31 Max. :67474.85
## NA's :4158 NA's :5269 NA's :4577 NA's :4726
## MarkDown5 CPI Unemployment IsHoliday
## Min. : -185.2 Min. :126.1 Min. : 3.684 Mode :logical
## 1st Qu.: 1440.8 1st Qu.:132.4 1st Qu.: 6.634 FALSE:7605
## Median : 2727.1 Median :182.8 Median : 7.806 TRUE :585
## Mean : 4132.2 Mean :172.5 Mean : 7.827
## 3rd Qu.: 4832.6 3rd Qu.:213.9 3rd Qu.: 8.567
## Max. :771448.1 Max. :229.0 Max. :14.313
## NA's :4140 NA's :585 NA's :585
str(features)## 'data.frame': 8190 obs. of 12 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr "05/02/2010" "12/02/2010" "19/02/2010" "26/02/2010" ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ MarkDown1 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown2 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown3 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown4 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown5 : num NA NA NA NA NA NA NA NA NA NA ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
## $ IsHoliday : logi FALSE TRUE FALSE FALSE FALSE FALSE ...
Paso 1. Definir el area del negocio que buscamos impactar o mejorar y su KPI.
#El deparatamento de mercadotecnia de EUA (con muestra de 45 tiendas) en el indicador de ventas semanales.
Paso 2. Seleccionar plantilla (-s) para crear valor a partir de los datos de los clientes.
Visión / Segmentación / Personalización / Contextualización
Paso 3. Generar Ideas o conceptos específicos
#Elaborar un modelo de ventas predictivas
Paso 4. Reunir los datos requeridos
#Elaborar una base de datos con la variable dependiente (Ventas semanales) y las variables independientes.
Paso 5. Plan de ejecución
#Mercadotecnia elabora plan para desplegar eel modelo preditivo en fases:
#Fase 1. Piloto (San Antonio, Tx)
#Fase 2. Texas
#Fase 3. EUA
#Sistemas asegurara la captura del Markdown en las bases de datos.
bd<- merge(train,stores, by= "Store")bd1<- bd
bd1<- merge(bd1,features)bd2<- bd1
str(bd2)## 'data.frame': 421570 obs. of 16 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr "01/04/2011" "01/04/2011" "01/04/2011" "01/04/2011" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ MarkDown1 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown2 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown3 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown4 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown5 : num NA NA NA NA NA NA NA NA NA NA ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
bd2<-subset(bd2, select=-c(MarkDown1,MarkDown2,MarkDown3,MarkDown4,MarkDown5))
summary(bd2)## Store Date IsHoliday Dept
## Min. : 1.0 Length:421570 Mode :logical Min. : 1.00
## 1st Qu.:11.0 Class :character FALSE:391909 1st Qu.:18.00
## Median :22.0 Mode :character TRUE :29661 Median :37.00
## Mean :22.2 Mean :44.26
## 3rd Qu.:33.0 3rd Qu.:74.00
## Max. :45.0 Max. :99.00
## Weekly_Sales Type Size Temperature
## Min. : -4989 Length:421570 Min. : 34875 Min. : -2.06
## 1st Qu.: 2080 Class :character 1st Qu.: 93638 1st Qu.: 46.68
## Median : 7612 Mode :character Median :140167 Median : 62.09
## Mean : 15981 Mean :136728 Mean : 60.09
## 3rd Qu.: 20206 3rd Qu.:202505 3rd Qu.: 74.28
## Max. :693099 Max. :219622 Max. :100.14
## Fuel_Price CPI Unemployment
## Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.:2.933 1st Qu.:132.0 1st Qu.: 6.891
## Median :3.452 Median :182.3 Median : 7.866
## Mean :3.361 Mean :171.2 Mean : 7.960
## 3rd Qu.:3.738 3rd Qu.:212.4 3rd Qu.: 8.572
## Max. :4.468 Max. :227.2 Max. :14.313
bd2$Date <- as.Date(bd2$Date, format= "%d/%m/%Y")
str(bd2)## 'data.frame': 421570 obs. of 11 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2011-04-01" "2011-04-01" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
#install.packages("wordspace")
library(wordspace)## Loading required package: Matrix
signcount(bd2$Weekly_Sales)## pos zero neg
## 420212 73 1285
bd3 <- bd2
bd3 <- bd3[bd3$Weekly_Sales > 0,]
summary (bd3)## Store Date IsHoliday Dept
## Min. : 1.0 Min. :2010-02-05 Mode :logical Min. : 1.00
## 1st Qu.:11.0 1st Qu.:2010-10-08 FALSE:390652 1st Qu.:18.00
## Median :22.0 Median :2011-06-17 TRUE :29560 Median :37.00
## Mean :22.2 Mean :2011-06-18 Mean :44.24
## 3rd Qu.:33.0 3rd Qu.:2012-02-24 3rd Qu.:74.00
## Max. :45.0 Max. :2012-10-26 Max. :99.00
## Weekly_Sales Type Size Temperature
## Min. : 0 Length:420212 Min. : 34875 Min. : -2.06
## 1st Qu.: 2120 Class :character 1st Qu.: 93638 1st Qu.: 46.68
## Median : 7662 Mode :character Median :140167 Median : 62.09
## Mean : 16033 Mean :136750 Mean : 60.09
## 3rd Qu.: 20271 3rd Qu.:202505 3rd Qu.: 74.28
## Max. :693099 Max. :219622 Max. :100.14
## Fuel_Price CPI Unemployment
## Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.:2.933 1st Qu.:132.0 1st Qu.: 6.891
## Median :3.452 Median :182.4 Median : 7.866
## Mean :3.361 Mean :171.2 Mean : 7.960
## 3rd Qu.:3.738 3rd Qu.:212.4 3rd Qu.: 8.567
## Max. :4.468 Max. :227.2 Max. :14.313
bd4 <- bd3
bd4$week_number <- strftime(bd4$Date, format = "%V")
str(bd4)## 'data.frame': 420212 obs. of 12 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2011-04-01" "2011-04-01" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
## $ week_number : chr "13" "13" "13" "13" ...
bd4$week_number <- as.integer(bd4$week_number)
str(bd4)## 'data.frame': 420212 obs. of 12 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2011-04-01" "2011-04-01" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
## $ week_number : int 13 13 13 13 13 13 13 13 13 13 ...
summary(bd4)## Store Date IsHoliday Dept
## Min. : 1.0 Min. :2010-02-05 Mode :logical Min. : 1.00
## 1st Qu.:11.0 1st Qu.:2010-10-08 FALSE:390652 1st Qu.:18.00
## Median :22.0 Median :2011-06-17 TRUE :29560 Median :37.00
## Mean :22.2 Mean :2011-06-18 Mean :44.24
## 3rd Qu.:33.0 3rd Qu.:2012-02-24 3rd Qu.:74.00
## Max. :45.0 Max. :2012-10-26 Max. :99.00
## Weekly_Sales Type Size Temperature
## Min. : 0 Length:420212 Min. : 34875 Min. : -2.06
## 1st Qu.: 2120 Class :character 1st Qu.: 93638 1st Qu.: 46.68
## Median : 7662 Mode :character Median :140167 Median : 62.09
## Mean : 16033 Mean :136750 Mean : 60.09
## 3rd Qu.: 20271 3rd Qu.:202505 3rd Qu.: 74.28
## Max. :693099 Max. :219622 Max. :100.14
## Fuel_Price CPI Unemployment week_number
## Min. :2.472 Min. :126.1 Min. : 3.879 Min. : 1.00
## 1st Qu.:2.933 1st Qu.:132.0 1st Qu.: 6.891 1st Qu.:14.00
## Median :3.452 Median :182.4 Median : 7.866 Median :26.00
## Mean :3.361 Mean :171.2 Mean : 7.960 Mean :25.83
## 3rd Qu.:3.738 3rd Qu.:212.4 3rd Qu.: 8.567 3rd Qu.:38.00
## Max. :4.468 Max. :227.2 Max. :14.313 Max. :52.00
bd5<- bd4
bd5<- bd5 %>%
dplyr::mutate(year = lubridate::year(Date),
month = lubridate::month(Date),
day = lubridate::day(Date))regresion <- lm (Weekly_Sales ~ Store + Dept + IsHoliday + Type + Size + Temperature + Fuel_Price + CPI + Unemployment + week_number + year + month + day, data=bd5)
summary (regresion)##
## Call:
## lm(formula = Weekly_Sales ~ Store + Dept + IsHoliday + Type +
## Size + Temperature + Fuel_Price + CPI + Unemployment + week_number +
## year + month + day, data = bd5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34331 -12895 -5852 5626 671540
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.110e+06 2.999e+05 3.701 0.000214 ***
## Store -1.426e+02 3.087e+00 -46.198 < 2e-16 ***
## Dept 1.108e+02 1.097e+00 101.013 < 2e-16 ***
## IsHolidayTRUE 8.511e+02 1.391e+02 6.119 9.45e-10 ***
## TypeB -3.133e+02 1.078e+02 -2.908 0.003642 **
## TypeC 5.836e+03 1.840e+02 31.709 < 2e-16 ***
## Size 9.920e-02 9.584e-04 103.511 < 2e-16 ***
## Temperature 3.701e+00 2.133e+00 1.735 0.082688 .
## Fuel_Price 4.791e+02 1.480e+02 3.237 0.001207 **
## CPI -2.340e+01 9.996e-01 -23.409 < 2e-16 ***
## Unemployment -2.538e+02 2.062e+01 -12.308 < 2e-16 ***
## week_number 7.678e+02 4.566e+02 1.682 0.092648 .
## year -5.485e+02 1.485e+02 -3.695 0.000220 ***
## month -3.167e+03 1.988e+03 -1.594 0.111036
## day -1.281e+02 6.539e+01 -1.959 0.050115 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21690 on 420197 degrees of freedom
## Multiple R-squared: 0.08982, Adjusted R-squared: 0.08979
## F-statistic: 2962 on 14 and 420197 DF, p-value: < 2.2e-16
datos_nuevos <- data.frame(Store=1, IsHoliday= TRUE, Dept=1, Type="A", Size= 151315, week_number =1, Temperature = 59.17, Fuel_Price = 3.524, CPI= 214.8372, Unemployment = 7.682, year =2012, month = 1, day=1)
predict(regresion,datos_nuevos)## 1
## 14667.94
Con la base de datos de Walmart se buscaba conocer los datos, analizarlos y de ese modo predecir las ventas que se obtendrían semanalmente.
Para poder hacer esa predicción, primero tuvimos que hacer una limpieza en la base de datos. Con nuestro analisis nos dimos cuenta que dos de las bases de datos tenían la fecha como carácter. También en la base de datos “features” se veían muchos NA´s los cuales no nos sirve tenerlos en la base de datos al no aportar valor y ser un estorbo para el analisis de los datos. Y otra cosa que nos dimos cuenta es que en la base de datos “train” se tenian ventas negativas.
A partir de ese análisis de nuestras bases de datos, comenzamos la limpieza de las bases de datos.Después continuamos con la creación de una regresión, ese ese modo podíamos obtener la información necesaria para predecir las ventas semanales que permita tener una mejor toma de decisiones con datos más precisos y asertivos y pudimos darnos cuenta que se predicen 14667.94 ventas semanales, este dato analizado con distintas variables seleccionadas.