####Load Google and Tesla prices over past year (rolling 12 Month Window)
goog <- read.csv('https://raw.githubusercontent.com/jforster19/DATA607/main/GOOG.csv',colClasses=c("Date",rep("numeric",6)))
tsla <- read.csv('https://raw.githubusercontent.com/jforster19/DATA607/main/TSLA.csv',colClasses=c("Date",rep("numeric",6)))
## # A tibble: 504 × 5
## # Groups: symbol [2]
## symbol Date Close mov_avg six_day_movavg
## <chr> <date> <dbl> <dbl> <dbl>
## 1 GOOG 2021-09-08 145. 145. NA
## 2 GOOG 2021-09-09 145. 145. NA
## 3 GOOG 2021-09-10 142. 144. NA
## 4 GOOG 2021-09-13 143. 144. NA
## 5 GOOG 2021-09-14 143. 144. NA
## 6 GOOG 2021-09-15 145. 144. 144.
## 7 GOOG 2021-09-16 144. 144. 144.
## 8 GOOG 2021-09-17 141. 144. 143.
## 9 GOOG 2021-09-20 139. 143. 143.
## 10 GOOG 2021-09-21 140. 143. 142.
## # … with 494 more rows
The moving average calculation uses RCppRoll to get the rolling window of time that is needed, while the cumulative ytd average is calculated with dplyr.