library(tidyverse)
library(tidygraph)
library(igraph)
library(bibliometrix)
library(tosr)
library(here)
library(lubridate)
library(sjrdata)
library(openxlsx)
library(zoo)
library(RSQLite)
library(journalabbr)
library(ggraph)
library(openxlsx)
library(XML)
library(plyr)
source("verbs.R")
# library(ggthemes)
# library(extrafont)
# library(remotes)
# remotes::install_version("Rttf2pt1", version = "1.3.8")
# extrafont::font_import()
giant.component <- function(graph) {
cl <- igraph::clusters(graph)
igraph::induced.subgraph(graph,
which(cl$membership == which.max(cl$csize)))
}
Los datos fueron cargados del siguiente link
https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/edit#gid=0
wos_scopus <- #ok
read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=0") |>
filter(!is.na(AU))
AU_links <-
read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=640727835")
AU_CO_df <-
read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=1136105302")
AU_CO_links <-
read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=1134821228")
SO_links <-
read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=1871024023")
Converting data from Google sheet file
range_tbl <-
tibble(PY = range(wos_scopus$PY)[1]:range(wos_scopus$PY)[2])
total_anual_production <-
wos_scopus |>
tidyr::drop_na(ref_type) |>
dplyr::select(PY) |>
dplyr::count(PY, sort = TRUE) |>
na.omit() |>
# dplyr::filter(PY >= 2000,
# PY < year(today())) |>
# dplyr::arrange(desc(PY))
right_join(range_tbl) |>
replace_na(list(n = 0)) |>
dplyr::mutate(ref_type = "total")
## Joining, by = "PY"
total_anual_production |>
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
figure_1a <-
total_anual_production |>
ggplot(aes(x = factor(PY),
y = n)) +
geom_bar(stat = "identity",
position = "dodge") +
geom_text(aes(label = n),
vjust = -0.3,
position = position_dodge(0.9),
size = 3,
family = "Times") +
scale_fill_manual(values = "springgreen3") +
theme(
# text = element_text(family = "Serif",
# face = "bold",
# size =12),
panel.background = element_rect(fill = "white"),
legend.position = "bottom",
legend.title = element_text(size = 0),
axis.text.x = element_text(face = "bold",
angle = 45,
vjust = 0.5),
axis.line = element_line(color = "black",
size = 0.2)) +
labs(y = "Number of publications",
x = "Year")
figure_1a
Creating data
TC_all <-
wos_scopus |>
dplyr::select(PY, TC) |>
dplyr::group_by(PY) |>
dplyr::summarise(TC_sum = sum(TC)) |>
arrange(desc(PY)) |>
na.omit() |>
dplyr::right_join(range_tbl) |>
tidyr::replace_na(list(TC_sum = 0))
## Joining, by = "PY"
TC_all |>
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
Figure
figure_1c <-
TC_all |>
ggplot(aes(x = PY , y = TC_sum)) +
geom_line(stat = "identity", color = "purple") +
geom_point(color = "purple") +
scale_x_continuous(breaks = seq(1974, year(today()) , by = 1)) +
geom_text(aes(label = TC_sum),
vjust = -0.3,
position = position_dodge(0.9),
size = 3,
family = "Times",
color = "purple") +
scale_fill_manual(values = c("springgreen3",
"orange3")) +
theme(text = element_text(family = "Times",
face = "bold",
size =12),
panel.background = element_rect(fill = "white"),
legend.position = "bottom",
legend.title = element_text(size = 0),
axis.text.x = element_text(face = "bold",
angle = 45,
vjust = 0.5),
axis.line = element_line(color = "black",
size = 0.2)) +
labs(y = "Number of citations",
x = "Year")
figure_1c
wos_scopus_countries <-
wos_scopus |>
select(SR, AU_CO, TC) |>
separate_rows(AU_CO, sep = ";") |>
unique() |>
drop_na()
wos_scopus_countries_journals <-
wos_scopus_countries |>
left_join(wos_scopus |>
select(SR, SO, PY),
by = "SR")
table_2a_production <-
wos_scopus_countries |>
dplyr::select(AU_CO) |>
dplyr::group_by(AU_CO) |>
dplyr::summarise(count_co = n()) |>
dplyr::mutate(percentage_co = count_co / sum(count_co) * 100,
percentage_co = round(percentage_co, digits = 2)) |>
dplyr::arrange(desc(count_co))
table_2b_citation <-
AU_CO_df |>
dplyr::select(AU_CO, TC) |>
dplyr::group_by(AU_CO) |>
dplyr::summarise(citation = sum(TC)) |>
dplyr::mutate(percentage_ci = citation / sum(citation) * 100) |>
dplyr::arrange(desc(citation))
table_2c_quality <-
AU_CO_df |>
dplyr::select(AU_CO, quartile) |>
dplyr::group_by(AU_CO) |>
dplyr::count(quartile, sort = TRUE) |>
pivot_wider(names_from = quartile,
values_from = n) |>
dplyr::select(AU_CO, Q1, Q2, Q3, Q4) |>
dplyr::mutate(Q1 = replace_na(Q1, 0),
Q2 = replace_na(Q2, 0),
Q3 = replace_na(Q3, 0),
Q4 = replace_na(Q4, 0))
table_2 <-
table_2a_production |>
left_join(table_2b_citation, by = "AU_CO") |>
left_join(table_2c_quality, by = "AU_CO") |>
mutate(percentage_ci = round(percentage_ci, digits = 2),
no_category = count_co - (Q1 + Q2 + Q3 + Q4)) |>
slice(1:10)
table_2 |>
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
edgelist_countries_weighted <-
AU_CO_links |>
dplyr::select(from, to) |>
dplyr::group_by(from, to) |>
dplyr::count(from, to) |>
dplyr::filter(from != to) |>
dplyr::rename(weight = n) |>
tidygraph::as_tbl_graph(directed = FALSE) |>
activate(nodes) |>
dplyr::mutate(community = tidygraph::group_louvain(),
degree = tidygraph::centrality_degree(),
community = as.factor(community))
figure_2a_graph <-
edgelist_countries_weighted |>
ggraph(layout = "graphopt") +
geom_edge_link(aes(width = weight),
colour = "lightgray") +
scale_edge_width(name = "Link strength") +
geom_node_point(aes(color = community,
size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
scale_size(name = "Degree") +
# scale_color_binned(name = "Communities") +
theme_graph()
figure_2a_graph
figure_2b_cluster <-
edgelist_countries_weighted |>
activate(nodes) |>
data.frame() |>
group_by(community) |>
dplyr::count(community, sort = TRUE) |>
slice(1:10) |>
ggplot(aes(x = reorder(community, n), y = n)) +
geom_point(stat = "identity") +
geom_line(group = 1) +
# geom_text(label = as.numeric(community),
# nudge_x = 0.5,
# nudge_y = 0.5,
# check_overlap = T) +
labs(title = "Communities by size",
x = "communities",
y = "Countries") +
theme(text = element_text(color = "black",
face = "bold",
family = "Times New Roman"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black"),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20))
figure_2b_cluster
range_tbl_fig_2 <-
tibble(PY = range(AU_CO_links$PY)[1]:range(AU_CO_links$PY)[2])
# Create a dataframe with links
figure_2c_cluster_edges <-
AU_CO_links |>
dplyr::filter(from != to) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(year = PY) |>
dplyr::count(year) |>
dplyr::filter(year >= 2000,
year <= 2020) |>
dplyr::mutate(percentage = n/max(n)) |>
dplyr::select(year, percentage) |>
dplyr::right_join(range_tbl_fig_2,
by = c("year" = "PY")) |>
tidyr::replace_na(list(percentage = 0))
# Create a data frame with author and year
figure_2c_cluster_nodes <- # 21 row
AU_CO_links |>
dplyr::filter(from != to) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(CO = from,
year = PY) |>
bind_rows(AU_CO_links |>
tidygraph::as_tbl_graph() |>
tidygraph::activate(edges) |>
tidygraph::as_tibble() |>
dplyr::select(CO = to,
year = PY)) |>
unique() |>
dplyr::group_by(CO) |>
dplyr::slice(which.min(year)) |>
dplyr::ungroup() |>
dplyr::select(year) |>
dplyr::group_by(year) |>
dplyr::count(year) |>
dplyr::filter(year >= 2000,
year <= 2020) |>
dplyr::ungroup() |>
dplyr::mutate(percentage = n / max(n)) |>
select(year, percentage) |>
dplyr::right_join(range_tbl_fig_2,
by = c("year" = "PY")) |>
tidyr::replace_na(list(percentage = 0))
figure_2c_longitudinal <-
figure_2c_cluster_nodes |>
mutate(type = "nodes") |>
bind_rows(figure_2c_cluster_edges |>
mutate(type = "links")) |>
ggplot(aes(x = year,
y = percentage,
color = type)) +
geom_point() +
geom_line() +
theme(legend.position = "right",
text = element_text(color = "black",
face = "bold",
family = "Times New Roman"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black",
angle = 45, vjust = 0.5
),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
legend.text = element_text(size = "15"),
legend.title = element_blank()) +
labs(title = "Nodes and links through time",
y = "Percentage") +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(1999, 2022, by = 1))
figure_2c_longitudinal
wos_scopus |>
dplyr::select(journal = SO) |>
na.omit() |>
dplyr::group_by(journal) |>
dplyr::count(journal, sort = TRUE) |>
dplyr::rename(publications = n) |>
dplyr::arrange(desc(publications)) |>
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
Creating the graph object
journal_citation_graph_weighted_tbl_small <-
SO_links |>
dplyr::select(JI_main, JI_ref) |>
dplyr::group_by(JI_main, JI_ref) |>
dplyr::count() |>
dplyr::rename(weight = n) |>
as_tbl_graph(directed = FALSE) |>
# convert(to_simple) |>
activate(nodes) |>
dplyr::mutate(components = tidygraph::group_components(type = "weak")) |>
dplyr::filter(components == 1) |>
activate(nodes) |>
dplyr::mutate(degree = centrality_degree(),
community = tidygraph::group_louvain()) |>
dplyr::select(-components) |>
dplyr::filter(degree >= 1)
# activate(edges) |>
# dplyr::filter(weight != 1)
communities <-
journal_citation_graph_weighted_tbl_small |>
activate(nodes) |>
data.frame() |>
dplyr::count(community, sort = TRUE) |>
dplyr::slice(1:10) |>
dplyr::select(community) |>
dplyr::pull()
# Filtering biggest communities
journal_citation_graph_weighted_tbl_small_fig <-
journal_citation_graph_weighted_tbl_small |>
activate(nodes) |>
dplyr::filter(community %in% communities)
Selecting nodes to show
jc_com_1 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[1]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_2 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[2]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_3 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[3]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_4 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[4]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_5 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[5]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_6 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[6]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_7<-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[7]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_8 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[8]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_9 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[9]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com_10 <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(community == communities[10]) |>
dplyr::mutate(degree = centrality_degree()) |>
dplyr::arrange(desc(degree)) |>
dplyr::slice(1:10) |>
data.frame() |>
dplyr::select(name)
jc_com <-
jc_com_1 |>
bind_rows(jc_com_2,
jc_com_3,
# jc_com_4,
# jc_com_5,
# jc_com_6,
# jc_com_7,
# jc_com_8,
# jc_com_9,
# jc_com_10
)
figure_3a_graph <-
journal_citation_graph_weighted_tbl_small_fig |>
activate(nodes) |>
dplyr::filter(name %in% jc_com$name) |>
dplyr::mutate(degree = centrality_degree(),
community = factor(community)) |>
dplyr::filter(degree != 0) |>
ggraph(layout = "graphopt") +
geom_edge_link(aes(width = weight),
colour = "lightgray") +
scale_edge_width(name = "Link strength") +
geom_node_point(aes(color = community,
size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
scale_size(name = "Degree") +
# scale_color_binned(name = "Communities") +
theme_graph()
figure_3a_graph
figure_3b_clusters <-
journal_citation_graph_weighted_tbl_small |>
activate(nodes) |>
data.frame() |>
dplyr::select(community) |>
dplyr::count(community, sort = TRUE) |>
dplyr::slice(1:10) |>
ggplot(aes(x = reorder(community, n), y = n)) +
geom_point(stat = "identity") +
geom_line(group = 1) +
# geom_text(label = as.numeric(community),
# nudge_x = 0.5,
# nudge_y = 0.5,
# check_overlap = T) +
labs(title = "Communities by size",
x = "communities",
y = "Journals") +
theme(text = element_text(color = "black",
face = "bold",
family = "Times New Roman"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black"),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20))
figure_3b_clusters
range_tbl_fig_3 <-
tibble(PY_main = range(SO_links$PY_main)[1]:range(SO_links$PY_main)[2])
# Create a dataframe with links
figure_3c_cluster_edges <-
SO_links |>
dplyr::filter(JI_main != JI_ref) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(year = PY_main) |>
dplyr::count(year) |>
# dplyr::filter(year >= 2000,
# year <= 2020) |>
dplyr::mutate(percentage = n/max(n)) |>
dplyr::select(year, percentage) |>
dplyr::right_join(range_tbl_fig_3,
by = c("year" = "PY_main")) |>
tidyr::replace_na(list(percentage = 0))
# Create a data frame with author and year
figure_3c_cluster_nodes <- # 21 row
SO_links |>
dplyr::filter(JI_main != JI_ref) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(CO = from,
year = PY_main) |>
bind_rows(AU_CO_links |>
tidygraph::as_tbl_graph() |>
tidygraph::activate(edges) |>
tidygraph::as_tibble() |>
dplyr::select(CO = to,
year = PY)) |>
unique() |>
dplyr::group_by(CO) |>
dplyr::slice(which.min(year)) |>
dplyr::ungroup() |>
dplyr::select(year) |>
dplyr::group_by(year) |>
dplyr::count(year) |>
# dplyr::filter(year >= 2000,
# year <= 2020) |>
dplyr::ungroup() |>
dplyr::mutate(percentage = n / max(n)) |>
select(year, percentage) |>
dplyr::right_join(range_tbl_fig_3,
by = c("year" = "PY_main")) |>
tidyr::replace_na(list(percentage = 0))
figure_3_longitudinal <-
figure_3c_cluster_nodes |>
mutate(type = "nodes") |>
bind_rows(figure_3c_cluster_edges |>
mutate(type = "links")) |>
ggplot(aes(x = year,
y = percentage,
color = type)) +
geom_point() +
geom_line() +
theme(legend.position = "right",
text = element_text(color = "black",
face = "bold",
family = "Times New Roman"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black",
angle = 45, vjust = 0.5
),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
legend.text = element_text(size = "15"),
legend.title = element_blank()) +
labs(title = "Nodes and links through time",
y = "Percentage") +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(1980, 2022, by = 1))
figure_3_longitudinal