Creating the environment

library(tidyverse)
library(tidygraph)
library(igraph)
library(bibliometrix)
library(tosr)
library(here)
library(lubridate)
library(sjrdata)
library(openxlsx)
library(zoo)
library(RSQLite)
library(journalabbr)
library(ggraph)
library(openxlsx)
library(XML)
library(plyr)
source("verbs.R")
# library(ggthemes)
# library(extrafont)
# library(remotes)
# remotes::install_version("Rttf2pt1", version = "1.3.8")
# extrafont::font_import()

giant.component <- function(graph) {
  cl <- igraph::clusters(graph)
  igraph::induced.subgraph(graph, 
                           which(cl$membership == which.max(cl$csize)))
}

Data getting

Los datos fueron cargados del siguiente link

https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/edit#gid=0

wos_scopus <- #ok
  read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=0") |> 
  filter(!is.na(AU))

AU_links <- 
  read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=640727835")

AU_CO_df <- 
  read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=1136105302")

AU_CO_links <- 
  read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=1134821228")

SO_links <- 
  read_csv("https://docs.google.com/spreadsheets/d/1nwszUhhHBzJS1WA0aP5lVMZY_lEVxjT4QO1l3bKiVtE/export?format=csv&gid=1871024023")

Resutls

3.1 Scientific Production

Figure 1a - Scopus + WoS

Data

Converting data from Google sheet file

range_tbl <- 
  tibble(PY = range(wos_scopus$PY)[1]:range(wos_scopus$PY)[2])

total_anual_production <-
  wos_scopus |>
  tidyr::drop_na(ref_type) |> 
  dplyr::select(PY) |>
  dplyr::count(PY, sort = TRUE) |>
  na.omit() |> 
  # dplyr::filter(PY >= 2000,
  #               PY < year(today())) |>
  # dplyr::arrange(desc(PY))
  right_join(range_tbl) |> 
  replace_na(list(n = 0)) |> 
  dplyr::mutate(ref_type = "total")
## Joining, by = "PY"
total_anual_production |> 
  DT::datatable(class = "cell-border stripe", 
                rownames = F, 
                filter = "top", 
                editable = FALSE, 
                extensions = "Buttons", 
                options = list(dom = "Bfrtip",
                               buttons = c("copy",
                                           "csv",
                                           "excel", 
                                           "pdf", 
                                           "print")))
figure_1a <- 
  total_anual_production |> 
  ggplot(aes(x = factor(PY), 
             y = n)) +
  geom_bar(stat = "identity", 
           position = "dodge") +
  geom_text(aes(label = n),
            vjust = -0.3,
            position = position_dodge(0.9),
            size = 3,
            family = "Times") +
  scale_fill_manual(values = "springgreen3") +
  theme(
        # text = element_text(family = "Serif",
        #                     face = "bold",
        #                     size =12),
        panel.background = element_rect(fill = "white"),
        legend.position = "bottom",
        legend.title = element_text(size = 0),
        axis.text.x = element_text(face = "bold",
                                   angle = 45,
                                   vjust = 0.5),
        axis.line = element_line(color = "black",
                                 size = 0.2)) +
  labs(y = "Number of publications", 
       x = "Year") 

figure_1a

Figure 1b - Total Citations

Data

Creating data

TC_all <-
  wos_scopus |> 
  dplyr::select(PY, TC) |>
  dplyr::group_by(PY) |>
  dplyr::summarise(TC_sum = sum(TC)) |>
  arrange(desc(PY)) |>
  na.omit() |> 
  dplyr::right_join(range_tbl) |> 
  tidyr::replace_na(list(TC_sum = 0))
## Joining, by = "PY"
TC_all |> 
  DT::datatable(class = "cell-border stripe", 
                rownames = F, 
                filter = "top", 
                editable = FALSE, 
                extensions = "Buttons", 
                options = list(dom = "Bfrtip",
                               buttons = c("copy",
                                           "csv",
                                           "excel", 
                                           "pdf", 
                                           "print")))

Figure

figure_1c <- 
  TC_all |> 
  ggplot(aes(x = PY , y = TC_sum)) +
  geom_line(stat = "identity", color = "purple") +
  geom_point(color = "purple") +
  scale_x_continuous(breaks = seq(1974, year(today()) , by = 1)) +
  geom_text(aes(label = TC_sum),
            vjust = -0.3,
            position = position_dodge(0.9),
            size = 3,
            family = "Times", 
            color = "purple") +
  scale_fill_manual(values = c("springgreen3",
                               "orange3")) +
  theme(text = element_text(family = "Times",
                            face = "bold",
                            size =12),
        panel.background = element_rect(fill = "white"),
        legend.position = "bottom",
        legend.title = element_text(size = 0),
        axis.text.x = element_text(face = "bold",
                                   angle = 45,
                                   vjust = 0.5),
        axis.line = element_line(color = "black",
                                 size = 0.2)) +
labs(y = "Number of citations", 
     x = "Year") 
figure_1c

3.2 Country analysis

Table 2 - Country production

wos_scopus_countries <-
  wos_scopus |>
  select(SR, AU_CO, TC) |>
  separate_rows(AU_CO, sep = ";") |>
  unique() |>
  drop_na()

wos_scopus_countries_journals <-
  wos_scopus_countries |>
  left_join(wos_scopus |>
              select(SR, SO, PY),
            by = "SR")

table_2a_production <- 
  wos_scopus_countries |> 
  dplyr::select(AU_CO) |> 
  dplyr::group_by(AU_CO) |> 
  dplyr::summarise(count_co = n()) |> 
  dplyr::mutate(percentage_co = count_co / sum(count_co) * 100,
                percentage_co = round(percentage_co, digits = 2)) |> 
  dplyr::arrange(desc(count_co))

table_2b_citation <- 
  AU_CO_df |> 
  dplyr::select(AU_CO, TC) |> 
  dplyr::group_by(AU_CO) |> 
  dplyr::summarise(citation = sum(TC)) |> 
  dplyr::mutate(percentage_ci = citation / sum(citation) * 100) |> 
  dplyr::arrange(desc(citation))

table_2c_quality <- 
  AU_CO_df |> 
  dplyr::select(AU_CO, quartile) |> 
  dplyr::group_by(AU_CO) |> 
  dplyr::count(quartile, sort = TRUE) |> 
  pivot_wider(names_from = quartile, 
              values_from = n) |> 
  dplyr::select(AU_CO, Q1, Q2, Q3, Q4) |> 
  dplyr::mutate(Q1 = replace_na(Q1, 0),
                Q2 = replace_na(Q2, 0),
                Q3 = replace_na(Q3, 0),
                Q4 = replace_na(Q4, 0))

table_2 <- 
  table_2a_production |> 
  left_join(table_2b_citation, by = "AU_CO") |> 
  left_join(table_2c_quality, by = "AU_CO") |> 
  mutate(percentage_ci = round(percentage_ci, digits = 2),
         no_category = count_co - (Q1 + Q2 + Q3 + Q4)) |> 
  slice(1:10)

table_2 |>
  DT::datatable(class = "cell-border stripe", 
                rownames = F, 
                filter = "top", 
                editable = FALSE, 
                extensions = "Buttons", 
                options = list(dom = "Bfrtip",
                               buttons = c("copy",
                                           "csv",
                                           "excel", 
                                           "pdf", 
                                           "print")))

Figure 2a - Country Collaboration

edgelist_countries_weighted <- 
  AU_CO_links |>
  dplyr::select(from, to) |> 
  dplyr::group_by(from, to) |> 
  dplyr::count(from, to) |> 
  dplyr::filter(from != to) |> 
  dplyr::rename(weight = n) |> 
  tidygraph::as_tbl_graph(directed = FALSE) |> 
  activate(nodes) |> 
  dplyr::mutate(community = tidygraph::group_louvain(),
                degree = tidygraph::centrality_degree(),
                community = as.factor(community))

figure_2a_graph <- 
  edgelist_countries_weighted |> 
  ggraph(layout = "graphopt") +
  geom_edge_link(aes(width = weight),
                 colour = "lightgray") +
  scale_edge_width(name = "Link strength") +
  geom_node_point(aes(color = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  scale_size(name = "Degree") +
  # scale_color_binned(name = "Communities") +
  theme_graph()

figure_2a_graph

Figure 2b - Country Collaboration

figure_2b_cluster <- 
  edgelist_countries_weighted |> 
  activate(nodes) |> 
  data.frame() |> 
  group_by(community) |> 
  dplyr::count(community, sort = TRUE) |> 
  slice(1:10) |>  
  ggplot(aes(x = reorder(community, n), y = n)) +
  geom_point(stat = "identity") +
  geom_line(group = 1) + 
  # geom_text(label = as.numeric(community),
  #           nudge_x = 0.5,
  #           nudge_y = 0.5,
  #           check_overlap = T) +
  labs(title = "Communities by size", 
       x = "communities", 
       y = "Countries") +
  theme(text = element_text(color = "black",
                            face = "bold",
                            family = "Times New Roman"),
        plot.title = element_text(size = 25),
        panel.background = element_rect(fill = "white"), 
        axis.text.y = element_text(size = 15, 
                                   colour = "black"),
        axis.text.x = element_text(size = 15,
                                   colour = "black"),
        axis.title.x = element_text(size = 20),
        axis.title.y = element_text(size = 20)) 

figure_2b_cluster

Figure 2c Longitudinal data of AU_CO

range_tbl_fig_2 <- 
  tibble(PY = range(AU_CO_links$PY)[1]:range(AU_CO_links$PY)[2])
# Create a dataframe with links 
figure_2c_cluster_edges <- 
  AU_CO_links |>
  dplyr::filter(from != to) |> 
  tidygraph::as_tbl_graph() |> 
  activate(edges) |> 
  as_tibble() |> 
  dplyr::select(year = PY) |> 
  dplyr::count(year) |> 
  dplyr::filter(year >= 2000,
                year <= 2020) |> 
  dplyr::mutate(percentage = n/max(n)) |> 
  dplyr::select(year, percentage) |> 
  dplyr::right_join(range_tbl_fig_2, 
                    by = c("year" = "PY")) |> 
  tidyr::replace_na(list(percentage = 0)) 
# Create a data frame with author and year 
figure_2c_cluster_nodes <- # 21 row 
  AU_CO_links |>
  dplyr::filter(from != to) |> 
  tidygraph::as_tbl_graph() |> 
  activate(edges) |> 
  as_tibble() |> 
  dplyr::select(CO = from, 
                year = PY) |>
  bind_rows(AU_CO_links |>  
              tidygraph::as_tbl_graph() |> 
              tidygraph::activate(edges) |> 
              tidygraph::as_tibble() |> 
              dplyr::select(CO = to, 
                            year = PY)) |> 
  unique() |> 
  dplyr::group_by(CO) |> 
  dplyr::slice(which.min(year)) |>
  dplyr::ungroup() |> 
  dplyr::select(year) |> 
  dplyr::group_by(year) |> 
  dplyr::count(year) |> 
  dplyr::filter(year >= 2000,
                year <= 2020) |> 
  dplyr::ungroup() |> 
  dplyr::mutate(percentage = n / max(n)) |> 
  select(year, percentage) |> 
  dplyr::right_join(range_tbl_fig_2, 
                    by = c("year" = "PY")) |> 
  tidyr::replace_na(list(percentage = 0)) 

figure_2c_longitudinal <- 
  figure_2c_cluster_nodes |> 
  mutate(type = "nodes") |> 
  bind_rows(figure_2c_cluster_edges |> 
              mutate(type = "links")) |> 
  ggplot(aes(x = year, 
             y = percentage, 
             color = type)) +
  geom_point() +
  geom_line() +
  theme(legend.position = "right", 
        text = element_text(color = "black", 
                            face = "bold",
                            family = "Times New Roman"),
        plot.title = element_text(size = 25),
        panel.background = element_rect(fill = "white"), 
        axis.text.y = element_text(size = 15, 
                                   colour = "black"),
        axis.text.x = element_text(size = 15,
                                   colour = "black", 
                                   angle = 45, vjust = 0.5
        ),
        axis.title.x = element_text(size = 20),
        axis.title.y = element_text(size = 20),
        legend.text = element_text(size = "15"), 
        legend.title = element_blank()) +
  labs(title = "Nodes and links through time", 
       y = "Percentage") +
  scale_y_continuous(labels = scales::percent) +
  scale_x_continuous(breaks = seq(1999, 2022, by = 1))

figure_2c_longitudinal

3.3 Journal Analysis

Table 3a Most productive journals

wos_scopus |> 
  dplyr::select(journal = SO) |> 
  na.omit() |> 
  dplyr::group_by(journal) |> 
  dplyr::count(journal, sort = TRUE) |> 
  dplyr::rename(publications = n) |> 
  dplyr::arrange(desc(publications)) |>
  DT::datatable(class = "cell-border stripe", 
                rownames = F, 
                filter = "top", 
                editable = FALSE, 
                extensions = "Buttons", 
                options = list(dom = "Bfrtip",
                               buttons = c("copy",
                                           "csv",
                                           "excel", 
                                           "pdf", 
                                           "print")))

Figure 3 Journal Citation Network

Creating the graph object

journal_citation_graph_weighted_tbl_small <- 
  SO_links |> 
  dplyr::select(JI_main, JI_ref) |> 
  dplyr::group_by(JI_main, JI_ref) |> 
  dplyr::count() |> 
  dplyr::rename(weight = n) |> 
  as_tbl_graph(directed = FALSE) |> 
  # convert(to_simple) |> 
  activate(nodes) |> 
  dplyr::mutate(components = tidygraph::group_components(type = "weak"))  |> 
  dplyr::filter(components == 1) |> 
  activate(nodes) |> 
  dplyr::mutate(degree = centrality_degree(),
                community = tidygraph::group_louvain()) |> 
  dplyr::select(-components) |> 
  dplyr::filter(degree >= 1)
# activate(edges) |>
# dplyr::filter(weight != 1)

communities <- 
  journal_citation_graph_weighted_tbl_small |> 
  activate(nodes) |> 
  data.frame() |> 
  dplyr::count(community, sort = TRUE) |> 
  dplyr::slice(1:10) |> 
  dplyr::select(community) |> 
  dplyr::pull()
# Filtering biggest communities 
journal_citation_graph_weighted_tbl_small_fig <- 
  journal_citation_graph_weighted_tbl_small |> 
  activate(nodes) |> 
  dplyr::filter(community %in% communities)

Selecting nodes to show

jc_com_1 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[1]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_2 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[2]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_3 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[3]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_4 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[4]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_5 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[5]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_6 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[6]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_7<- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[7]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_8 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[8]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_9 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[9]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com_10 <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(community == communities[10]) |> 
  dplyr::mutate(degree = centrality_degree()) |> 
  dplyr::arrange(desc(degree)) |> 
  dplyr::slice(1:10) |> 
  data.frame() |> 
  dplyr::select(name)
jc_com <- 
  jc_com_1 |> 
  bind_rows(jc_com_2,
            jc_com_3,
            # jc_com_4,
            # jc_com_5,
            # jc_com_6,
            # jc_com_7,
            # jc_com_8,
            # jc_com_9,
            # jc_com_10
  )

Figure 3a Journal Citation

figure_3a_graph <- 
  journal_citation_graph_weighted_tbl_small_fig |> 
  activate(nodes) |> 
  dplyr::filter(name %in% jc_com$name) |>
  dplyr::mutate(degree = centrality_degree(),
                community = factor(community)) |> 
  dplyr::filter(degree != 0) |> 
  ggraph(layout = "graphopt") +
  geom_edge_link(aes(width = weight),
                 colour = "lightgray") +
  scale_edge_width(name = "Link strength") +
  geom_node_point(aes(color = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  scale_size(name = "Degree") +
  # scale_color_binned(name = "Communities") +
  theme_graph()

figure_3a_graph

Figure 3b clusters

figure_3b_clusters <- 
  journal_citation_graph_weighted_tbl_small |> 
  activate(nodes) |> 
  data.frame() |> 
  dplyr::select(community) |> 
  dplyr::count(community, sort = TRUE) |> 
  dplyr::slice(1:10) |> 
  ggplot(aes(x = reorder(community, n), y = n)) +
  geom_point(stat = "identity") +
  geom_line(group = 1) + 
  # geom_text(label = as.numeric(community),
  #           nudge_x = 0.5,
  #           nudge_y = 0.5,
  #           check_overlap = T) +
  labs(title = "Communities by size", 
       x = "communities", 
       y = "Journals") +
  theme(text = element_text(color = "black",
                            face = "bold",
                            family = "Times New Roman"),
        plot.title = element_text(size = 25),
        panel.background = element_rect(fill = "white"), 
        axis.text.y = element_text(size = 15, 
                                   colour = "black"),
        axis.text.x = element_text(size = 15,
                                   colour = "black"),
        axis.title.x = element_text(size = 20),
        axis.title.y = element_text(size = 20)) 
figure_3b_clusters

Figure 3c Longitudinal data of AU_CO

range_tbl_fig_3 <- 
  tibble(PY_main = range(SO_links$PY_main)[1]:range(SO_links$PY_main)[2])
# Create a dataframe with links 
figure_3c_cluster_edges <- 
  SO_links |>
  dplyr::filter(JI_main != JI_ref) |> 
  tidygraph::as_tbl_graph() |> 
  activate(edges) |> 
  as_tibble() |> 
  dplyr::select(year = PY_main) |> 
  dplyr::count(year) |> 
  # dplyr::filter(year >= 2000,
  #               year <= 2020) |> 
  dplyr::mutate(percentage = n/max(n)) |> 
  dplyr::select(year, percentage) |> 
  dplyr::right_join(range_tbl_fig_3, 
                    by = c("year" = "PY_main")) |> 
  tidyr::replace_na(list(percentage = 0)) 
# Create a data frame with author and year 
figure_3c_cluster_nodes <- # 21 row 
  SO_links |>
  dplyr::filter(JI_main != JI_ref) |> 
  tidygraph::as_tbl_graph() |> 
  activate(edges) |> 
  as_tibble() |> 
  dplyr::select(CO = from, 
                year = PY_main) |>
  bind_rows(AU_CO_links |>  
              tidygraph::as_tbl_graph() |> 
              tidygraph::activate(edges) |> 
              tidygraph::as_tibble() |> 
              dplyr::select(CO = to, 
                            year = PY)) |> 
  unique() |> 
  dplyr::group_by(CO) |> 
  dplyr::slice(which.min(year)) |>
  dplyr::ungroup() |> 
  dplyr::select(year) |> 
  dplyr::group_by(year) |> 
  dplyr::count(year) |> 
  # dplyr::filter(year >= 2000,
  #               year <= 2020) |> 
  dplyr::ungroup() |> 
  dplyr::mutate(percentage = n / max(n)) |> 
  select(year, percentage) |> 
  dplyr::right_join(range_tbl_fig_3, 
                    by = c("year" = "PY_main")) |> 
  tidyr::replace_na(list(percentage = 0)) 

figure_3_longitudinal <- 
  figure_3c_cluster_nodes |> 
  mutate(type = "nodes") |> 
  bind_rows(figure_3c_cluster_edges |> 
              mutate(type = "links")) |> 
  ggplot(aes(x = year, 
             y = percentage, 
             color = type)) +
  geom_point() +
  geom_line() +
  theme(legend.position = "right", 
        text = element_text(color = "black", 
                            face = "bold",
                            family = "Times New Roman"),
        plot.title = element_text(size = 25),
        panel.background = element_rect(fill = "white"), 
        axis.text.y = element_text(size = 15, 
                                   colour = "black"),
        axis.text.x = element_text(size = 15,
                                   colour = "black", 
                                   angle = 45, vjust = 0.5
        ),
        axis.title.x = element_text(size = 20),
        axis.title.y = element_text(size = 20),
        legend.text = element_text(size = "15"), 
        legend.title = element_blank()) +
  labs(title = "Nodes and links through time", 
       y = "Percentage") +
  scale_y_continuous(labels = scales::percent) +
  scale_x_continuous(breaks = seq(1980, 2022, by = 1))

figure_3_longitudinal

3.2 Author Analysis

Table 4

data_biblio_wos <- biblioAnalysis(wos_scopus)

wos_scopus_authors <- 
  data_biblio_wos$Authors |> 
  data.frame() |> 
  dplyr::rename(authors_wos = AU, papers_wos = Freq) |> 
  dplyr::arrange(desc(papers_wos)) 

wos_scopus_authors |> 
  DT::datatable(class = "cell-border stripe", 
                rownames = F, 
                filter = "top", 
                editable = FALSE, 
                extensions = "Buttons", 
                options = list(dom = "Bfrtip",
                               buttons = c("copy",
                                           "csv",
                                           "excel", 
                                           "pdf", 
                                           "print")))

Creating the ASN - graph object

author_network_time <- 
  AU_links |> 
  tidygraph::as_tbl_graph(directed = FALSE) |> 
  activate(nodes) |> 
  dplyr::mutate(components = tidygraph::group_components(type = "weak")) |> 
  dplyr::filter(components == 1) |> 
  dplyr::mutate(degree = centrality_degree(),
                community = as.factor(group_louvain()))

author_network <- 
  AU_links |> 
  dplyr::select(-PY) |> 
  dplyr::group_by(from, to) |> 
  dplyr::count() |> 
  dplyr::rename(weight = n) |> 
  tidygraph::as_tbl_graph(directed = FALSE) |> 
  activate(nodes) |> 
  dplyr::mutate(components = tidygraph::group_components(type = "weak")) |> 
  # dplyr::filter(components == 1) |> 
  dplyr::mutate(degree = centrality_degree(),
                community = as.factor(group_louvain()))

Filtering only the top 10 nodes with best degree in the first 6 clusters.

asn_TM_connected_1 <- 
  author_network |> 
  activate(nodes) |>
  dplyr::mutate(community = as.numeric(community)) |> 
  # filter(community >= 6) |> 
  dplyr::filter(community == 1) |> 
  # group_by(community) |> 
  dplyr::mutate(degree_community = centrality_degree()) |> 
  dplyr::arrange(desc(degree_community)) |> 
  dplyr::slice(1:10)
asn_TM_connected_2 <- 
  author_network |> 
  activate(nodes) |>
  dplyr::mutate(community = as.numeric(community)) |> 
  # filter(community >= 6) |> 
  dplyr::filter(community == 2) |> 
  # group_by(community) |> 
  dplyr::mutate(degree_community = centrality_degree()) |> 
  dplyr::arrange(desc(degree_community))|> 
  dplyr::slice(1:10)
asn_TM_connected_3 <- 
  author_network |> 
  activate(nodes) |>
  dplyr::mutate(community = as.numeric(community)) |> 
  # filter(community >= 6) |> 
  dplyr::filter(community == 3) |> 
  # group_by(community) |> 
  dplyr::mutate(degree_community = centrality_degree()) |> 
  dplyr::arrange(desc(degree_community)) |> 
  dplyr::slice(1:10)
# asn_TM_connected_4 <- 
#   author_network |> 
#   activate(nodes) |>
#   dplyr::mutate(community = as.numeric(community)) |> 
#   # filter(community >= 6) |> 
#   dplyr::filter(community == 4) |> 
#   # group_by(community) |> 
#   dplyr::mutate(degree_community = centrality_degree()) |> 
#   dplyr::arrange(desc(degree_community)) |> 
#   dplyr::slice(1:10)
# asn_TM_connected_5 <- 
#   author_network |> 
#   activate(nodes) |>
#   dplyr::mutate(community = as.numeric(community)) |> 
#   # filter(community >= 6) |> 
#   dplyr::filter(community == 5) |> 
#   # group_by(community) |> 
#   dplyr::mutate(degree_community = centrality_degree()) |> 
#   dplyr::arrange(desc(degree_community)) |> 
#   dplyr::slice(1:10)
# asn_TM_connected_6 <- 
#   author_network |> 
#   activate(nodes) |>
#   dplyr::mutate(community = as.numeric(community)) |> 
#   # filter(community >= 6) |> 
#   dplyr::filter(community == 6) |> 
#   # group_by(community) |> 
#   dplyr::mutate(degree_community = centrality_degree()) |> 
#   dplyr::arrange(desc(degree_community)) |> 
#   dplyr::slice(1:10)

Saving the nodes we’re gonna show

nodes_community_1 <- 
  asn_TM_connected_1 |> 
  activate(nodes) |> 
  as_tibble() |> 
  dplyr::select(name)
nodes_community_2 <- 
  asn_TM_connected_2 |> 
  activate(nodes) |> 
  as_tibble() |> 
  dplyr::select(name)
nodes_community_3 <- 
  asn_TM_connected_3 |> 
  activate(nodes) |> 
  as_tibble() |> 
  dplyr::select(name)
# nodes_community_4 <- 
#   asn_TM_connected_4 |> 
#   activate(nodes) |> 
#   as_tibble() |> 
#   dplyr::select(name)
# nodes_community_5 <- 
#   asn_TM_connected_5 |> 
#   activate(nodes) |> 
#   as_tibble() |> 
#   dplyr::select(name)
# nodes_community_6 <- 
#   asn_TM_connected_6 |> 
#   activate(nodes) |> 
#   as_tibble() |> 
#   dplyr::select(name)
nodes_selected_10 <- 
  nodes_community_1 |> 
  bind_rows(nodes_community_2, 
            nodes_community_3,
            # nodes_community_4,
            # nodes_community_5,
            # nodes_community_6
  )

Filtering selected nodes

asn_selected_nodes <- 
  author_network |> 
  activate(nodes) |> 
  dplyr::filter(name %in% nodes_selected_10$name)  |> 
  dplyr::mutate(degree = centrality_degree())

# dplyr::mutate(final_plot = tidygraph::group_components(type = "weak")) |> 
# dplyr::filter(final_plot == 1)

Figure 4a Author Network

figure_4a_graph <- 
  asn_selected_nodes |> 
  ggraph(layout = "graphopt") +
  geom_edge_link(aes(width = weight),
                 colour = "lightgray") +
  scale_edge_width(name = "Link strength") +
  geom_node_point(aes(color = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  scale_size(name = "Degree") +
  # scale_color_binned(name = "Communities") +
  theme_graph()

figure_4a_graph

Figure 4b clusters of each community

figure_4b_clusters <- 
  author_network |> 
  activate(nodes) |> 
  data.frame() |> 
  dplyr::count(community) |>
  slice(1:10) |>  
  ggplot(aes(x = reorder(community, n), y = n)) +
  geom_point(stat = "identity") +
  geom_line(group = 1) + 
  # geom_text(label = as.numeric(community),
  #           nudge_x = 0.5,
  #           nudge_y = 0.5,
  #           check_overlap = T) +
  labs(title = "Communities by size", 
       x = "communities", 
       y = "Authors") +
  theme(text = element_text(color = "black",
                            face = "bold",
                            family = "Times New Roman"),
        plot.title = element_text(size = 25),
        panel.background = element_rect(fill = "white"), 
        axis.text.y = element_text(size = 15, 
                                   colour = "black"),
        axis.text.x = element_text(size = 15,
                                   colour = "black"),
        axis.title.x = element_text(size = 20),
        axis.title.y = element_text(size = 20)) 

figure_4b_clusters

Figure 4c Longitudinal data of ASN

AU_links_no_na <- 
  AU_links |> 
  tidyr::drop_na()

range_tbl_fig_4 <- 
  tibble(PY = range(AU_links_no_na$PY)[1]:range(AU_links_no_na$PY)[2])
# Create a dataframe with links 
figure_4c_cluster_edges <- 
  author_network_time |>
  activate(edges) |> 
  as_tibble() |> 
  dplyr::select(year = PY) |> 
  dplyr::count(year) |> 
  # dplyr::filter(year >= 1954,
  #               year <= 2020) |> 
  dplyr::mutate(percentage = n/max(n)) |> 
  dplyr::select(year, percentage) |> 
  dplyr::right_join(range_tbl_fig_4, 
                    by = c("year" = "PY")) |> 
  tidyr::replace_na(list(percentage = 0)) 

# Create a data frame with author and year 
figure_4c_cluster_nodes <- # 21 row 
  author_network_time |>
  activate(edges) |> 
  as_tibble() |> 
  dplyr::select(author = from, 
                year = PY) |>
  bind_rows(author_network_time |> 
              activate(edges) |> 
              as_tibble() |> 
              dplyr::select(author = to, 
                            year = PY)) |> 
  unique() |> 
  dplyr::group_by(author) |> 
  dplyr::slice(which.min(year)) |>
  dplyr::ungroup() |> 
  dplyr::select(year) |> 
  dplyr::group_by(year) |> 
  dplyr::count(year) |> 
  # dplyr::filter(year >= 2000,
  #               year <= 2020) |> 
  dplyr::ungroup() |> 
  dplyr::mutate(percentage = n / max(n)) |> 
  select(year, percentage) |> 
  dplyr::right_join(range_tbl_fig_4, 
                    by = c("year" = "PY")) |> 
  tidyr::replace_na(list(percentage = 0)) 

plotting figure 4b

figure_4c_longitudinal <- 
  figure_4c_cluster_nodes |> 
  filter(year > 1992) |> 
  mutate(type = "nodes") |> 
  bind_rows(figure_4c_cluster_edges |> 
              mutate(type = "links")|> 
              filter(year > 1992) ) |> 
  ggplot(aes(x = year, 
             y = percentage, 
             color = type)) +
  geom_point() +
  geom_line() +
  theme(legend.position = "right", 
        text = element_text(color = "black", 
                            face = "bold",
                            family = "Times New Roman"),
        plot.title = element_text(size = 25),
        panel.background = element_rect(fill = "white"), 
        axis.text.y = element_text(size = 15, 
                                   colour = "black"),
        axis.text.x = element_text(size = 15,
                                   colour = "black", 
                                   angle = 45, vjust = 0.5
        ),
        axis.title.x = element_text(size = 20),
        axis.title.y = element_text(size = 20),
        legend.text = element_text(size = "15"), 
        legend.title = element_blank()) +
  labs(title = "Nodes and links through time", 
       y = "Percentage") +
  scale_y_continuous(labels = scales::percent) +
  scale_x_continuous(breaks = seq(1993, 2022, by = 1))

figure_4c_longitudinal