I see myself as someone who:

  1. Is sometimes rude to others. (Agreeableness)
  2. Has a forgiving nature.(Agreeableness)
  3. Is considerate and kind to almost everyone.(Agreeableness)
  4. Does a thorough job.(Conscientiousness)
  5. Tends to be lazy. (reverse-scored) (Conscientiousness)
  6. Does things efficiently.(Conscientiousness)
  7. Is talkative.(Extraversion)
  8. Is outgoing, sociable.(Extraversion)
  9. Is reserved. (reverse-scored) (Extraversion)
  10. Worries a lot. (Neuroticism)
  11. Gets nervous easily. (Neuroticism)
  12. Is relaxed, handles stress well. (reverse-scored) (Neuroticism)
  13. Is original, comes up with new ideas. (Openness to Experience)
  14. Values artistic, aesthetic experiences. (Openness to Experience)
  15. Has an active imagination, is original, comes up with new ideas. (Openness to Experience)
library(lavaan)
## This is lavaan 0.5-18
## lavaan is BETA software! Please report any bugs.
library(semPlot)
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GPArotation)
library(psych)
library(car)
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
library(GGally)
## 
## Attaching package: 'GGally'
## 
## The following object is masked from 'package:dplyr':
## 
##     nasa

loadthedata

data <- read.csv("~/Psychometric_study_data/allsurveysYT1.csv")
B5<-select(data, B5F_1  , B5F_2 , B5F_3, B5F_4 ,  B5F_5 , B5F_6 ,B5F_7 , B5F_8 , B5F_9 , B5F_10 , B5F_11 , B5F_12 , B5F_13 , B5F_14 , B5F_15)
B5$B5F_12  <-  9- B5$B5F_12
B5$B5F_9  <-  9- B5$B5F_9
B5$B5F_5  <-  9- B5$B5F_5
B5<-tbl_df(B5)
B5
## Source: local data frame [670 x 15]
## 
##    B5F_1 B5F_2 B5F_3 B5F_4 B5F_5 B5F_6 B5F_7 B5F_8 B5F_9 B5F_10 B5F_11
## 1      2     7     7     4     5     5     3     3     2      2      2
## 2      2     6     7     7     6     7     5     6     4      5      2
## 3      3     7     6     3     2     4     7     5     2      3      5
## 4      5     8     7     8     8     8     7     8     8      2      4
## 5      5     7     5     5     1     5     5     8     6      8      2
## 6      5     3     5     6     7     5     4     5     4      2      4
## 7      2     8     8     5     3     6     7     8     7      2      3
## 8      5     5     7     8     4     7     6     8     5      3      4
## 9      4     5     6     5     5     7     4     5     5      4      6
## 10     1     7     7     7     7     7     6     7     8      2      1
## ..   ...   ...   ...   ...   ...   ...   ...   ...   ...    ...    ...
## Variables not shown: B5F_12 (dbl), B5F_13 (int), B5F_14 (int), B5F_15
##   (int)
View(data)

create plots

#ggpairs(B5, columns = 1:15, title="Big 5 Marsh" )

create the models

five.model= ' agreeableness  =~ B5F_1 +  B5F_2  + B5F_3    
              conscientiousness =~  B5F_4 + B5F_5 + B5F_6          
              extraversion =~ B5F_7 + B5F_8 + B5F_9       
              neuroticism =~ B5F_10 + B5F_11 + B5F_12      
              openness  =~  B5F_13 +  B5F_14 + B5F_15' 

one.model= 'Big5 =~ B5F_1 +  B5F_2  + B5F_3 + B5F_4 + B5F_5 + B5F_6 + B5F_7 + B5F_8 + B5F_9 + B5F_10 + B5F_11 + B5F_12 + B5F_13 +  B5F_14 + B5F_15'

run the models

five.fit=cfa(five.model, data=B5, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   14 15 16 20 27 32 33 56 74 87 88 124 130 138 144 147 151 175 179 196 208 215 216 231 264 265 268 269 272 349 361 363 364 367 374 382 443 444 445 447 448 449 450 452 453 456 457 459 461 463 464 465 467 471 472 473 476 477 478 479 480 481 482 485 488 489 490 491 492 493 495 496 500 502 503 504 505 506 507 509 510 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
## Warning in lavaan::lavaan(model = five.model, data = B5, missing =
## "fiml", : lavaan WARNING: some estimated variances are negative
## Warning in lavaan::lavaan(model = five.model, data = B5, missing =
## "fiml", : lavaan WARNING: observed variable error term matrix (theta) is
## not positive definite; use inspect(fit,"theta") to investigate.
one.fit=cfa(one.model, data=B5, missing = "fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   14 15 16 20 27 32 33 56 74 87 88 124 130 138 144 147 151 175 179 196 208 215 216 231 264 265 268 269 272 349 361 363 364 367 374 382 443 444 445 447 448 449 450 452 453 456 457 459 461 463 464 465 467 471 472 473 476 477 478 479 480 481 482 485 488 489 490 491 492 493 495 496 500 502 503 504 505 506 507 509 510 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

create pictures

semPaths(five.fit, whatLabels = "std", layout = "tree")
## Warning in lavaan(slotOptions = object@Options, slotParTable =
## object@ParTable, : lavaan WARNING: some estimated variances are negative
## Warning in lavaan(slotOptions = object@Options, slotParTable =
## object@ParTable, : lavaan WARNING: observed variable error term matrix
## (theta) is not positive definite; use inspect(fit,"theta") to investigate.

semPaths(one.fit, whatLabels = "std", layout = "tree")

#summaries

summary(five.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  80 iterations
## 
##                                                   Used       Total
##   Number of observations                           431         670
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              438.194
##   Degrees of freedom                                80
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   agreeableness =~
##     B5F_1             1.000                               0.430    0.220
##     B5F_2            -2.777    0.747   -3.718    0.000   -1.194   -0.726
##     B5F_3            -2.639    0.662   -3.983    0.000   -1.135   -0.782
##   conscientiousness =~
##     B5F_4             1.000                               0.964    0.675
##     B5F_5             0.508    0.122    4.169    0.000    0.490    0.238
##     B5F_6             1.113    0.118    9.406    0.000    1.073    0.783
##   extraversion =~
##     B5F_7             1.000                               1.119    0.597
##     B5F_8             1.824    0.316    5.774    0.000    2.041    1.088
##     B5F_9             0.217    0.076    2.861    0.004    0.243    0.127
##   neuroticism =~
##     B5F_10            1.000                               1.613    0.754
##     B5F_11            0.838    0.107    7.843    0.000    1.352    0.667
##     B5F_12            0.564    0.090    6.284    0.000    0.909    0.444
##   openness =~
##     B5F_13            1.000                               1.248    0.807
##     B5F_14            0.789    0.072   11.027    0.000    0.984    0.556
##     B5F_15            1.053    0.071   14.774    0.000    1.314    0.868
## 
## Covariances:
##   agreeableness ~~
##     conscientsnss    -0.239    0.069   -3.476    0.001   -0.576   -0.576
##     extraversion     -0.145    0.050   -2.936    0.003   -0.302   -0.302
##     neuroticism       0.082    0.054    1.512    0.131    0.118    0.118
##     openness         -0.227    0.065   -3.487    0.000   -0.423   -0.423
##   conscientiousness ~~
##     extraversion      0.408    0.096    4.276    0.000    0.379    0.379
##     neuroticism      -0.343    0.113   -3.045    0.002   -0.221   -0.221
##     openness          0.568    0.093    6.079    0.000    0.472    0.472
##   extraversion ~~
##     neuroticism      -0.300    0.104   -2.891    0.004   -0.166   -0.166
##     openness          0.412    0.121    3.412    0.001    0.295    0.295
##   neuroticism ~~
##     openness         -0.233    0.129   -1.802    0.072   -0.116   -0.116
## 
## Intercepts:
##     B5F_1             4.186    0.094   44.531    0.000    4.186    2.145
##     B5F_2             6.053    0.079   76.413    0.000    6.053    3.681
##     B5F_3             6.371    0.070   91.199    0.000    6.371    4.393
##     B5F_4             6.211    0.069   90.253    0.000    6.211    4.347
##     B5F_5             4.072    0.099   40.994    0.000    4.072    1.975
##     B5F_6             6.056    0.066   91.782    0.000    6.056    4.421
##     B5F_7             5.608    0.090   62.144    0.000    5.608    2.993
##     B5F_8             5.698    0.090   63.062    0.000    5.698    3.038
##     B5F_9             3.731    0.092   40.418    0.000    3.731    1.947
##     B5F_10            5.060    0.103   49.133    0.000    5.060    2.367
##     B5F_11            4.949    0.098   50.716    0.000    4.949    2.443
##     B5F_12            3.763    0.099   38.169    0.000    3.763    1.839
##     B5F_13            5.893    0.075   79.102    0.000    5.893    3.810
##     B5F_14            5.914    0.085   69.380    0.000    5.914    3.342
##     B5F_15            6.155    0.073   84.378    0.000    6.155    4.064
##     agreeableness     0.000                               0.000    0.000
##     conscientsnss     0.000                               0.000    0.000
##     extraversion      0.000                               0.000    0.000
##     neuroticism       0.000                               0.000    0.000
##     openness          0.000                               0.000    0.000
## 
## Variances:
##     B5F_1             3.623    0.252                      3.623    0.951
##     B5F_2             1.279    0.171                      1.279    0.473
##     B5F_3             0.816    0.144                      0.816    0.388
##     B5F_4             1.112    0.116                      1.112    0.545
##     B5F_5             4.012    0.279                      4.012    0.944
##     B5F_6             0.726    0.116                      0.726    0.387
##     B5F_7             2.257    0.254                      2.257    0.643
##     B5F_8            -0.647    0.662                     -0.647   -0.184
##     B5F_9             3.613    0.246                      3.613    0.984
##     B5F_10            1.970    0.355                      1.970    0.431
##     B5F_11            2.277    0.263                      2.277    0.555
##     B5F_12            3.363    0.266                      3.363    0.803
##     B5F_13            0.835    0.102                      0.835    0.349
##     B5F_14            2.164    0.161                      2.164    0.691
##     B5F_15            0.566    0.102                      0.566    0.247
##     agreeableness     0.185    0.094                      1.000    1.000
##     conscientsnss     0.929    0.146                      1.000    1.000
##     extraversion      1.253    0.272                      1.000    1.000
##     neuroticism       2.601    0.432                      1.000    1.000
##     openness          1.557    0.175                      1.000    1.000
## 
## R-Square:
## 
##     B5F_1             0.049
##     B5F_2             0.527
##     B5F_3             0.612
##     B5F_4             0.455
##     B5F_5             0.056
##     B5F_6             0.613
##     B5F_7             0.357
##     B5F_8                NA
##     B5F_9             0.016
##     B5F_10            0.569
##     B5F_11            0.445
##     B5F_12            0.197
##     B5F_13            0.651
##     B5F_14            0.309
##     B5F_15            0.753
summary(one.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after 187 iterations
## 
##                                                   Used       Total
##   Number of observations                           431         670
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic             1042.777
##   Degrees of freedom                                90
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Big5 =~
##     B5F_1             1.000                               0.053    0.027
##     B5F_2           -16.232   32.464   -0.500    0.617   -0.867   -0.527
##     B5F_3           -14.521   29.015   -0.500    0.617   -0.775   -0.535
##     B5F_4           -14.196   28.434   -0.499    0.618   -0.758   -0.531
##     B5F_5            -3.023    6.216   -0.486    0.627   -0.161   -0.078
##     B5F_6           -14.764   29.563   -0.499    0.617   -0.788   -0.576
##     B5F_7           -13.680   27.645   -0.495    0.621   -0.731   -0.390
##     B5F_8           -17.999   36.196   -0.497    0.619   -0.961   -0.512
##     B5F_9             2.243    4.935    0.454    0.650    0.120    0.062
##     B5F_10            2.867    6.012    0.477    0.633    0.153    0.072
##     B5F_11            3.659    7.486    0.489    0.625    0.195    0.096
##     B5F_12           17.913   35.871    0.499    0.618    0.957    0.467
##     B5F_13          -19.386   39.129   -0.495    0.620   -1.035   -0.669
##     B5F_14          -16.355   32.986   -0.496    0.620   -0.873   -0.494
##     B5F_15          -20.000   40.350   -0.496    0.620   -1.068   -0.705
## 
## Intercepts:
##     B5F_1             4.186    0.094   44.531    0.000    4.186    2.145
##     B5F_2             6.053    0.079   76.413    0.000    6.053    3.681
##     B5F_3             6.371    0.070   91.201    0.000    6.371    4.393
##     B5F_4             6.211    0.069   90.252    0.000    6.211    4.347
##     B5F_5             4.072    0.099   40.994    0.000    4.072    1.975
##     B5F_6             6.056    0.066   91.782    0.000    6.056    4.421
##     B5F_7             5.608    0.090   62.144    0.000    5.608    2.993
##     B5F_8             5.698    0.090   63.063    0.000    5.698    3.038
##     B5F_9             3.731    0.092   40.418    0.000    3.731    1.947
##     B5F_10            5.060    0.103   49.133    0.000    5.060    2.367
##     B5F_11            4.949    0.098   50.716    0.000    4.949    2.443
##     B5F_12            3.763    0.099   38.168    0.000    3.763    1.839
##     B5F_13            5.893    0.075   79.101    0.000    5.893    3.810
##     B5F_14            5.914    0.085   69.379    0.000    5.914    3.342
##     B5F_15            6.155    0.073   84.378    0.000    6.155    4.064
##     Big5              0.000                               0.000    0.000
## 
## Variances:
##     B5F_1             3.805    0.259                      3.805    0.999
##     B5F_2             1.953    0.153                      1.953    0.722
##     B5F_3             1.502    0.118                      1.502    0.714
##     B5F_4             1.467    0.113                      1.467    0.718
##     B5F_5             4.226    0.288                      4.226    0.994
##     B5F_6             1.255    0.102                      1.255    0.669
##     B5F_7             2.976    0.213                      2.976    0.848
##     B5F_8             2.595    0.197                      2.595    0.737
##     B5F_9             3.658    0.249                      3.658    0.996
##     B5F_10            4.548    0.310                      4.548    0.995
##     B5F_11            4.066    0.278                      4.066    0.991
##     B5F_12            3.275    0.244                      3.275    0.782
##     B5F_13            1.321    0.131                      1.321    0.552
##     B5F_14            2.369    0.179                      2.369    0.756
##     B5F_15            1.153    0.123                      1.153    0.503
##     Big5              0.003    0.011                      1.000    1.000
## 
## R-Square:
## 
##     B5F_1             0.001
##     B5F_2             0.278
##     B5F_3             0.286
##     B5F_4             0.282
##     B5F_5             0.006
##     B5F_6             0.331
##     B5F_7             0.152
##     B5F_8             0.263
##     B5F_9             0.004
##     B5F_10            0.005
##     B5F_11            0.009
##     B5F_12            0.218
##     B5F_13            0.448
##     B5F_14            0.244
##     B5F_15            0.497

Residual correlations

correl = residuals(five.fit, type="cor")
correl
## $type
## [1] "cor.bollen"
## 
## $cor
##        B5F_1  B5F_2  B5F_3  B5F_4  B5F_5  B5F_6  B5F_7  B5F_8  B5F_9 
## B5F_1   0.000                                                        
## B5F_2   0.022  0.000                                                 
## B5F_3  -0.059 -0.006  0.000                                          
## B5F_4   0.019 -0.013  0.047  0.000                                   
## B5F_5  -0.286 -0.115 -0.085  0.027  0.000                            
## B5F_6   0.038  0.038 -0.028 -0.007  0.016  0.000                     
## B5F_7   0.229  0.041 -0.028 -0.033 -0.187 -0.005  0.000              
## B5F_8   0.170  0.050 -0.028 -0.027 -0.053  0.013  0.001  0.000       
## B5F_9  -0.130 -0.143 -0.197 -0.121  0.113 -0.079  0.053  0.001  0.000
## B5F_10  0.193  0.049  0.092  0.127 -0.158  0.075  0.144  0.079 -0.232
## B5F_11  0.190  0.061  0.048  0.059 -0.224 -0.001  0.131  0.010 -0.196
## B5F_12  0.058 -0.297 -0.262 -0.259 -0.039 -0.276 -0.110 -0.197  0.066
## B5F_13  0.156 -0.010 -0.012  0.022 -0.056 -0.009  0.098  0.028 -0.084
## B5F_14  0.046  0.061  0.094  0.017 -0.119 -0.006  0.075 -0.010 -0.108
## B5F_15  0.147  0.002  0.009  0.030 -0.103 -0.002  0.116  0.012 -0.055
##        B5F_10 B5F_11 B5F_12 B5F_13 B5F_14 B5F_15
## B5F_1                                           
## B5F_2                                           
## B5F_3                                           
## B5F_4                                           
## B5F_5                                           
## B5F_6                                           
## B5F_7                                           
## B5F_8                                           
## B5F_9                                           
## B5F_10  0.000                                   
## B5F_11  0.020  0.000                            
## B5F_12  0.000 -0.062  0.000                     
## B5F_13  0.039 -0.017 -0.194  0.000              
## B5F_14  0.197  0.202 -0.053 -0.002  0.000       
## B5F_15  0.009  0.011 -0.213  0.001 -0.002  0.000
## 
## $mean
##  B5F_1  B5F_2  B5F_3  B5F_4  B5F_5  B5F_6  B5F_7  B5F_8  B5F_9 B5F_10 
##      0      0      0      0      0      0      0      0      0      0 
## B5F_11 B5F_12 B5F_13 B5F_14 B5F_15 
##      0      0      0      0      0
View(correl$cor)
correl1 = residuals(one.fit, type="cor")
correl1
## $type
## [1] "cor.bollen"
## 
## $cor
##        B5F_1  B5F_2  B5F_3  B5F_4  B5F_5  B5F_6  B5F_7  B5F_8  B5F_9 
## B5F_1   0.000                                                        
## B5F_2  -0.123  0.000                                                 
## B5F_3  -0.216  0.280  0.000                                          
## B5F_4  -0.052 -0.011  0.067  0.000                                   
## B5F_5  -0.314 -0.057 -0.020  0.146  0.000                            
## B5F_6  -0.045  0.062  0.017  0.216  0.157  0.000                     
## B5F_7   0.199 -0.033 -0.095 -0.088 -0.164 -0.052  0.000              
## B5F_8   0.111  0.019 -0.045 -0.021  0.005  0.040  0.451  0.000       
## B5F_9  -0.140 -0.083 -0.133 -0.055  0.129 -0.005  0.153  0.171  0.000
## B5F_10  0.211  0.022  0.060  0.053 -0.192 -0.014  0.097 -0.020 -0.252
## B5F_11  0.205  0.054  0.038  0.011 -0.251 -0.061  0.103 -0.061 -0.216
## B5F_12  0.057 -0.088 -0.053 -0.078 -0.025 -0.084  0.029 -0.038  0.027
## B5F_13  0.099 -0.115 -0.103 -0.076 -0.018 -0.096 -0.021 -0.056 -0.012
## B5F_14  0.007 -0.028  0.014 -0.067 -0.095 -0.084 -0.020 -0.085 -0.057
## B5F_15  0.086 -0.103 -0.081 -0.068 -0.061 -0.087 -0.006 -0.071  0.022
##        B5F_10 B5F_11 B5F_12 B5F_13 B5F_14 B5F_15
## B5F_1                                           
## B5F_2                                           
## B5F_3                                           
## B5F_4                                           
## B5F_5                                           
## B5F_6                                           
## B5F_7                                           
## B5F_8                                           
## B5F_9                                           
## B5F_10  0.000                                   
## B5F_11  0.516  0.000                            
## B5F_12  0.301  0.190  0.000                     
## B5F_13  0.016 -0.015  0.078  0.000              
## B5F_14  0.184  0.206  0.149  0.116  0.000       
## B5F_15 -0.016  0.012  0.072  0.229  0.132  0.000
## 
## $mean
##  B5F_1  B5F_2  B5F_3  B5F_4  B5F_5  B5F_6  B5F_7  B5F_8  B5F_9 B5F_10 
##      0      0      0      0      0      0      0      0      0      0 
## B5F_11 B5F_12 B5F_13 B5F_14 B5F_15 
##      0      0      0      0      0
View(correl1$cor)

zscore correlation anything over 1.96 is going to be statistically significant at the .05 level

zcorrels = residuals(five.fit, type = "standardized")
View(zcorrels$cov)
zcorrels1 = residuals(one.fit, type = "standardized")
View(zcorrels1$cov)

Modification indicies

modindices(five.fit, sort. = TRUE, minimum.value = 3.84)
## Warning in lavaan(slotOptions = object@Options, slotParTable =
## object@ParTable, : lavaan WARNING: some estimated variances are negative
## Warning in lavaan(slotOptions = object@Options, slotParTable =
## object@ParTable, : lavaan WARNING: observed variable error term matrix
## (theta) is not positive definite; use inspect(fit,"theta") to investigate.
##                  lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1  conscientiousness =~ B5F_12 76.304 -1.020  -0.983   -0.480   -0.480
## 2      agreeableness =~ B5F_12 73.757  2.171   0.933    0.456    0.456
## 3             B5F_10 ~~ B5F_11 65.307  7.977   7.977    1.841    1.841
## 4              B5F_1 ~~  B5F_5 46.850 -1.274  -1.274   -0.317   -0.317
## 5           openness =~ B5F_12 35.015 -0.486  -0.607   -0.296   -0.296
## 6             B5F_11 ~~ B5F_12 28.144 -1.961  -1.961   -0.473   -0.473
## 7  conscientiousness =~ B5F_10 27.052  0.703   0.677    0.317    0.317
## 8        neuroticism =~ B5F_14 26.550  0.284   0.459    0.259    0.259
## 9              B5F_9 ~~ B5F_10 20.297 -0.738  -0.738   -0.180   -0.180
## 10      extraversion =~ B5F_12 19.952 -0.346  -0.387   -0.189   -0.189
## 11       neuroticism =~  B5F_5 19.545 -0.332  -0.535   -0.260   -0.260
## 12       neuroticism =~  B5F_9 18.957 -0.299  -0.483   -0.252   -0.252
## 13       neuroticism =~  B5F_1 18.906  0.301   0.485    0.248    0.248
## 14             B5F_5 ~~  B5F_7 17.291 -0.575  -0.575   -0.149   -0.149
## 15     agreeableness =~  B5F_9 16.409  1.055   0.453    0.237    0.237
## 16             B5F_9 ~~ B5F_12 16.359  0.704   0.704    0.179    0.179
## 17             B5F_1 ~~  B5F_9 16.094 -0.702  -0.702   -0.188   -0.188
## 18          openness =~  B5F_7 15.751  0.346   0.432    0.231    0.231
## 19     agreeableness =~ B5F_10 15.579 -1.114  -0.479   -0.224   -0.224
## 20             B5F_5 ~~ B5F_11 14.947 -0.649  -0.649   -0.155   -0.155
## 21          openness =~  B5F_1 14.744  0.360   0.449    0.230    0.230
## 22      extraversion =~  B5F_1 12.449  0.280   0.314    0.161    0.161
## 23          openness =~  B5F_8 12.375 -0.559  -0.698   -0.372   -0.372
## 24             B5F_1 ~~ B5F_10 11.680  0.565   0.565    0.135    0.135
## 25       neuroticism =~  B5F_7 10.906  0.184   0.297    0.158    0.158
## 26      extraversion =~ B5F_10 10.343  0.283   0.317    0.148    0.148
## 27             B5F_1 ~~  B5F_7  9.977  0.414   0.414    0.113    0.113
## 28             B5F_2 ~~ B5F_12  9.680 -0.378  -0.378   -0.112   -0.112
## 29            B5F_11 ~~ B5F_14  9.463  0.390   0.390    0.109    0.109
## 30             B5F_5 ~~  B5F_9  9.042  0.555   0.555    0.140    0.140
## 31             B5F_1 ~~  B5F_3  8.986 -0.372  -0.372   -0.131   -0.131
## 32             B5F_3 ~~  B5F_9  8.843 -0.311  -0.311   -0.112   -0.112
## 33             B5F_2 ~~  B5F_3  8.666 -1.406  -1.406   -0.589   -0.589
## 34             B5F_4 ~~ B5F_12  8.504 -0.317  -0.317   -0.108   -0.108
## 35             B5F_1 ~~ B5F_11  8.106  0.453   0.453    0.115    0.115
## 36          openness =~ B5F_10  7.551  0.251   0.313    0.147    0.147
## 37             B5F_3 ~~  B5F_4  6.940  0.188   0.188    0.091    0.091
## 38             B5F_5 ~~ B5F_12  6.856  0.485   0.485    0.115    0.115
## 39             B5F_7 ~~ B5F_11  6.852  0.311   0.311    0.082    0.082
## 40          openness =~  B5F_5  6.833 -0.271  -0.338   -0.164   -0.164
## 41     agreeableness =~  B5F_5  6.642  0.952   0.409    0.199    0.199
## 42             B5F_9 ~~ B5F_11  6.531 -0.403  -0.403   -0.104   -0.104
## 43       neuroticism =~  B5F_8  6.262 -0.251  -0.405   -0.216   -0.216
## 44 conscientiousness =~  B5F_9  6.188 -0.302  -0.291   -0.152   -0.152
## 45      extraversion =~  B5F_2  5.825  0.162   0.181    0.110    0.110
## 46             B5F_2 ~~  B5F_6  5.801  0.189   0.189    0.084    0.084
## 47             B5F_2 ~~  B5F_5  5.640 -0.306  -0.306   -0.090   -0.090
## 48             B5F_4 ~~ B5F_10  5.146  0.238   0.238    0.078    0.078
## 49             B5F_5 ~~ B5F_10  5.064 -0.393  -0.393   -0.089   -0.089
## 50            B5F_10 ~~ B5F_14  5.041  0.296   0.296    0.078    0.078
## 51             B5F_3 ~~  B5F_6  4.943 -0.157  -0.157   -0.079   -0.079
## 52     agreeableness =~ B5F_14  4.928 -0.514  -0.221   -0.125   -0.125
## 53             B5F_7 ~~ B5F_15  4.862  0.157   0.157    0.055    0.055
## 54 conscientiousness =~  B5F_8  4.284  0.706   0.681    0.363    0.363
## 55             B5F_7 ~~  B5F_8  4.284 -4.286  -4.286   -1.220   -1.220
## 56             B5F_4 ~~  B5F_6  4.263 -0.608  -0.608   -0.311   -0.311
## 57             B5F_1 ~~ B5F_12  4.232 -0.361  -0.361   -0.090   -0.090
## 58             B5F_3 ~~ B5F_14  4.215  0.173   0.173    0.067    0.067
## 59             B5F_6 ~~ B5F_12  4.190 -0.206  -0.206   -0.073   -0.073
## 60             B5F_2 ~~ B5F_11  3.996  0.222   0.222    0.067    0.067
## 61          openness =~  B5F_9  3.932 -0.167  -0.208   -0.108   -0.108
## 62       neuroticism =~ B5F_15  3.929 -0.082  -0.133   -0.088   -0.088
modindices(one.fit, sort. = TRUE, minimum.value = 3.84)
##       lhs op    rhs      mi    epc sepc.lv sepc.all sepc.nox
## 1   B5F_7 ~~  B5F_8 159.864  1.807   1.807    0.514    0.514
## 2  B5F_13 ~~ B5F_15 152.490  1.003   1.003    0.428    0.428
## 3  B5F_10 ~~ B5F_11 116.822  2.242   2.242    0.518    0.518
## 4   B5F_2 ~~  B5F_3  80.458  0.820   0.820    0.344    0.344
## 5  B5F_10 ~~ B5F_12  53.562  1.404   1.404    0.321    0.321
## 6   B5F_4 ~~  B5F_6  53.253  0.537   0.537    0.275    0.275
## 7   B5F_1 ~~  B5F_5  42.926 -1.266  -1.266   -0.315   -0.315
## 8   B5F_1 ~~  B5F_3  30.940 -0.670  -0.670   -0.237   -0.237
## 9  B5F_14 ~~ B5F_15  28.976  0.518   0.518    0.193    0.193
## 10  B5F_5 ~~ B5F_11  27.780 -1.054  -1.054   -0.252   -0.252
## 11  B5F_9 ~~ B5F_10  27.656 -1.034  -1.034   -0.252   -0.252
## 12 B5F_11 ~~ B5F_14  26.350  0.797   0.797    0.222    0.222
## 13 B5F_11 ~~ B5F_12  21.392  0.840   0.840    0.202    0.202
## 14  B5F_1 ~~  B5F_7  21.043  0.758   0.758    0.207    0.207
## 15 B5F_10 ~~ B5F_14  20.831  0.749   0.749    0.198    0.198
## 16  B5F_9 ~~ B5F_11  20.388 -0.840  -0.840   -0.216   -0.216
## 17  B5F_2 ~~ B5F_13  20.262 -0.414  -0.414   -0.163   -0.163
## 18  B5F_1 ~~ B5F_10  19.349  0.882   0.882    0.211    0.211
## 19 B5F_13 ~~ B5F_14  19.244  0.438   0.438    0.160    0.160
## 20  B5F_2 ~~ B5F_15  18.975 -0.386  -0.386   -0.155   -0.155
## 21 B5F_12 ~~ B5F_14  18.920  0.629   0.629    0.174    0.174
## 22  B5F_8 ~~  B5F_9  18.695  0.668   0.668    0.186    0.186
## 23  B5F_1 ~~ B5F_11  18.369  0.813   0.813    0.206    0.206
## 24  B5F_5 ~~  B5F_6  17.994  0.498   0.498    0.176    0.176
## 25  B5F_3 ~~ B5F_13  16.601 -0.330  -0.330   -0.147   -0.147
## 26  B5F_5 ~~ B5F_10  16.052 -0.847  -0.847   -0.192   -0.192
## 27  B5F_6 ~~ B5F_13  15.783 -0.300  -0.300   -0.141   -0.141
## 28  B5F_6 ~~ B5F_15  15.366 -0.286  -0.286   -0.138   -0.138
## 29  B5F_5 ~~  B5F_7  14.284 -0.659  -0.659   -0.171   -0.171
## 30  B5F_4 ~~  B5F_5  14.133  0.472   0.472    0.160    0.160
## 31  B5F_7 ~~  B5F_9  12.486  0.573   0.573    0.160    0.160
## 32  B5F_3 ~~ B5F_15  11.999 -0.270  -0.270   -0.123   -0.123
## 33  B5F_3 ~~  B5F_9  11.834 -0.407  -0.407   -0.146   -0.146
## 34  B5F_1 ~~  B5F_2   9.877 -0.431  -0.431   -0.134   -0.134
## 35  B5F_1 ~~ B5F_13   9.370  0.364   0.364    0.121    0.121
## 36  B5F_4 ~~ B5F_13   8.923 -0.238  -0.238   -0.108   -0.108
## 37  B5F_8 ~~ B5F_15   8.771 -0.301  -0.301   -0.106   -0.106
## 38  B5F_1 ~~  B5F_9   8.464 -0.523  -0.523   -0.140   -0.140
## 39  B5F_4 ~~ B5F_15   8.253 -0.221  -0.221   -0.102   -0.102
## 40 B5F_12 ~~ B5F_15   8.151  0.320   0.320    0.103    0.103
## 41 B5F_12 ~~ B5F_13   8.132  0.332   0.332    0.105    0.105
## 42  B5F_1 ~~ B5F_15   8.011  0.322   0.322    0.109    0.109
## 43  B5F_1 ~~  B5F_8   7.818  0.441   0.441    0.120    0.120
## 44  B5F_6 ~~ B5F_14   7.453 -0.253  -0.253   -0.104   -0.104
## 45  B5F_3 ~~  B5F_7   7.434 -0.298  -0.298   -0.110   -0.110
## 46  B5F_5 ~~  B5F_9   7.257  0.511   0.511    0.129    0.129
## 47  B5F_6 ~~ B5F_12   7.084 -0.287  -0.287   -0.103   -0.103
## 48  B5F_2 ~~ B5F_12   7.054 -0.352  -0.352   -0.105   -0.105
## 49  B5F_8 ~~ B5F_14   6.567 -0.334  -0.334   -0.101   -0.101
## 50  B5F_4 ~~  B5F_7   6.241 -0.270  -0.270   -0.101   -0.101
## 51  B5F_7 ~~ B5F_11   5.635  0.406   0.406    0.107    0.107
## 52  B5F_5 ~~ B5F_14   5.617 -0.375  -0.375   -0.103   -0.103
## 53  B5F_4 ~~ B5F_12   5.496 -0.270  -0.270   -0.092   -0.092
## 54  B5F_7 ~~ B5F_10   5.001  0.404   0.404    0.101    0.101
## 55  B5F_3 ~~  B5F_4   4.647  0.171   0.171    0.083    0.083
## 56  B5F_8 ~~ B5F_13   4.595 -0.226  -0.226   -0.078   -0.078
## 57  B5F_2 ~~  B5F_9   4.454 -0.284  -0.284   -0.090   -0.090
## 58  B5F_2 ~~  B5F_6   4.341  0.177   0.177    0.079    0.079
## 59  B5F_4 ~~ B5F_14   4.340 -0.205  -0.205   -0.081   -0.081
## 60  B5F_5 ~~ B5F_15   4.087 -0.243  -0.243   -0.078   -0.078

Fit Measures

fitmeasures(five.fit)
##                npar                fmin               chisq 
##              55.000               0.508             438.194 
##                  df              pvalue      baseline.chisq 
##              80.000               0.000            1891.174 
##         baseline.df     baseline.pvalue                 cfi 
##             105.000               0.000               0.799 
##                 tli                nnfi                 rfi 
##               0.737               0.737               0.696 
##                 nfi                pnfi                 ifi 
##               0.768               0.585               0.802 
##                 rni                logl   unrestricted.logl 
##               0.799          -12086.584          -11867.486 
##                 aic                 bic              ntotal 
##           24283.167           24506.803             431.000 
##                bic2               rmsea      rmsea.ci.lower 
##           24332.265               0.102               0.093 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.111               0.000               0.351 
##          rmr_nomean                srmr        srmr_bentler 
##               0.372               0.100               0.100 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.106               0.100               0.106 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.100               0.106             101.207 
##               cn_01                 gfi                agfi 
##             111.485               0.986               0.976 
##                pgfi                 mfi                ecvi 
##               0.584               0.660                  NA
fitmeasures(one.fit)
##                npar                fmin               chisq 
##              45.000               1.210            1042.777 
##                  df              pvalue      baseline.chisq 
##              90.000               0.000            1891.174 
##         baseline.df     baseline.pvalue                 cfi 
##             105.000               0.000               0.467 
##                 tli                nnfi                 rfi 
##               0.378               0.378               0.357 
##                 nfi                pnfi                 ifi 
##               0.449               0.385               0.471 
##                 rni                logl   unrestricted.logl 
##               0.467          -12388.875          -11867.486 
##                 aic                 bic              ntotal 
##           24867.750           25050.725             431.000 
##                bic2               rmsea      rmsea.ci.lower 
##           24907.920               0.157               0.148 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.165               0.000               0.427 
##          rmr_nomean                srmr        srmr_bentler 
##               0.453               0.117               0.117 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.124               0.117               0.124 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.117               0.124              47.765 
##               cn_01                 gfi                agfi 
##              52.300               0.974               0.961 
##                pgfi                 mfi                ecvi 
##               0.649               0.331                  NA

Create dataset for Target rotation

B5FTR<-select(data, B5F_1  , B5F_2 , B5F_3, B5F_4 ,  B5F_5 , B5F_6 ,B5F_7 , B5F_8 , B5F_9 , B5F_10 , B5F_11 , B5F_12 , B5F_13 , B5F_14 , B5F_15)
colnames(B5FTR) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15")
#Target Roration
Targ_key <- make.keys(15,list(f1=1:3,f2=4:6, f3=7:9, f4=10:12, f5=13:15))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
B5FTR_cor<-corFiml(B5FTR)
out_targetQ <- fa(B5FTR_cor,5,rotate="TargetQ", n.obs = 670, Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA","uniquenesses")]
## $loadings
## 
## Loadings:
##    MR5    MR4    MR3    MR1    MR2   
## 1   0.148  0.287  0.210 -0.328       
## 2                 0.103  0.696       
## 3                        0.757       
## 4          0.124                0.703
## 5          0.232  0.114  0.128 -0.423
## 6                               0.659
## 7                 0.840              
## 8                 0.784         0.128
## 9          0.323 -0.247  0.186       
## 10         0.798                     
## 11         0.675                     
## 12        -0.319  0.128  0.263  0.184
## 13  0.819                            
## 14  0.547  0.158         0.118       
## 15  0.889 -0.116                     
## 
##                  MR5   MR4   MR3   MR1   MR2
## SS loadings    1.813 1.509 1.478 1.315 1.188
## Proportion Var 0.121 0.101 0.099 0.088 0.079
## Cumulative Var 0.121 0.222 0.320 0.408 0.487
## 
## $score.cor
##            [,1]        [,2]        [,3]        [,4]       [,5]
## [1,] 1.00000000  0.05681416  0.31405756  0.35442663  0.3157650
## [2,] 0.05681416  1.00000000 -0.00340393 -0.01917587 -0.2328319
## [3,] 0.31405756 -0.00340393  1.00000000  0.25013556  0.2484601
## [4,] 0.35442663 -0.01917587  0.25013556  1.00000000  0.4091555
## [5,] 0.31576496 -0.23283193  0.24846011  0.40915548  1.0000000
## 
## $TLI
## [1] 0.8821429
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.06904647 0.05773951 0.07935754 0.10000000 
## 
## $uniquenesses
##         1         2         3         4         5         6         7 
## 0.7703425 0.4669100 0.3791957 0.4777912 0.7703480 0.4649405 0.3011605 
##         8         9        10        11        12        13        14 
## 0.3079007 0.8147968 0.3946338 0.5192855 0.6559305 0.3503986 0.6279298 
##        15 
## 0.2370194
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = B5FTR_cor, nfactors = 5, n.obs = 670, rotate = "TargetQ", 
##     Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR5   MR4   MR3   MR1   MR2   h2   u2 com
## 1   0.15  0.29  0.21 -0.33 -0.05 0.23 0.77 3.2
## 2   0.02 -0.02  0.10  0.70 -0.01 0.53 0.47 1.0
## 3   0.07  0.00 -0.02  0.76  0.02 0.62 0.38 1.0
## 4   0.06  0.12 -0.01  0.01  0.70 0.52 0.48 1.1
## 5   0.09  0.23  0.11  0.13 -0.42 0.23 0.77 2.1
## 6   0.04  0.02  0.09  0.05  0.66 0.54 0.46 1.1
## 7   0.03  0.07  0.84 -0.02 -0.09 0.70 0.30 1.0
## 8  -0.03 -0.08  0.78  0.05  0.13 0.69 0.31 1.1
## 9   0.06  0.32 -0.25  0.19  0.06 0.19 0.81 2.7
## 10 -0.05  0.80 -0.02 -0.05  0.09 0.61 0.39 1.0
## 11 -0.01  0.68 -0.02  0.03 -0.08 0.48 0.52 1.0
## 12  0.07 -0.32  0.13  0.26  0.18 0.34 0.66 3.1
## 13  0.82 -0.09  0.00 -0.07  0.04 0.65 0.35 1.0
## 14  0.55  0.16 -0.04  0.12 -0.03 0.37 0.63 1.3
## 15  0.89 -0.12 -0.01 -0.03  0.00 0.76 0.24 1.0
## 
##                        MR5  MR4  MR3  MR1  MR2
## SS loadings           1.84 1.51 1.49 1.36 1.26
## Proportion Var        0.12 0.10 0.10 0.09 0.08
## Cumulative Var        0.12 0.22 0.32 0.41 0.50
## Proportion Explained  0.25 0.20 0.20 0.18 0.17
## Cumulative Proportion 0.25 0.45 0.65 0.83 1.00
## 
##  With factor correlations of 
##      MR5   MR4  MR3  MR1   MR2
## MR5 1.00  0.09 0.40 0.39  0.39
## MR4 0.09  1.00 0.03 0.04 -0.19
## MR3 0.40  0.03 1.00 0.23  0.26
## MR1 0.39  0.04 0.23 1.00  0.51
## MR2 0.39 -0.19 0.26 0.51  1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 5 factors are sufficient.
## 
## The degrees of freedom for the null model are  105  and the objective function was  4.39 with Chi Square of  2909.95
## The degrees of freedom for the model are 40  and the objective function was  0.25 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  670 with the empirical chi square  157.61  with prob <  6.9e-16 
## The total number of observations was  670  with MLE Chi Square =  165.28  with prob <  3.7e-17 
## 
## Tucker Lewis Index of factoring reliability =  0.882
## RMSEA index =  0.069  and the 90 % confidence intervals are  0.058 0.079
## BIC =  -95.01
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy             
##                                                 MR5  MR4  MR3  MR1  MR2
## Correlation of scores with factors             0.93 0.87 0.91 0.88 0.86
## Multiple R square of scores with factors       0.86 0.76 0.83 0.77 0.74
## Minimum correlation of possible factor scores  0.72 0.51 0.65 0.53 0.48

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.9553362