Imagine 20 lily pads arranged in a circle. Suppose a frog starts at pad 20. Each second, it either stays where it is, or jumps one pad in the clockwise direction, or jumps one pad in the counter-clockwise direction, each with probability 1/3. (See Figure 1).
Figure 1
Exercise 1 (20pts). For the Frog Walk, compute P(at pad #1 after 2 steps).
Solution
\[ P(\mbox{at pad 1 after two steps})=\frac{1}{3}\cdot \frac{1}{3}+\frac{1}{3}\cdot \frac{1}{3}=\frac{2}{9}. \]
Let \(S=\{1,2,3\}\), and \(\nu=(1/7, 2/7, 4/7)\), and (see Figure 2) \[ (p_{ij})= \left( \begin{array}{lll} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{array} \right) = \left( \begin{array}{lll} 0 & 1/2 & 1/2 \\ 1/3 & 1/3 & 1/3 \\ 1/4 & 1/4 & 1/2 \end{array} \right) \]
Figure 2
Exercise 2 (25pts). For the above example:
Compute \(P(X_0=1, X_1=2)\).
Compute \(P(X_0=1, X_1=1, X_2=1)\).
Compute \(P(X_0=1, X_1=1, X_2=1, X_3=2)\).
Solution \[ (a)\ P(X_0=1, X_1=2)=\nu_1p_{12}=\frac{1}{7}\cdot \frac{1}{2}=\frac{1}{14}. \] \[ (b)\ P(X_0=1, X_1=1,X_2=1)=\nu_1p_{11}p_{11}=\frac{1}{7}\cdot 0\cdot 0=0.\\ \] \[ (c)\ P(X_0=1, X_1=1,X_2=1,X_3=2)=\nu_1p_{11}p_{11}p_{12}=\frac{1}{7}\cdot 0\cdot 0\cdot \frac{1}{2}=0. \]
Let \(0<p<1\), (e.g., \(p=1/2\)). Suppose you repeatedly bet
$1. Each time you have probability \(p\) of winning $1, and
probability \(1-p\) of loosing
$1. Let \(X_n\) be the net
gain (in dollars) after \(n\) bets.
Then \(\{X_n\}\) is a Markov chain,
with \(S={\bf Z}\), and (see Figure 3)
\[
p_{ij}=
\left\{
\begin{array}{ll}
p, & j=i+1\\
1-p, & j=i-1 \\
0, & \mbox{otherwise}.
\end{array}
\right.
\]
Figure 3
Usually we take the initial value \(X_0=0\), so \(\nu_0=1\), but sometimes we instead take \(X_0=a\) for some other \(a\in {\bf Z}\), so \(\nu_a=1\).
Exercise 3 (25pts). For the s.r.w. with \(p=2/3\) and \(X_0=0\) with probability 1:
Compute \(P(X_0=0, X_1=1)\).
Compute \(P(X_0=0, X_1=1, X_2=0)\).
Compute \(P(X_0=0, X_2=2\)).
Solution
\[ (a)\ P(X_0=0, X_1=1)=\frac{2}{3}. \] \[ (b)\ P(X_0=0, X_1=1, X_2=0)=\frac{2}{3}\cdot \frac{1}{3}=\frac{2}{9}. \] \[ (c)\ P(X_0=0, X_2=2)=\frac{2}{3}\cdot \frac{2}{3}=\frac{4}{9}. \]
Exercise 4(30pts) Consider a branching process with initial value \(X_0=1\), and offspring distribution \[ p_0=\frac{4}{7}, \qquad p_1=\frac{2}{7}, \qquad p_{2}=\frac{1}{7}. \] Calculate
\(P(X_1=0)\).
\(P(X_1=2)\).
\(P(X_2=2)\).
Solution
\[ (a)\ P(X_1=0)=p_0=\frac{4}{7}. \] \[ (b)\ P(X_1=2)=p_2=\frac{1}{7}. \] (c) Here \(X_2=2\) if we have either: (i) the first individual has 1 offspring who then has 2 offspring; or (ii) the first individual has 2 offspring who then have 1 offspring each; or (iii) the first individual has 2 offspring who then have 0 and 2 offspring respectively, in either order. Therefore, \[ (c)\ P(X_2=2)=p_1P_2+p_2p_1p_1+p_2p_0p_2+p_2p_2p_0=\frac{2}{7}\cdot\frac{1}{7}+\frac{1}{7}\cdot \frac{2}{7}\cdot \frac{2}{7}+\frac{1}{7}\cdot\frac{4}{7}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{7}\cdot\frac{4}{7}=\frac{26}{343}. \]