library(tidyverse)
<- seq(-4, 4, length = 100)
x <- (1/sqrt(2*pi))*exp(-x^2/2)
y <- tibble(x, y)
df %>%
df ggplot(aes(x, y)) +
geom_line(lwd = 3) +
labs(x = '', y = 'z')
Drawing normal distribution in R
Normal distribution
Here is the probability density function of normal distribution with mean \(\mu\) and the standard deviation of \(\sigma\) is
\[ f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
Standard normal distribution (\(Z\) curve)
Standard normal distribution is just the normal distribution with \(\mu=0\) and \(\sigma=1\).
\[ f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \]
Drawings in R
OR
ggplot(NULL, aes(c(-3,3))) +
geom_line(stat = "function",
fun = dnorm,
xlim = c(-4, 4),
lwd = 3) +
labs(x = '', y = 'z')
Shade regions
ggplot(NULL, aes(c(-3,3))) +
geom_area(stat = "function", fun = dnorm,
fill = "#00998a", xlim = c(-3, 0)) +
geom_area(stat = "function", fun = dnorm,
fill = "grey80", xlim = c(0, 3))
OR
ggplot(NULL, aes(c(-3,3))) +
geom_area(stat = "function",
fun = dnorm,
fill = "#00998a",
xlim = c(-3, 1)) +
geom_area(stat = "function",
fun = dnorm,
fill = "grey80",
xlim = c(1, 3)) +
labs(x = "z", y = "") +
scale_y_continuous(breaks = NULL) +
scale_x_continuous(breaks = 1)