Project Topic: Assessing Public (Users and Non-Users) Values on Conservation of Kente Weaving and Interpretation of Symbols in Ghana

Introduction

Kente is a traditional hand-loom-woven designer cloth that is only found in Ghana and closely linked with royalty. Despite this association with royalty, kente is now used by all social classes. Kente is used for both its beauty and symbolic significance. There are more than 300 different kente designs and each has its name and meaning. The names and meanings are derived from historical events, individual achievements, proverbs, philosophical concepts, oral literature, moral values and codes of conduct, among others.

The disappearance of intangible cultural heritage together with associated symbols and meanings in sub-Saharan Africa undercuts 2003 UN Convention for Safeguarding of the Intangible Cultural Heritage. To address this worrying pattern, this research project evaluate value of conserving traditional kente weaving and interpretation of kente symbols as an intangible cultural heritage by establishing national demonstration centers in Ghana.

First, this project examine statistical relationship between individuals who have kente cloth and their place of residence. Secondly, this study assess whether the population distributions are identical for perceived knowledge on Kente cloth and Kente weaving. Moreover, it estimate the differences among means of willingness to pay to conserve Kente and its factors Furthermore, this project evaluate the relationship between willingness to pay to conserve Kente and its demographic variables. Also, assessing the likely factors that affect respondents willingness to pay to conserve Kente and year of birth.

Materials and Methods

Beneath are the study areas and the sampling methods. Also, methods of data analysis and variables definition

Study Areas and Sampling Methods

The data used in this study were obtained from surveys in which willingness-to-pay questions questions were posed to samples drawn from the public. The WTP CV surveys were conducted in Bonwire and Kumasi in Ashanti Region, Accra in Greater Accra Region and Ho and Agotime Kpetoe of the Volta Region of Ghana. Bonwire and Agotime-Kpetoe were selected since both towns are associated with kente weaving and we would like to test whether WTP values elicited from these towns are different from those elicited from other parts of Ghana. The study interviewed about 50 respondents from each of these two small, kente weaving towns, and 200 respondents from each of the nearby cities of Ho and Kumasi. Moreover, in order to test for distance decay in WTP, we interviewed 200 respondents from Accra. In total, we had an overall sample of about 722 respondents in the survey.

The sample consists of users and non-users of kente cloth. For the first step, the metropolises were purposively sampled from each of the three regions and the three metropolises are Accra, Kumasi, and Ho. In the second step, convenience samples in suburbs in these metropolitan areas were selected to represent low-, middle-, and high income areas.

Method of Data Analysis

  • Means, Median, standard deviation, minimum and maximum.
  • Pearson’s Chi-squared Test for Count Data.
  • Wilcoxon Rank Sum and Signed Rank Tests.
  • ANOVA & MANOVA - (Multivariate) ANalysis of VAriance.
  • Boxplot.
  • Multi scatterplot in groups.
  • Table of means.
  • Tukey multiple comparisons of means.
  • MANOVA (multivariate analysis of variance).
  • Multivariate multiple linear regression.

Variables Definition

  • WTP_Va:Willingness to pay values to establish national centers across the country to preserve Kente weaving and interpretation of its symbols
  • Household_size: number of people above 18 years living in the household
  • Place:study areas respondents interviewed
  • Year_birth:year respondents were born
  • have_kente:respondents having Kente cloth(or a clothing that is completely made of Kente)
  • Gender: male and female respondents
  • Knowledge_Cloth:How respondents are knowledgeable of Kente cloth in general
  • Knowledge_Weaving:How respondents are knowledgeable of Kente weaving
  • Knowledge_symbol:How respondents are knowledgeable of Kente symbols

Results and Discussion

# Set working directory:
setwd('C:/Users/Lenovo-PC/Desktop/sch appy/Marine/interview/proposal/Course Materials/Econometric Modelling 2/Survey_Data_Analysis')
getwd()
## [1] "C:/Users/Lenovo-PC/Desktop/sch appy/Marine/interview/proposal/Course Materials/Econometric Modelling 2/Survey_Data_Analysis"
# read datasets
data <- read.csv('DATASETS/Kente_public18.csv')
  1. Descriptive statistics of some of the variables studied
summary(data)
##      respno         place              bonwire            kpetoe       
##  Min.   :  1.0   Length:722         Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:181.2   Class :character   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :361.5   Mode  :character   Median :0.00000   Median :0.00000  
##  Mean   :361.9                      Mean   :0.07064   Mean   :0.06787  
##  3rd Qu.:542.8                      3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :723.0                      Max.   :1.00000   Max.   :1.00000  
##                                                                        
##   weaving_town      have_kente      parts_kente     use_everyday     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.000000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.000000  
##  Median :0.0000   Median :1.0000   Median :1.000   Median :0.000000  
##  Mean   :0.1385   Mean   :0.6357   Mean   :0.554   Mean   :0.001385  
##  3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:0.000000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.000000  
##                                                                      
##     use_week        use_month        use_year1        use_year2     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2078   Mean   :0.7147   Mean   :0.5097   Mean   :0.8587  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :2.0000   Max.   :3.0000   Max.   :4.0000   Max.   :5.0000  
##                                                                     
##    use_year3        use_year4       use_notatall     use_kente    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:3.000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :5.000  
##  Mean   :0.5817   Mean   :0.2618   Mean   :1.706   Mean   :4.842  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:6.750  
##  Max.   :6.0000   Max.   :7.0000   Max.   :8.000   Max.   :8.000  
##                                                                   
##      X1.4              X1.5a              X1.5b               X1.6          
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  Knowledge_Cloth Knowledge_Weaving Knowledge_symbol   X1.10.1         
##  Min.   :1.000   Min.   :1.000     Min.   :1.000    Length:722        
##  1st Qu.:2.000   1st Qu.:1.000     1st Qu.:1.000    Class :character  
##  Median :3.000   Median :2.000     Median :3.000    Mode  :character  
##  Mean   :3.307   Mean   :2.711     Mean   :3.076                      
##  3rd Qu.:4.000   3rd Qu.:4.000     3rd Qu.:4.000                      
##  Max.   :6.000   Max.   :6.000     Max.   :6.000                      
##                                                                       
##    X1.10.2            X1.10.3            X1.10.4            X1.10.5         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.10.6            X1.10.7            X1.10.8            X1.10.9         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.10.10           X1.10.11           X1.10.12           X1.10.13        
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.10.14           X1.10.15           X1.11.1            X1.11.2         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.11.3            X1.11.4            X1.11.5            X1.11.6         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.11.7            X1.11.8            X1.11.9            X1.11.10        
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.11.11           X1.11.12           X1.11.13           X1.11.14        
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.11.15           X1.12.1            X1.12.2            X1.12.3         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.12.4            X1.12.5            X1.12.6            X1.12.7         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.12.8            X1.12.9          X1.12.10         X1.13.1         
##  Length:722         Length:722         Mode:logical   Length:722        
##  Class :character   Class :character   NA's:722       Class :character  
##  Mode  :character   Mode  :character                  Mode  :character  
##                                                                         
##                                                                         
##                                                                         
##                                                                         
##    X1.13.2            X1.13.3            X1.13.4            X1.13.5         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.13.6            X1.13.7            X1.13.8            X1.13.9         
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  X1.13.10         X1.13.1a           X1.13.1b           X1.13.1c        
##  Mode:logical   Length:722         Length:722         Length:722        
##  NA's:722       Class :character   Class :character   Class :character  
##                 Mode  :character   Mode  :character   Mode  :character  
##                                                                         
##                                                                         
##                                                                         
##                                                                         
##    X1.13.1d           X1.13.1e           X1.13.1f           X1.13.1g        
##  Length:722         Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    X1.13.1h           X1.13.1i           X1.13.1j             WTP_Va      
##  Length:722         Length:722         Length:722         Min.   :  0.00  
##  Class :character   Class :character   Class :character   1st Qu.:  0.00  
##  Mode  :character   Mode  :character   Mode  :character   Median :  5.00  
##                                                           Mean   : 18.72  
##                                                           3rd Qu.: 15.00  
##                                                           Max.   :500.00  
##                                                                           
##    X2.1.1b            X2.1.2a            X2.1.2b          X2.1.2c1      
##  Length:722         Length:722         Length:722         Mode:logical  
##  Class :character   Class :character   Class :character   NA's:722      
##  Mode  :character   Mode  :character   Mode  :character                 
##                                                                         
##                                                                         
##                                                                         
##                                                                         
##  X2.1.2c2          X2.1.3           X2.1.3name        NationalCentre_Visit
##  Mode:logical   Length:722         Length:722         Length:722          
##  NA's:722       Class :character   Class :character   Class :character    
##                 Mode  :character   Mode  :character   Mode  :character    
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##    Year_birth     Hometown            Gender           EDUCATION        
##  Min.   :1928   Length:722         Length:722         Length:722        
##  1st Qu.:1973   Class :character   Class :character   Class :character  
##  Median :1983   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1980                                                           
##  3rd Qu.:1990                                                           
##  Max.   :2002                                                           
##                                                                         
##   OCCUPATION        Kente_business     Household_size       X3.7.2      
##  Length:722         Length:722         Min.   : 0.000   Min.   : 0.000  
##  Class :character   Class :character   1st Qu.: 2.000   1st Qu.: 1.000  
##  Mode  :character   Mode  :character   Median : 3.000   Median : 2.000  
##                                        Mean   : 3.693   Mean   : 2.223  
##                                        3rd Qu.: 5.000   3rd Qu.: 3.000  
##                                        Max.   :20.000   Max.   :20.000  
##                                                         NA's   :77      
##      X3.8               X3.9                X            
##  Length:722         Length:722         Length:722        
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##                                                          
##                                                          
##                                                          
## 

That is, 60% mean(0.6357) have kente cloth (or a clothing that is completely made of kente). Also, 50% mean(0.554) of respondents have parts of some of clothing made of kente cloth.How often do respondents use clothing made of Kente. Greater percentage of respondents shown once a month, 70% mean (0.7) once a year 50% mean(0.5), once 2 year, 80% mean(0.8), once 3 year, 50% mean(0.5). This means, respondents seldom use clothing made of Kente. This is, this is normally worn on occasions.

The perceived knowledge on Kente cloth, weaving of kente and meaning of kente symbols were assessed during the survey using a 1-to-6 Likert scale from “not knowledgeable at all” (1) to “very knowledgeable” (6). Respondents expressed an average level of perceived knowledge, mean (3.3)median(3.0) of Kente cloth in general. Again, respondents indicated a bit less than average perceived knowledgeable level mean(2.7) median(2.0) of Kente weaving. In addition, respondents shown average perceived knowledgeable level mean(3.07), median (3.0) of Kente symbols.Furthermore, about 30% mean(3.7) median(3.0) number of people above 18 years living in the household studied and 20% mean(2.2) median(2.0) number of people who are 18 years or younger living in the household studied.

  1. Examining the statistical relationship between individuals who have Kente cloth and their place of residence
table(data$have_kente, data$place)
##    
##     Accra Bonwire  Ho Kpetoe Kumasi
##   0    50      11  84     14    104
##   1   158      40 123     35    103
chisq.test(table(data$have_kente, data$place))
## 
##  Pearson's Chi-squared test
## 
## data:  table(data$have_kente, data$place)
## X-squared = 38.553, df = 4, p-value = 8.615e-08
addmargins(table(data$have_kente, data$place))
##      
##       Accra Bonwire  Ho Kpetoe Kumasi Sum
##   0      50      11  84     14    104 263
##   1     158      40 123     35    103 459
##   Sum   208      51 207     49    207 722

H0 rejected, H1 accepted - proportions of having Kente cloth depend on study area (place). Thus, there is a significant association between the categories of the two variables. In other words, the row and the column variables are statistically significantly associated (p-value = 0). Accra as the country’s capital recorded higher proportion of respondents who have kente cloth, followed by Kumasi and Ho respectively, although the these major cities have equal sample sizes.The Kente weaving towns, that is Bonwire and Kpetoe recorded similar proportion of respondents having Kente cloth.

  1. Assessing whether the population distributions for this study are identical for perceived knowledge on Kente cloth and Kente weaving
wilcox.test(data$Knowledge_Cloth, data$Knowledge_Weaving)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  data$Knowledge_Cloth and data$Knowledge_Weaving
## W = 315835, p-value = 1.173e-12
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(data$Knowledge_Cloth, data$Knowledge_Weaving, paired=TRUE)
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data$Knowledge_Cloth and data$Knowledge_Weaving
## V = 48894, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Alternative hypothesis: true location shift is not equal to 0. At .05 significance level, we conclude that perceived knowledge of Kente cloth and Kente weaving in Kente data are nonidentical populations.

  1. Assessing the differences among means of willingness to pay to establish national centers and its factors
library(psych)
## Warning: package 'psych' was built under R version 4.1.3
describeBy(data$WTP_Va, data$Gender)
## 
##  Descriptive statistics by group 
## group: female
##    vars   n  mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 401 13.75 33.54      5    6.94 7.41   0 500   500 8.71    111.4 1.67
## ------------------------------------------------------------ 
## group: male
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 321 24.92 67.63     10   10.45 14.83   0 500   500 5.67    35.59 3.77

Statistics in groups show that the average values (willingness to pay values among gender are different) are different. Also, average mean for female respondents is 13.8 GHS and average mean for male respondents is 24.9 GHS.

fit<-stats::aov(WTP_Va ~ Gender, data)

summary(fit)
##              Df  Sum Sq Mean Sq F value  Pr(>F)   
## Gender        1   22260   22260   8.376 0.00392 **
## Residuals   720 1913409    2658                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case p-value<0.05 so H1 accepted & H0 rejected. Variances between group is different than within group - factor matters. Again, this means there is a statistically difference between the means of the different level of the gender variable.

fit<-stats::aov(WTP_Va~Gender+have_kente, data)

summary(fit)
##              Df  Sum Sq Mean Sq F value  Pr(>F)   
## Gender        1   22260   22260   8.420 0.00382 **
## have_kente    1   12581   12581   4.759 0.02947 * 
## Residuals   719 1900828    2644                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case both p-values<0.05 so H1 accepted & H0 rejected. Variances between groups are different than within group - both factors matter. Thus, there is an interaction between the independent variables (Gender and have_Kente) on the dependent variable (WTP_Va).

fit<-aov(WTP_Va~Gender+have_kente+Gender:have_kente, data)

fit<-aov(WTP_Va~Gender*have_kente, data) 

summary(fit)
##                    Df  Sum Sq Mean Sq F value  Pr(>F)   
## Gender              1   22260   22260   8.536 0.00359 **
## have_kente          1   12581   12581   4.824 0.02838 * 
## Gender:have_kente   1   28446   28446  10.908 0.00100 **
## Residuals         718 1872382    2608                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case all three p-values<0.05 so H1 accepted & H0 rejected. Therefore, the variances between groups are different than within group - both factors matter individually and their interaction also matters.

fit<-aov(WTP_Va~Gender+place, data)

summary(fit)
##              Df  Sum Sq Mean Sq F value   Pr(>F)    
## Gender        1   22260   22260   8.643  0.00339 ** 
## place         4   69373   17343   6.734 2.53e-05 ***
## Residuals   716 1844035    2575                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
drop1(fit, ~., test="F")
## Single term deletions
## 
## Model:
## WTP_Va ~ Gender + place
##        Df Sum of Sq     RSS    AIC F value    Pr(>F)    
## <none>              1844035 5676.4                      
## Gender  1     19652 1863687 5682.1  7.6304  0.005886 ** 
## place   4     69373 1913409 5695.1  6.7340 2.534e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit<-aov(WTP_Va~place+Gender, data)

summary(fit)
##              Df  Sum Sq Mean Sq F value   Pr(>F)    
## place         4   71981   17995   6.987 1.61e-05 ***
## Gender        1   19652   19652   7.630  0.00589 ** 
## Residuals   716 1844035    2575                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
drop1(fit, ~., test="F")
## Single term deletions
## 
## Model:
## WTP_Va ~ place + Gender
##        Df Sum of Sq     RSS    AIC F value    Pr(>F)    
## <none>              1844035 5676.4                      
## place   4     69373 1913409 5695.1  6.7340 2.534e-05 ***
## Gender  1     19652 1863687 5682.1  7.6304  0.005886 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Inclusion of study areas (place) is highly significant

boxplot(WTP_Va~Gender*have_kente, data, frame = FALSE, col=c("#00AFBB", "#E7B800", "#FC4E07"), cex.axis=0.5)

interaction.plot(factor(data$have_kente), factor(data$Gender), data$WTP_Va, type="b")

interaction.plot(factor(data$Gender), factor(data$have_kente), data$WTP_Va, type="b")

It can be seen on figures above the average values of response variable (WTP_Va) in groups by first factor and second factor (that is, Gender and have_Kente). That is, difference between both figures is in factors.

library(gplots)
## Warning: package 'gplots' was built under R version 4.1.3
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
plotmeans(data$WTP_Va~data$Gender)

plotmeans(data$WTP_Va~data$have_kente)

It can seen on figures above the average values of response variable (WTP_Va) in groups by one of the factor (Gender/have_kente). That is, difference between both figures is in factors - which of them is on x.

fit<-aov(WTP_Va~Gender*place, data) 

summary(fit)
##               Df  Sum Sq Mean Sq F value   Pr(>F)    
## Gender         1   22260   22260   8.760  0.00318 ** 
## place          4   69373   17343   6.825 2.15e-05 ***
## Gender:place   4   34857    8714   3.429  0.00866 ** 
## Residuals    712 1809178    2541                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(model.tables(fit,"means"),digits=3)
## Tables of means
## Grand mean
##          
## 18.71607 
## 
##  Gender 
##     female  male
##       13.7  24.9
## rep  401.0 321.0
## 
##  place 
##     Accra Bonwire    Ho Kpetoe Kumasi
##        31    34.9  12.1   12.2   10.6
## rep   208    51.0 207.0   49.0  207.0
## 
##  Gender:place 
##         place
## Gender   Accra Bonwire Ho    Kpetoe Kumasi
##   female  21.5   5.0    11.0   7.3   11.4 
##   rep    122.0  18.0   131.0  32.0   98.0 
##   male    43.5  54.7    11.5  18.2   11.7 
##   rep     86.0  33.0    76.0  17.0  109.0

Whereby ‘rep’ refers to number of observations in a group. There is a total average of about 18.7 GHS. The male respondents observed are higher than the female. The sample size studied in the major cities are equal same. However, there are few respondents studied in the Kente weaving towns as compare the major cities studied.

library(car)
## Warning: package 'car' was built under R version 4.1.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.1.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(~Year_birth+WTP_Va+Household_size | Gender, data, smooth=FALSE, regLine=FALSE, ellipse=TRUE, by.groups=TRUE, diagonal=FALSE, legend=list(coords="bottomleft"))

A plots one variable on x and other variable on y (axes are labeled by variables on diagonal of scatterplot matrix),colours specify the groups. Continous variables were listed in code with ~ (~Year_birth+WTP_Va+Household_size), while groupping variable in place of condition, after the | (| Gender).

library(lattice)

xyplot(WTP_Va ~ Household_size | have_kente + place, groups=Gender, data, type="a", ylab="WTP", xlab="Household_size")

Show the plots of amount willingness to pay to conserve Kente on the y-axis by household_size on the axis which captures the study areas and having Kente cloth.

data$Gender<-factor(data$Gender)

data$place<-factor(data$place)

summary(fit<-aov(WTP_Va~Gender+place, data))
##              Df  Sum Sq Mean Sq F value   Pr(>F)    
## Gender        1   22260   22260   8.643  0.00339 ** 
## place         4   69373   17343   6.734 2.53e-05 ***
## Residuals   716 1844035    2575                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

That is, both variables influence the independent variable -means in groups defined by these x variables are different.

TukeyHSD(fit, "place", ordered=FALSE)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = WTP_Va ~ Gender + place, data = data)
## 
## $place
##                        diff       lwr       upr     p adj
## Bonwire-Accra    3.96048793 -17.72542 25.646392 0.9874112
## Ho-Accra       -18.88055246 -32.50603 -5.255079 0.0015336
## Kpetoe-Accra   -18.80122014 -40.83968  3.237240 0.1356773
## Kumasi-Accra   -20.32857964 -33.95405 -6.703106 0.0004796
## Ho-Bonwire     -22.84104039 -44.53726 -1.144825 0.0333507
## Kpetoe-Bonwire -22.76170807 -50.52438  5.000964 0.1654960
## Kumasi-Bonwire -24.28906757 -45.98528 -2.592852 0.0193196
## Kpetoe-Ho        0.07933232 -21.96928 22.127940 1.0000000
## Kumasi-Ho       -1.44802718 -15.08991 12.193853 0.9984492
## Kumasi-Kpetoe   -1.52735950 -23.57597 20.521248 0.9997123

Pairs Ho-Accra, Kumasi-Accra, Kumasi-Bonwire and Ho-Bonwire are significantly different at 0.05 level.There is statistically significant difference between Ho and Accra. Also, there is statistically significant difference between Kumasi and Accra. There is statistically significant difference between Kumasi and Bonwire. Again, there is statistically significant difference between Ho and Bonwire.

plot(TukeyHSD(fit, "place"))

plot(TukeyHSD(fit, "Gender"))

The plots show at 95% family-wise confidence level and differences in mean levels of Gender and study areas(place).

  1. Assessing the likely factors that affect respondents willingness to pay to establish national centers to preserve kente weaving and interpretation of its symbols and year of birth.
fit<-manova(cbind(WTP_Va, Year_birth)~Gender+have_kente+place+Knowledge_Cloth+Knowledge_Weaving+Knowledge_symbol, data)

summary(fit)
##                    Df   Pillai approx F num Df den Df    Pr(>F)    
## Gender              1 0.014825   5.3496      2    711  0.004943 ** 
## have_kente          1 0.031854  11.6968      2    711 1.004e-05 ***
## place               4 0.076442   7.0737      8   1424 3.358e-09 ***
## Knowledge_Cloth     1 0.006186   2.2126      2    711  0.110164    
## Knowledge_Weaving   1 0.009296   3.3359      2    711  0.036142 *  
## Knowledge_symbol    1 0.001148   0.4088      2    711  0.664632    
## Residuals         712                                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fit, "Pillai") 
##                    Df   Pillai approx F num Df den Df    Pr(>F)    
## Gender              1 0.014825   5.3496      2    711  0.004943 ** 
## have_kente          1 0.031854  11.6968      2    711 1.004e-05 ***
## place               4 0.076442   7.0737      8   1424 3.358e-09 ***
## Knowledge_Cloth     1 0.006186   2.2126      2    711  0.110164    
## Knowledge_Weaving   1 0.009296   3.3359      2    711  0.036142 *  
## Knowledge_symbol    1 0.001148   0.4088      2    711  0.664632    
## Residuals         712                                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This output show that these factors(Gender, have_kente, place and knowledge_weaving) impact both variables (considered jointly). But perceived knowledge on kente cloth and symbols are statistical insignificant.

fit<-aov(WTP_Va~Gender+have_kente+Knowledge_Weaving, data)

summary(fit)
##                    Df  Sum Sq Mean Sq F value  Pr(>F)   
## Gender              1   22260   22260   8.458 0.00375 **
## have_kente          1   12581   12581   4.780 0.02911 * 
## Knowledge_Weaving   1   11141   11141   4.233 0.04000 * 
## Residuals         718 1889687    2632                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit<-aov(Year_birth~Gender+have_kente+Knowledge_Weaving, data)

summary(fit)
##                    Df Sum Sq Mean Sq F value   Pr(>F)    
## Gender              1    439   439.0   2.581  0.10858    
## have_kente          1   2845  2844.7  16.727 4.81e-05 ***
## Knowledge_Weaving   1   2542  2542.3  14.949  0.00012 ***
## Residuals         718 122109   170.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit3<-car::Manova(lm(cbind(WTP_Va, Household_size)~Gender+have_kente+Knowledge_Weaving, data), type="III")

summary(fit3, multivariate=TRUE)
## 
## Type III MANOVA Tests:
## 
## Sum of squares and products for error:
##                     WTP_Va Household_size
## WTP_Va         1889687.014      -6502.327
## Household_size   -6502.327       5302.137
## 
## ------------------------------------------
##  
## Term: (Intercept) 
## 
## Sum of squares and products for the hypothesis:
##                  WTP_Va Household_size
## WTP_Va         1631.060       1622.527
## Household_size 1622.527       1614.039
## 
## Multivariate Tests: (Intercept)
##                  Df test stat approx F num Df den Df     Pr(>F)    
## Pillai            1 0.2358740 110.6634      2    717 < 2.22e-16 ***
## Wilks             1 0.7641260 110.6634      2    717 < 2.22e-16 ***
## Hotelling-Lawley  1 0.3086846 110.6634      2    717 < 2.22e-16 ***
## Roy               1 0.3086846 110.6634      2    717 < 2.22e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ------------------------------------------
##  
## Term: Gender 
## 
## Sum of squares and products for the hypothesis:
##                     WTP_Va Household_size
## WTP_Va         17186.02631     50.5566698
## Household_size    50.55667      0.1487241
## 
## Multivariate Tests: Gender
##                  Df test stat approx F num Df den Df  Pr(>F)  
## Pillai            1 0.0091429 3.307969      2    717 0.03715 *
## Wilks             1 0.9908571 3.307969      2    717 0.03715 *
## Hotelling-Lawley  1 0.0092272 3.307969      2    717 0.03715 *
## Roy               1 0.0092272 3.307969      2    717 0.03715 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ------------------------------------------
##  
## Term: have_kente 
## 
## Sum of squares and products for the hypothesis:
##                    WTP_Va Household_size
## WTP_Va         8116.70786      90.544590
## Household_size   90.54459       1.010055
## 
## Multivariate Tests: have_kente
##                  Df test stat approx F num Df den Df  Pr(>F)
## Pillai            1 0.0046015 1.657272      2    717 0.19139
## Wilks             1 0.9953985 1.657272      2    717 0.19139
## Hotelling-Lawley  1 0.0046228 1.657272      2    717 0.19139
## Roy               1 0.0046228 1.657272      2    717 0.19139
## 
## ------------------------------------------
##  
## Term: Knowledge_Weaving 
## 
## Sum of squares and products for the hypothesis:
##                    WTP_Va Household_size
## WTP_Va         11141.0735      457.14250
## Household_size   457.1425       18.75755
## 
## Multivariate Tests: Knowledge_Weaving
##                  Df test stat approx F num Df den Df   Pr(>F)  
## Pillai            1 0.0099689 3.609843      2    717 0.027549 *
## Wilks             1 0.9900311 3.609843      2    717 0.027549 *
## Hotelling-Lawley  1 0.0100693 3.609843      2    717 0.027549 *
## Roy               1 0.0100693 3.609843      2    717 0.027549 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This shows the III type SS, each section is for different explanatory variable. Also, the various tests show that, the factors impact output.

  1. Estimating the significant impact of some factors (place and gender) on willingness to pay national centers and year of birth of respondents.
mlm<-lm(cbind(WTP_Va, Year_birth)~place+Gender, data)

mlm
## 
## Call:
## lm(formula = cbind(WTP_Va, Year_birth) ~ place + Gender, data = data)
## 
## Coefficients:
##               WTP_Va     Year_birth
## (Intercept)     26.1977  1980.2152 
## placeBonwire     4.0802    -1.6320 
## placeHo        -18.9043    -3.3136 
## placeKpetoe    -18.8353    -5.4207 
## placeKumasi    -20.2706     3.5064 
## Gendermale      10.6614     0.8865

The results show, there is an impact of each level of factor in each dependent variable, that is coefficients only. In addition, impact is as in individual regressions.

summary(mlm)
## Response WTP_Va :
## 
## Call:
## lm(formula = WTP_Va ~ place + Gender, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -40.94 -16.86  -7.29   2.71 473.80 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    26.198      3.864   6.780 2.51e-11 ***
## placeBonwire    4.080      7.981   0.511 0.609334    
## placeHo       -18.904      4.986  -3.792 0.000162 ***
## placeKpetoe   -18.835      8.063  -2.336 0.019762 *  
## placeKumasi   -20.271      5.001  -4.053 5.61e-05 ***
## Gendermale     10.661      3.860   2.762 0.005886 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.75 on 716 degrees of freedom
## Multiple R-squared:  0.04734,    Adjusted R-squared:  0.04069 
## F-statistic: 7.116 on 5 and 716 DF,  p-value: 1.653e-06
## 
## 
## Response Year_birth :
## 
## Call:
## lm(formula = Year_birth ~ place + Gender, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.902  -6.902   2.392   9.098  24.212 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  1980.2152     0.9910 1998.135  < 2e-16 ***
## placeBonwire   -1.6320     2.0470   -0.797  0.42559    
## placeHo        -3.3136     1.2788   -2.591  0.00976 ** 
## placeKpetoe    -5.4207     2.0681   -2.621  0.00895 ** 
## placeKumasi     3.5064     1.2828    2.733  0.00643 ** 
## Gendermale      0.8865     0.9900    0.895  0.37083    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.02 on 716 degrees of freedom
## Multiple R-squared:  0.05172,    Adjusted R-squared:  0.0451 
## F-statistic: 7.811 on 5 and 716 DF,  p-value: 3.593e-07

Also, the results show that, Ho, Kpetoe and Kumasi as a study areas (place) show a negative significant impact on willingness to pay values to establish national centers to conserve Kente at 0, 0.01, 0 and 0.001 levels respectively. Also male gender indicate a positive siginificant effect on willingness to pay values at 5% level. Again, Bonwire as study shows no significant effect.

Again, the results indicate that, Ho and Kpetoe as a study areas (place) show a negative significant impact on age (year of birth) of respondents at 0.01 levels. Also, Kumasi as a study area indicate a positive significant effect on age (year of birth) of respondents at 0.01 level. Again, male gender indicate no significant effect.

summary(stats::manova(mlm), test="Pillai")
##            Df   Pillai approx F num Df den Df    Pr(>F)    
## place       4 0.088429   8.2805      8   1432 5.067e-11 ***
## Gender      1 0.011291   4.0827      2    715   0.01726 *  
## Residuals 716                                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The factors impact the outputs

car::Manova(mlm, type="II")
## 
## Type II MANOVA Tests: Pillai test statistic
##        Df test stat approx F num Df den Df   Pr(>F)    
## place   4  0.085149   7.9597      8   1432 1.55e-10 ***
## Gender  1  0.011291   4.0827      2    715  0.01726 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The factors impact the outputs

car::Manova(mlm, type="III")
## 
## Type III MANOVA Tests: Pillai test statistic
##             Df test stat approx F num Df den Df    Pr(>F)    
## (Intercept)  1   0.99982  1999239      2    715 < 2.2e-16 ***
## place        4   0.08515        8      8   1432  1.55e-10 ***
## Gender       1   0.01129        4      2    715   0.01726 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The factors impact the outputs

summary(car::Manova(mlm, type="II"))
## 
## Type II MANOVA Tests:
## 
## Sum of squares and products for error:
##                WTP_Va Year_birth
## WTP_Va     1844035.39   26977.06
## Year_birth   26977.06  121317.96
## 
## ------------------------------------------
##  
## Term: place 
## 
## Sum of squares and products for the hypothesis:
##                WTP_Va Year_birth
## WTP_Va     69373.2199  -920.8781
## Year_birth  -920.8781  6178.2892
## 
## Multivariate Tests: place
##                  Df test stat approx F num Df den Df     Pr(>F)    
## Pillai            4 0.0851486 7.959681      8   1432 1.5501e-10 ***
## Wilks             4 0.9166097 7.954086      8   1430 1.5818e-10 ***
## Hotelling-Lawley  4 0.0890586 7.948476      8   1428 1.6142e-10 ***
## Roy               4 0.0525628 9.408748      4    716 2.0472e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ------------------------------------------
##  
## Term: Gender 
## 
## Sum of squares and products for the hypothesis:
##               WTP_Va Year_birth
## WTP_Va     19651.976   1634.054
## Year_birth  1634.054    135.871
## 
## Multivariate Tests: Gender
##                  Df test stat approx F num Df den Df   Pr(>F)  
## Pillai            1 0.0112911 4.082674      2    715 0.017257 *
## Wilks             1 0.9887089 4.082674      2    715 0.017257 *
## Hotelling-Lawley  1 0.0114201 4.082674      2    715 0.017257 *
## Roy               1 0.0114201 4.082674      2    715 0.017257 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The factors strongly impact the outputs

Conclusion

The irrelevance of material aspects of heritage in the definition of cultural heritage has provided convincing arguments for expansion of cultural heritage to include intangible cultural heritage(ICH). The 2003 UNESCO Convention recognizes the importance of preservation of intangible cultural heritage through the safeguarding of ICHs as part of cultural heritage. Therefore, the project seek to evaluate the value of conserving Kente weaving and interpretation of its symbols as an intangible cultural heritage.It can be concluded that, there is significant association between respondents having Kente cloth and study areas. Also, there is an interaction between the independent variables (Gender and having Kente cloth) on willingness to pay values to conserve Kente weaving and interpretation of its symbols. Moreover, these independent variables such as gender, having kente cloth , study areas and perceived knowledge on Kente weaving impact both willingness to pay values and year of birth of respondents. Furthermore, the findings show that, Ho, Kpetoe and Kumasi as a study areas show a negative significant impact on willingness to pay values to establish national centers to conserve Kente. In addition, male gender indicates a positive significant effect on willingness to pay values. Again, the results show that, Ho and Kpetoe as study areas show a negative significant impact on age (year of birth) of respondents. Also, Kumasi as a study area indicate a positive significant effect on age (year of birth) of respondents.

SessionInfo:

sessionInfo()
## R version 4.1.0 (2021-05-18)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19043)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.1252 
## [2] LC_CTYPE=English_United States.1252   
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] lattice_0.20-44 car_3.1-0       carData_3.0-5   gplots_3.1.3   
## [5] psych_2.2.5    
## 
## loaded via a namespace (and not attached):
##  [1] bslib_0.3.1        compiler_4.1.0     jquerylib_0.1.4    highr_0.9         
##  [5] bitops_1.0-7       tools_4.1.0        digest_0.6.29      jsonlite_1.8.0    
##  [9] evaluate_0.15      nlme_3.1-152       rlang_1.0.1        cli_3.2.0         
## [13] rstudioapi_0.13    yaml_2.3.5         parallel_4.1.0     xfun_0.30         
## [17] fastmap_1.1.0      stringr_1.4.0      knitr_1.38         sass_0.4.1        
## [21] gtools_3.9.2       caTools_1.18.2     grid_4.1.0         R6_2.5.1          
## [25] rmarkdown_2.16     magrittr_2.0.1     htmltools_0.5.2    MASS_7.3-57       
## [29] abind_1.4-5        mnormt_2.0.2       KernSmooth_2.23-20 stringi_1.7.6     
## [33] tmvnsim_1.0-2

References