Answer to the problem No: 2.24.(a)
getwd()
## [1] "C:/Users/J A Kowshik/OneDrive - Texas Tech University/Desktop"
Machine <- c("Machine 1","Machine 1","Machine 1","Machine 1","Machine 1","Machine 1","Machine 1","Machine 1","Machine 1","Machine 1","Machine 2","Machine 2","Machine 2","Machine 2","Machine 2","Machine 2","Machine 2","Machine 2","Machine 2","Machine 2")
dat <- c(16.03,16.04,16.05,16.05,16.02,16.01,15.96,15.98,16.02,15.99,16.02,15.97,15.96,16.01,15.99,16.03,16.04,16.02,16.01,16.00)
length(Machine)
## [1] 20
length(dat)
## [1] 20
str(Machine)
## chr [1:20] "Machine 1" "Machine 1" "Machine 1" "Machine 1" "Machine 1" ...
Machine <- as.factor(Machine)
str(Machine)
## Factor w/ 2 levels "Machine 1","Machine 2": 1 1 1 1 1 1 1 1 1 1 ...
str(dat)
## num [1:20] 16 16 16.1 16.1 16 ...
dat1 <- data.frame(Machine,dat)
dat1
## Machine dat
## 1 Machine 1 16.03
## 2 Machine 1 16.04
## 3 Machine 1 16.05
## 4 Machine 1 16.05
## 5 Machine 1 16.02
## 6 Machine 1 16.01
## 7 Machine 1 15.96
## 8 Machine 1 15.98
## 9 Machine 1 16.02
## 10 Machine 1 15.99
## 11 Machine 2 16.02
## 12 Machine 2 15.97
## 13 Machine 2 15.96
## 14 Machine 2 16.01
## 15 Machine 2 15.99
## 16 Machine 2 16.03
## 17 Machine 2 16.04
## 18 Machine 2 16.02
## 19 Machine 2 16.01
## 20 Machine 2 16.00
Hypotheses Statement:
H0: u1 = u2 or u1-u2 = 0
Ha: u1 != u2 or u1 -u2 != 0
Answer to the problem No: 2.24.(b)
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dat2 <- dat1 %>% filter(Machine=="Machine 1") %>% select(dat)
dat3 <- dat1 %>% filter(Machine=="Machine 2") %>% select(dat)
t.test(dat2,dat3,var.equal = TRUE)
##
## Two Sample t-test
##
## data: dat2 and dat3
## t = 0.79894, df = 18, p-value = 0.4347
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01629652 0.03629652
## sample estimates:
## mean of x mean of y
## 16.015 16.005
p value > 0.05 so we fail to reject H0. Hence, the mean is equal so the both machines fill to the same net volume regardless of the volume is 16.0 ounce at the alpha = 0.05 level of significance and the quality engineering department’s suspect is true.
Answer to the problem No: 2.24.(c)
P-value for this test is 0.4347
Answer to the problem No: 2.24.(d)
95 percent confidence interval on the difference in the mean fill volume for the two machines are -0.01629652<= u1-u2 <=0.03629652
Answer to the problem No: 2.26
Type <- c("Type1","Type1","Type1","Type1","Type1","Type1","Type1","Type1","Type1","Type1","Type2","Type2","Type2","Type2","Type2","Type2","Type2","Type2","Type2","Type2")
dat4 <- c(65,81,57,66,82,82,67,59,75,70,64,71,83,59,65,56,69,74,82,79)
str(Type)
## chr [1:20] "Type1" "Type1" "Type1" "Type1" "Type1" "Type1" "Type1" "Type1" ...
Type <- as.factor(Type)
str(Type)
## Factor w/ 2 levels "Type1","Type2": 1 1 1 1 1 1 1 1 1 1 ...
str(dat4)
## num [1:20] 65 81 57 66 82 82 67 59 75 70 ...
dat5 <- data.frame(Type,dat4)
dat5
## Type dat4
## 1 Type1 65
## 2 Type1 81
## 3 Type1 57
## 4 Type1 66
## 5 Type1 82
## 6 Type1 82
## 7 Type1 67
## 8 Type1 59
## 9 Type1 75
## 10 Type1 70
## 11 Type2 64
## 12 Type2 71
## 13 Type2 83
## 14 Type2 59
## 15 Type2 65
## 16 Type2 56
## 17 Type2 69
## 18 Type2 74
## 19 Type2 82
## 20 Type2 79
Answer to the problem No: 2.26.(a)
library(lawstat)
## Warning: package 'lawstat' was built under R version 4.1.3
levene.test(dat5$dat4,dat5$Type,location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: dat5$dat4
## Test Statistic = 0.0014598, p-value = 0.9699
Hence, P value > 0.05, so we fail to reject H0 and therefore the variance’s are equal at alpha = 0.05 level of significance.
Answer to the problem No: 2.26.(b)
From the results of (a), we see that variance’s are equal. Hence we can use Two Sample t test with pooled variance to test the hypotheses. Hypotheses Statement: H0: u1 = u2 or u1-u2 = 0
Ha: u1 != u2 or u1 -u2 != 0
dat6 <- dat5 %>% filter(Type=="Type1") %>% select(dat4)
dat7 <- dat5 %>% filter(Type=="Type2") %>% select(dat4)
t.test(dat6,dat7,var.equal = TRUE)
##
## Two Sample t-test
##
## data: dat6 and dat7
## t = 0.048008, df = 18, p-value = 0.9622
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.552441 8.952441
## sample estimates:
## mean of x mean of y
## 70.4 70.2
Hence, P value > 0.05, so we fail to reject H0 and therefore the mean burning times are equal at alpha = 0.05 level of significance. P-value for this test is 0.9622.
Answer to the problem No: 2.29
Temp95 <- c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
Temp100 <- c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
dat8 <- data.frame(Temp100,Temp95)
dat8
## Temp100 Temp95
## 1 5.263 11.176
## 2 6.748 7.089
## 3 7.461 8.097
## 4 7.015 11.739
## 5 8.133 11.291
## 6 7.418 10.759
## 7 3.772 6.467
## 8 8.963 8.315
Answer to the problem No: 2.29.(a)
Hypotheses Statement: H0: u1 (mean of Temp 100) = u2 (mean of Temp 95) or u1-u2 = 0
Ha: u1 (mean of Temp 100) < u2 (mean of Temp 95)
t.test(Temp100,Temp95,var.equal = TRUE,alternative = "less")
##
## Two Sample t-test
##
## data: Temp100 and Temp95
## t = -2.6751, df = 14, p-value = 0.009059
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -0.8608158
## sample estimates:
## mean of x mean of y
## 6.846625 9.366625
Since P-value < 0.05 at a alpha = 0.05 level of significance so we reject H0
Thus, there is evidence to support the claim that higher the baking temperature results with a lower mean photo resist thickness.
Answer to the problem No: 2.29.(b)
P-value for the test conducted in part (a) is 0.009059.
Answer to the problem No: 2.29.(c)
95% confidence interval on the difference in mean is
-infinity <= u1-u2 <= -0.8608158
This confidence interval does not include 0 in it. So, there is a difference in the two temperatures on the thickness of the photo resist.
Answer to the problem No: 2.29.(e)
Normality assumptions check
qqnorm(dat8$Temp100,main="Normal Probability Plot Temp100",col="blue",ylab="100 degree celcius")
qqline(dat8$Temp100)
qqnorm(dat8$Temp95,main="Normal Probability Plot Temp95",col="red",ylab="95 degree celcius")
qqline(dat8$Temp95)
No significant deviations been observed from both (Temp 100 and Temp 95) of the the normality assumptions.