file.choose()
## [1] "C:\\Users\\ximen\\OneDrive\\Escritorio\\Walmart-Store.Rmd"
stores <-read.csv("C:\\Users\\ximen\\Downloads\\stores.csv")
train <- read.csv("C:\\Users\\ximen\\Downloads\\train.csv")
test <- read.csv("C:\\Users\\ximen\\Downloads\\test.csv")
features <- read.csv("C:\\Users\\ximen\\Downloads\\features (1).csv")
#install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
summary(stores)
## Store Type Size
## Min. : 1 Length:45 Min. : 34875
## 1st Qu.:12 Class :character 1st Qu.: 70713
## Median :23 Mode :character Median :126512
## Mean :23 Mean :130288
## 3rd Qu.:34 3rd Qu.:202307
## Max. :45 Max. :219622
count(stores, Type, sort = TRUE)
## Type n
## 1 A 22
## 2 B 17
## 3 C 6
str(stores)
## 'data.frame': 45 obs. of 3 variables:
## $ Store: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Type : chr "A" "A" "B" "A" ...
## $ Size : int 151315 202307 37392 205863 34875 202505 70713 155078 125833 126512 ...
summary(features)
## Store Date Temperature Fuel_Price
## Min. : 1 Length:8190 Min. : -7.29 Min. :2.472
## 1st Qu.:12 Class :character 1st Qu.: 45.90 1st Qu.:3.041
## Median :23 Mode :character Median : 60.71 Median :3.513
## Mean :23 Mean : 59.36 Mean :3.406
## 3rd Qu.:34 3rd Qu.: 73.88 3rd Qu.:3.743
## Max. :45 Max. :101.95 Max. :4.468
##
## MarkDown1 MarkDown2 MarkDown3 MarkDown4
## Min. : -2781 Min. : -265.76 Min. : -179.26 Min. : 0.22
## 1st Qu.: 1578 1st Qu.: 68.88 1st Qu.: 6.60 1st Qu.: 304.69
## Median : 4744 Median : 364.57 Median : 36.26 Median : 1176.42
## Mean : 7032 Mean : 3384.18 Mean : 1760.10 Mean : 3292.94
## 3rd Qu.: 8923 3rd Qu.: 2153.35 3rd Qu.: 163.15 3rd Qu.: 3310.01
## Max. :103185 Max. :104519.54 Max. :149483.31 Max. :67474.85
## NA's :4158 NA's :5269 NA's :4577 NA's :4726
## MarkDown5 CPI Unemployment IsHoliday
## Min. : -185.2 Min. :126.1 Min. : 3.684 Mode :logical
## 1st Qu.: 1440.8 1st Qu.:132.4 1st Qu.: 6.634 FALSE:7605
## Median : 2727.1 Median :182.8 Median : 7.806 TRUE :585
## Mean : 4132.2 Mean :172.5 Mean : 7.827
## 3rd Qu.: 4832.6 3rd Qu.:213.9 3rd Qu.: 8.567
## Max. :771448.1 Max. :229.0 Max. :14.313
## NA's :4140 NA's :585 NA's :585
str(features)
## 'data.frame': 8190 obs. of 12 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr "05/02/2010" "12/02/2010" "19/02/2010" "26/02/2010" ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ MarkDown1 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown2 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown3 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown4 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown5 : num NA NA NA NA NA NA NA NA NA NA ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
## $ IsHoliday : logi FALSE TRUE FALSE FALSE FALSE FALSE ...
summary(test)
## Store Dept Date IsHoliday
## Min. : 1.00 Min. : 1.00 Length:115064 Mode :logical
## 1st Qu.:11.00 1st Qu.:18.00 Class :character FALSE:106136
## Median :22.00 Median :37.00 Mode :character TRUE :8928
## Mean :22.24 Mean :44.34
## 3rd Qu.:33.00 3rd Qu.:74.00
## Max. :45.00 Max. :99.00
str(test)
## 'data.frame': 115064 obs. of 4 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Dept : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr "02/11/2012" "09/11/2012" "16/11/2012" "23/11/2012" ...
## $ IsHoliday: logi FALSE FALSE FALSE TRUE FALSE FALSE ...
summary(train)
## Store Dept Date Weekly_Sales
## Min. : 1.0 Min. : 1.00 Length:421570 Min. : -4989
## 1st Qu.:11.0 1st Qu.:18.00 Class :character 1st Qu.: 2080
## Median :22.0 Median :37.00 Mode :character Median : 7612
## Mean :22.2 Mean :44.26 Mean : 15981
## 3rd Qu.:33.0 3rd Qu.:74.00 3rd Qu.: 20206
## Max. :45.0 Max. :99.00 Max. :693099
## IsHoliday
## Mode :logical
## FALSE:391909
## TRUE :29661
##
##
##
str(train)
## 'data.frame': 421570 obs. of 5 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Dept : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr "05/02/2010" "12/02/2010" "19/02/2010" "26/02/2010" ...
## $ Weekly_Sales: num 24925 46039 41596 19404 21828 ...
## $ IsHoliday : logi FALSE TRUE FALSE FALSE FALSE FALSE ...
Paso 1. Definir el área del negocio que buscamos
impactar o mejorar y su KPI. El departamento de mercadotecnia de EUA
(con muestra de 45 tiendas) es el indicador de ventas semanales.
Paso 2. Seleccionar plantilla (-s) para crear valor a
partir de los datos de los clientes.
Visión | Segmentación | Personalización |
Contextualización.
Paso 3. Generar ideas o conceptos específicos.
Elaborar un modelo predictivo de ventas semanales.
Paso 4. Reunir los datos requetido.
Elaborar una base de datos con las variables dependientes (Ventas
semanales) y las variables independientes (TBD)
Paso 5. Plan de ejecución.
Mercadoecnia elaborará plan para desplegar modelo predictivo en
fases:
Fase 1. Piloto (San Antonio, Tx.)
Fase 2. Texas
Fase 3. Estados Unidos.
Sistemas asegurará la captura del Markdown en las bases de datos.
bd <- merge(train, stores, by="Store")
bd1 <- merge(bd, features)
bd2 <- bd1
str(bd2)
## 'data.frame': 421570 obs. of 16 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr "01/04/2011" "01/04/2011" "01/04/2011" "01/04/2011" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ MarkDown1 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown2 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown3 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown4 : num NA NA NA NA NA NA NA NA NA NA ...
## $ MarkDown5 : num NA NA NA NA NA NA NA NA NA NA ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
bd2 <- subset(bd2, select = -c(MarkDown1,MarkDown2,MarkDown3,MarkDown4,MarkDown5))
summary(bd2)
## Store Date IsHoliday Dept
## Min. : 1.0 Length:421570 Mode :logical Min. : 1.00
## 1st Qu.:11.0 Class :character FALSE:391909 1st Qu.:18.00
## Median :22.0 Mode :character TRUE :29661 Median :37.00
## Mean :22.2 Mean :44.26
## 3rd Qu.:33.0 3rd Qu.:74.00
## Max. :45.0 Max. :99.00
## Weekly_Sales Type Size Temperature
## Min. : -4989 Length:421570 Min. : 34875 Min. : -2.06
## 1st Qu.: 2080 Class :character 1st Qu.: 93638 1st Qu.: 46.68
## Median : 7612 Mode :character Median :140167 Median : 62.09
## Mean : 15981 Mean :136728 Mean : 60.09
## 3rd Qu.: 20206 3rd Qu.:202505 3rd Qu.: 74.28
## Max. :693099 Max. :219622 Max. :100.14
## Fuel_Price CPI Unemployment
## Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.:2.933 1st Qu.:132.0 1st Qu.: 6.891
## Median :3.452 Median :182.3 Median : 7.866
## Mean :3.361 Mean :171.2 Mean : 7.960
## 3rd Qu.:3.738 3rd Qu.:212.4 3rd Qu.: 8.572
## Max. :4.468 Max. :227.2 Max. :14.313
bd2$Date <- as.Date(bd2$Date, format = "%d/%m/%y")
str(bd2)
## 'data.frame': 421570 obs. of 11 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2020-04-01" "2020-04-01" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
#install.packages("matrix")
library(Matrix)
#install.packages("wordspace")
library(wordspace)
signcount(bd2$Weekly_Sales)
## pos zero neg
## 420212 73 1285
bd3 <- bd2
bd3 <- bd3[bd3$Weekly_Sales > 0, ]
summary(bd3)
## Store Date IsHoliday Dept
## Min. : 1.0 Min. :2020-01-06 Mode :logical Min. : 1.00
## 1st Qu.:11.0 1st Qu.:2020-04-06 FALSE:390652 1st Qu.:18.00
## Median :22.0 Median :2020-06-29 TRUE :29560 Median :37.00
## Mean :22.2 Mean :2020-06-29 Mean :44.24
## 3rd Qu.:33.0 3rd Qu.:2020-09-21 3rd Qu.:74.00
## Max. :45.0 Max. :2020-12-31 Max. :99.00
## Weekly_Sales Type Size Temperature
## Min. : 0 Length:420212 Min. : 34875 Min. : -2.06
## 1st Qu.: 2120 Class :character 1st Qu.: 93638 1st Qu.: 46.68
## Median : 7662 Mode :character Median :140167 Median : 62.09
## Mean : 16033 Mean :136750 Mean : 60.09
## 3rd Qu.: 20271 3rd Qu.:202505 3rd Qu.: 74.28
## Max. :693099 Max. :219622 Max. :100.14
## Fuel_Price CPI Unemployment
## Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.:2.933 1st Qu.:132.0 1st Qu.: 6.891
## Median :3.452 Median :182.4 Median : 7.866
## Mean :3.361 Mean :171.2 Mean : 7.960
## 3rd Qu.:3.738 3rd Qu.:212.4 3rd Qu.: 8.567
## Max. :4.468 Max. :227.2 Max. :14.313
bd4 <- bd3
bd4$week_number <- strftime(bd4$Date, format = "%V")
str(bd4)
## 'data.frame': 420212 obs. of 12 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2020-04-01" "2020-04-01" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
## $ week_number : chr "14" "14" "14" "14" ...
bd4$week_number <- as.integer(bd4$week_number)
str(bd4)
## 'data.frame': 420212 obs. of 12 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2020-04-01" "2020-04-01" ...
## $ IsHoliday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Dept : int 49 26 81 34 59 30 7 85 8 28 ...
## $ Weekly_Sales: num 13168 5947 28545 9950 317 ...
## $ Type : chr "A" "A" "A" "A" ...
## $ Size : int 151315 151315 151315 151315 151315 151315 151315 151315 151315 151315 ...
## $ Temperature : num 59.2 59.2 59.2 59.2 59.2 ...
## $ Fuel_Price : num 3.52 3.52 3.52 3.52 3.52 ...
## $ CPI : num 215 215 215 215 215 ...
## $ Unemployment: num 7.68 7.68 7.68 7.68 7.68 ...
## $ week_number : int 14 14 14 14 14 14 14 14 14 14 ...
summary(bd4)
## Store Date IsHoliday Dept
## Min. : 1.0 Min. :2020-01-06 Mode :logical Min. : 1.00
## 1st Qu.:11.0 1st Qu.:2020-04-06 FALSE:390652 1st Qu.:18.00
## Median :22.0 Median :2020-06-29 TRUE :29560 Median :37.00
## Mean :22.2 Mean :2020-06-29 Mean :44.24
## 3rd Qu.:33.0 3rd Qu.:2020-09-21 3rd Qu.:74.00
## Max. :45.0 Max. :2020-12-31 Max. :99.00
## Weekly_Sales Type Size Temperature
## Min. : 0 Length:420212 Min. : 34875 Min. : -2.06
## 1st Qu.: 2120 Class :character 1st Qu.: 93638 1st Qu.: 46.68
## Median : 7662 Mode :character Median :140167 Median : 62.09
## Mean : 16033 Mean :136750 Mean : 60.09
## 3rd Qu.: 20271 3rd Qu.:202505 3rd Qu.: 74.28
## Max. :693099 Max. :219622 Max. :100.14
## Fuel_Price CPI Unemployment week_number
## Min. :2.472 Min. :126.1 Min. : 3.879 Min. : 2.00
## 1st Qu.:2.933 1st Qu.:132.0 1st Qu.: 6.891 1st Qu.:15.00
## Median :3.452 Median :182.4 Median : 7.866 Median :27.00
## Mean :3.361 Mean :171.2 Mean : 7.960 Mean :26.83
## 3rd Qu.:3.738 3rd Qu.:212.4 3rd Qu.: 8.567 3rd Qu.:39.00
## Max. :4.468 Max. :227.2 Max. :14.313 Max. :53.00
bd5 <- bd4
bd5 <- bd5 %>%
dplyr::mutate(year = lubridate::year(Date),
month = lubridate::month(Date),
day = lubridate::day(Date))
regresion <- lm(Weekly_Sales ~ Store + Dept + IsHoliday + Type + Size + Temperature + Fuel_Price + CPI + Unemployment + week_number + year + month + day, data = bd5)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ Store + Dept + IsHoliday + Type +
## Size + Temperature + Fuel_Price + CPI + Unemployment + week_number +
## year + month + day, data = bd5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34332 -12901 -5854 5622 671640
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.639e+03 1.073e+03 2.460 0.01391 *
## Store -1.428e+02 3.087e+00 -46.276 < 2e-16 ***
## Dept 1.108e+02 1.097e+00 101.000 < 2e-16 ***
## IsHolidayTRUE 9.458e+02 1.367e+02 6.918 4.59e-12 ***
## TypeB -3.059e+02 1.077e+02 -2.839 0.00452 **
## TypeC 5.840e+03 1.840e+02 31.732 < 2e-16 ***
## Size 9.927e-02 9.582e-04 103.599 < 2e-16 ***
## Temperature 2.052e+00 2.086e+00 0.984 0.32505
## Fuel_Price 6.101e+01 9.540e+01 0.640 0.52247
## CPI -2.420e+01 9.760e-01 -24.792 < 2e-16 ***
## Unemployment -2.348e+02 1.997e+01 -11.757 < 2e-16 ***
## week_number -6.733e+02 2.374e+02 -2.836 0.00457 **
## year NA NA NA NA
## month 3.112e+03 1.031e+03 3.018 0.00254 **
## day 7.813e+01 3.406e+01 2.294 0.02180 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21690 on 420198 degrees of freedom
## Multiple R-squared: 0.08979, Adjusted R-squared: 0.08976
## F-statistic: 3189 on 13 and 420198 DF, p-value: < 2.2e-16
datos_nuevos <- data.frame(Store=1, Dept=1, IsHoliday= TRUE, Type= "A", Size= 151315, Temperature= 59.17, Fuel_Price = 3.524, CPI= 214.8372, Unemployment = 7.682, week_number =1, year =2012, month = 1, day= 1)
predict(regresion,datos_nuevos)
## Warning in predict.lm(regresion, datos_nuevos): prediction from a rank-deficient
## fit may be misleading
## 1
## 14424.09
Concluyendo con este programa, es importante destacar el gran volumen de datos que R puede manejar, como el caso de Walmart que es una empresa con presencia internacional, y que al menos en esta ocasión trabaja con la base de datos de 45 sucursales.
De igual forma, uno de los aprendizajes obtenidos en este programa fue el poder adjuntar una imagén al principio del informe, y la ejecución de la herramienta de “Generador de datos” que todo negocio debe tener claro.