En este informe se presentan los resultados de la Actividad 2 el cual corresponde a conceptos de modelos SARIMA(p, d, q) × (P, D, Q) con la implementación de la identificación, ajuste, Diagnostico, residuales, las pruebas para la evaluación de los modelos y el pronóstico en R-Studio para las bases de datos Wineind y Precipitaciones.

Identificar los Modelos (Base Wineind)

Se utilizará la siguiente Base de datos del paquete forecast: Wineind: Australian total wine sales, la cual cuenta con información desde Enero de 1980 hasta diciembre de 1993.

##        Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec
## 1980 15136 16733 20016 17708 18019 19227 22893 23739 21133 22591 26786 29740
## 1981 15028 17977 20008 21354 19498 22125 25817 28779 20960 22254 27392 29945
## 1982 16933 17892 20533 23569 22417 22084 26580 27454 24081 23451 28991 31386
## 1983 16896 20045 23471 21747 25621 23859 25500 30998 24475 23145 29701 34365
## 1984 17556 22077 25702 22214 26886 23191 27831 35406 23195 25110 30009 36242
## 1985 18450 21845 26488 22394 28057 25451 24872 33424 24052 28449 33533 37351
## 1986 19969 21701 26249 24493 24603 26485 30723 34569 26689 26157 32064 38870
## 1987 21337 19419 23166 28286 24570 24001 33151 24878 26804 28967 33311 40226
## 1988 20504 23060 23562 27562 23940 24584 34303 25517 23494 29095 32903 34379
## 1989 16991 21109 23740 25552 21752 20294 29009 25500 24166 26960 31222 38641
## 1990 14672 17543 25453 32683 22449 22316 27595 25451 25421 25288 32568 35110
## 1991 16052 22146 21198 19543 22084 23816 29961 26773 26635 26972 30207 38687
## 1992 16974 21697 24179 23757 25013 24019 30345 24488 25156 25650 30923 37240
## 1993 17466 19463 24352 26805 25236 24735 29356 31234 22724 28496 32857 37198
## 1994 13652 22784 23565 26323 23779 27549 29660 23356

Identificar los Modelos

Se realiza inicialmente la identificación de los Modelos por medio de los gráficos con una diferencia ordinaria, una diferencia estacional y una diferencia ordianria-estacional y luego aplicamos las pruebas de estacionariedad.

|Base / p-value |Dickey- Fuller| Fhillips Perron| Urca |

|Base Original |0,01 |0,01 |-0,05 |

|d Ordinaria |0,01 | 0,01 |-7,73 |

|D Estacional |0,01 |0,01 |-3,61 |

|(D,d) Ord-Est |0,01 |0,01 |-7,22 |

Tabla 1: Pruebas de estacionariedad Base Wineind

## 
##  Augmented Dickey-Fuller Test
## 
## data:  z1
## Dickey-Fuller = -6.6415, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  z1
## Dickey-Fuller Z(alpha) = -125.51, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(z1)
## Dickey-Fuller = -8.4847, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff(z1)
## Dickey-Fuller Z(alpha) = -161.42, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(z1, 12)
## Dickey-Fuller = -4.1834, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff(z1, 12)
## Dickey-Fuller Z(alpha) = -139.76, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(diff(z1, 12))
## Dickey-Fuller = -8.7747, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff(diff(z1, 12))
## Dickey-Fuller Z(alpha) = -171.58, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12840.6  -3204.2    497.5   3726.3  11807.0 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## z.lag.1      0.004801   0.015717   0.305  0.76045    
## z.diff.lag1 -0.639427   0.081965  -7.801 9.13e-13 ***
## z.diff.lag2 -0.671234   0.090843  -7.389 9.17e-12 ***
## z.diff.lag3 -0.519117   0.105068  -4.941 2.03e-06 ***
## z.diff.lag4 -0.331069   0.109486  -3.024  0.00293 ** 
## z.diff.lag5 -0.188153   0.104598  -1.799  0.07403 .  
## z.diff.lag6 -0.414008   0.090259  -4.587 9.34e-06 ***
## z.diff.lag7 -0.169670   0.080878  -2.098  0.03757 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5075 on 152 degrees of freedom
## Multiple R-squared:  0.4622, Adjusted R-squared:  0.4339 
## F-statistic: 16.33 on 8 and 152 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: 0.3054 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12494.2  -3177.4    464.3   4068.3  12231.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -4.22553    0.57286  -7.376 1.01e-11 ***
## z.diff.lag1  2.57567    0.53118   4.849 3.06e-06 ***
## z.diff.lag2  1.87418    0.47181   3.972  0.00011 ***
## z.diff.lag3  1.34134    0.40629   3.301  0.00120 ** 
## z.diff.lag4  0.98549    0.32684   3.015  0.00301 ** 
## z.diff.lag5  0.75966    0.24033   3.161  0.00190 ** 
## z.diff.lag6  0.29481    0.15641   1.885  0.06136 .  
## z.diff.lag7  0.07648    0.08195   0.933  0.35213    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5075 on 151 degrees of freedom
## Multiple R-squared:  0.792,  Adjusted R-squared:  0.7809 
## F-statistic: 71.86 on 8 and 151 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -7.3762 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12607.3  -1209.5    419.3   1750.7   6899.1 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -0.65236    0.18397  -3.546 0.000532 ***
## z.diff.lag1 -0.25003    0.18013  -1.388 0.167327    
## z.diff.lag2 -0.36078    0.17296  -2.086 0.038805 *  
## z.diff.lag3 -0.25273    0.16656  -1.517 0.131428    
## z.diff.lag4 -0.22709    0.15423  -1.472 0.143151    
## z.diff.lag5 -0.07470    0.13823  -0.540 0.589757    
## z.diff.lag6 -0.07355    0.11143  -0.660 0.510317    
## z.diff.lag7  0.02940    0.08554   0.344 0.731588    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2633 on 140 degrees of freedom
## Multiple R-squared:  0.4827, Adjusted R-squared:  0.4531 
## F-statistic: 16.33 on 8 and 140 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -3.546 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -12347  -1378    -75   1554   8045 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -5.15399    0.69510  -7.415 1.09e-11 ***
## z.diff.lag1  3.33336    0.65431   5.094 1.12e-06 ***
## z.diff.lag2  2.45174    0.58537   4.188 4.96e-05 ***
## z.diff.lag3  1.75569    0.49481   3.548 0.000529 ***
## z.diff.lag4  1.12502    0.38895   2.892 0.004438 ** 
## z.diff.lag5  0.72254    0.27962   2.584 0.010798 *  
## z.diff.lag6  0.35743    0.17279   2.069 0.040441 *  
## z.diff.lag7  0.17936    0.08521   2.105 0.037103 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2705 on 139 degrees of freedom
## Multiple R-squared:  0.8054, Adjusted R-squared:  0.7942 
## F-statistic: 71.93 on 8 and 139 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -7.4147 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62

Con estos resultados concluimos que la base de datos tiene una tendencia nula es decir se evidencia un comportamiento constante lo que nos indica que la base es estacionaria lo cual también se confirma con las pruebas, gráficamente si se puede evidenciar la presencia de ciclos por lo que se decide continuar con una diferencia estacional ya que no se hace necesaria la diferencia ordinaria.

Procedemos a crear el grafico para identificar el modelo por medio del ACF y el PACF, con el cual se obtienes los siguientes modelos (p, d, q) x (P, D, Q):

  1. (0, 0 ,22) x (1,1,0)
  2. (22,0,22) x (1,1,3)
  3. (22,0, 0) x (0,1,3)
  4. (0 ,0,22) x (1,1,3)

Construcción de los Modelos

modelo1<-stats::arima(z1,
        order=c(0,0,22), 
        seasonal=list(order=c(1,1,0),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA))


modelo2<-stats::arima(z1,
        order=c(22,0,22), 
        seasonal=list(order=c(1,1,3),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA))

modelo3<-stats::arima(z1,
        order=c(22,0,0), 
        seasonal=list(order=c(0,1,3),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA))

modelo4<-stats::arima(z1,
        order=c(0,0,22), 
        seasonal=list(order=c(1,1,3),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA))

Ajsutes de los Modelos

A continuación, se procede a realizar el ajuste de los modelos planteados a partir de los coeficientes más significativos.

## 
## Call:
## stats::arima(x = z1, order = c(0, 0, 22), seasonal = list(order = c(1, 1, 0), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
##     NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##          ma1      ma2     ma3      ma4     ma5     ma6     ma7      ma8     ma9
##       0.1184  -0.1627  0.3292  -0.0409  0.1760  0.0635  0.1453  -0.1130  0.1850
## s.e.  0.1337   0.1161  0.1448   0.1428  0.1088  0.1358  0.1352   0.1426  0.1468
##         ma10     ma11     ma12     ma13    ma14    ma15     ma16    ma17
##       0.2267  -0.1339  -0.2061  -0.1062  0.0275  0.4004  -0.0948  0.3038
## s.e.  0.1121   0.1016   0.1764   0.1476  0.1279  0.1305   0.1187  0.1499
##         ma18    ma19    ma20     ma21    ma22     sar1
##       0.0907  0.0886  0.1674  -0.1253  0.4311  -0.2827
## s.e.  0.1381  0.1013  0.1177   0.1193  0.1075   0.1304
## 
## sigma^2 estimated as 3467940:  log likelihood = -1411.33,  aic = 2870.65
##          ma1          ma2          ma3          ma4          ma5          ma6 
## 0.1886921877 0.0815979667 0.0123132528 0.3875955511 0.0540913149 0.3204694893 
##          ma7          ma8          ma9         ma10         ma11         ma12 
## 0.1421454427 0.2148219727 0.1049421167 0.0225618470 0.0948914256 0.1224698614 
##         ma13         ma14         ma15         ma16         ma17         ma18 
## 0.2365158942 0.4150978659 0.0013108302 0.2130041656 0.0223679712 0.2561280257 
##         ma19         ma20         ma21         ma22         sar1 
## 0.1916115361 0.0786679363 0.1477218160 0.0000501747 0.0159561188
## 
## Call:
## stats::arima(x = z1, order = c(22, 0, 22), seasonal = list(order = c(1, 1, 3), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
##     NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
##     NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##           ar1      ar2     ar3      ar4     ar5     ar6     ar7     ar8     ar9
##       -0.0133  -0.4374  0.3486  -0.3603  0.0913  -0.361  0.5529  0.3119  0.3441
## s.e.   0.2552   0.2725  0.1530   0.1570  0.1563   0.113  0.1610  0.1785  0.2356
##         ar10    ar11     ar12    ar13     ar14    ar15     ar16    ar17
##       0.0564  0.0656  -0.7404  0.2019  -0.2933  0.1916  -0.3047  0.1134
## s.e.  0.2151  0.1211   0.1310  0.2389   0.2251  0.1869   0.1521  0.1338
##          ar18    ar19    ar20    ar21    ar22     ma1     ma2      ma3     ma4
##       -0.0390  0.4395  0.3695  0.0521  0.4103  0.1704  0.3197  -0.1315  0.3421
## s.e.   0.1065  0.0880  0.1637  0.2019  0.1375  0.2632  0.2900   0.1631  0.1501
##          ma5     ma6      ma7      ma8      ma9    ma10    ma11     ma12
##       0.3246  0.5199  -0.2313  -0.5689  -0.0559  0.1670  0.0027  -0.1879
## s.e.  0.1239  0.1890   0.2865   0.1791   0.2970  0.2516  0.1831   0.3147
##          ma13     ma14    ma15     ma16    ma17     ma18    ma19    ma20
##       -0.4072  -0.1567  0.4203  -0.0397  0.0532  -0.4130  0.1633  0.0167
## s.e.   0.1947   0.1668  0.2176   0.1686  0.2446   0.1831  0.2087  0.2441
##         ma21     ma22    sar1     sma1    sma2     sma3
##       0.4736  -0.2144  0.5036  -0.1413  -0.454  -0.3968
## s.e.  0.1893   0.1921  0.1895   0.1859     NaN   0.1713
## 
## sigma^2 estimated as 2292561:  log likelihood = -1389.31,  aic = 2876.61
##          ar1          ar2          ar3          ar4          ar5          ar6 
## 4.792375e-01 5.565308e-02 1.233498e-02 1.186289e-02 2.800930e-01 9.170445e-04 
##          ar7          ar8          ar9         ar10         ar11         ar12 
## 4.221483e-04 4.167881e-02 7.354420e-02 3.968078e-01 2.946563e-01 6.528463e-08 
##         ar13         ar14         ar15         ar16         ar17         ar18 
## 1.999437e-01 9.772189e-02 1.538164e-01 2.383792e-02 1.992233e-01 3.575131e-01 
##         ar19         ar20         ar21         ar22          ma1          ma2 
## 1.142391e-06 1.302779e-02 3.984384e-01 1.758826e-03 2.593991e-01 1.363126e-01 
##          ma3          ma4          ma5          ma6          ma7          ma8 
## 2.110486e-01 1.230392e-02 5.041655e-03 3.482283e-03 2.105826e-01 9.739360e-04 
##          ma9         ma10         ma11         ma12         ma13         ma14 
## 4.255750e-01 2.541670e-01 4.940917e-01 2.758386e-01 1.939341e-02 1.747870e-01 
##         ma15         ma16         ma17         ma18         ma19         ma20 
## 2.801955e-02 4.072110e-01 4.141780e-01 1.308168e-02 2.178492e-01 4.728117e-01 
##         ma21         ma22         sar1         sma1         sma2         sma3 
## 6.921971e-03 1.334465e-01 4.525619e-03 2.244530e-01          NaN 1.119795e-02
## 
## Call:
## stats::arima(x = z1, order = c(22, 0, 0), seasonal = list(order = c(0, 1, 3), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
##     NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##          ar1      ar2     ar3      ar4     ar5     ar6     ar7      ar8     ar9
##       0.0484  -0.1148  0.1919  -0.0221  0.2145  0.0295  0.1999  -0.1012  0.2323
## s.e.  0.0821   0.0867  0.0887   0.0852  0.0830  0.0850  0.0844   0.0960  0.0818
##         ar10     ar11     ar12    ar13     ar14    ar15     ar16    ar17
##       0.0145  -0.0128  -0.6593  0.0129  -0.0388  0.1998  -0.0409  0.2233
## s.e.  0.0919   0.0649   0.1481  0.0873   0.0829  0.0952   0.0837  0.0937
##         ar18    ar19    ar20    ar21    ar22    sma1     sma2     sma3
##       0.0335  0.1067  0.0492  0.1535  0.2117  0.0939  -0.5573  -0.1073
## s.e.  0.0928  0.0867  0.0901  0.0896  0.1098  0.1809   0.1957   0.1284
## 
## sigma^2 estimated as 3980687:  log likelihood = -1413.07,  aic = 2878.13
##          ar1          ar2          ar3          ar4          ar5          ar6 
## 0.2783510703 0.0939661842 0.0161596666 0.3979487431 0.0054327295 0.3644154264 
##          ar7          ar8          ar9         ar10         ar11         ar12 
## 0.0096942895 0.1468678006 0.0026279102 0.4376492737 0.4218947879 0.0000089942 
##         ar13         ar14         ar15         ar16         ar17         ar18 
## 0.4414176900 0.3201016605 0.0189080195 0.3129473909 0.0093159632 0.3594143650 
##         ar19         ar20         ar21         ar22         sma1         sma2 
## 0.1102602090 0.2928292911 0.0446042967 0.0280669841 0.3023402152 0.0025570771 
##         sma3 
## 0.2025410988
## 
## Call:
## stats::arima(x = z1, order = c(0, 0, 22), seasonal = list(order = c(1, 1, 3), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
##     NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##          ma1      ma2    ma3     ma4     ma5     ma6     ma7      ma8     ma9
##       0.1548  -0.1874  0.323  0.0199  0.1586  0.0394  0.1665  -0.0988  0.1838
## s.e.  0.1424   0.1168  0.154  0.1463  0.1103  0.1295  0.1337   0.1334  0.1436
##         ma10     ma11     ma12     ma13    ma14    ma15     ma16    ma17
##       0.2355  -0.0882  -0.0906  -0.0597  0.0006  0.4325  -0.0527  0.2713
## s.e.  0.1127   0.1061   0.2066   0.1596  0.1310  0.1224   0.1435  0.1510
##         ma18    ma19    ma20     ma21    ma22    sar1     sma1    sma2     sma3
##       0.1057  0.0809  0.1073  -0.1055  0.4493  0.0876  -0.5164  0.0897  -0.1852
## s.e.  0.1307  0.1173  0.1300   0.1234  0.1173  0.6893   0.6358  0.2563   0.1245
## 
## sigma^2 estimated as 3388433:  log likelihood = -1410,  aic = 2873.99
##          ma1          ma2          ma3          ma4          ma5          ma6 
## 1.394488e-01 5.550482e-02 1.895869e-02 4.461325e-01 7.633564e-02 3.807298e-01 
##          ma7          ma8          ma9         ma10         ma11         ma12 
## 1.076271e-01 2.300606e-01 1.014360e-01 1.933939e-02 2.035942e-01 3.308429e-01 
##         ma13         ma14         ma15         ma16         ma17         ma18 
## 3.545109e-01 4.981992e-01 2.851231e-04 3.569602e-01 3.737733e-02 2.101432e-01 
##         ma19         ma20         ma21         ma22         sar1         sma1 
## 2.457103e-01 2.054459e-01 1.970857e-01 9.882473e-05 4.495428e-01 4.040152e-01 
##         sma2         sma3 
## 2.329477e-01 5.275527e-03

Se ajustan los modelos y se obtienen los siguientes a los cuales también se le excluyeron los coeficientes no significativos:

  1. (0, 0 ,22) x (1,1,0)
  2. (22,0,21) x (1,1,3)
  3. (22,0, 0) x (0,1,2)
  4. (0 ,0,22) x (0,1,3)
modelo1<-stats::arima(z1,
        order=c(0,0,22), 
        seasonal=list(order=c(1,1,0),
        period=12), fixed = c(0,0,NA,0,0,0,0,0,0,NA,0,0,0,0,NA,0,0,0,0,0,0,NA,NA))

modelo2<-stats::arima(z1,
        order=c(22,0,21), 
        seasonal=list(order=c(1,1,3),
        period=12), fixed = c(0,0,NA,NA,0,NA,NA,NA,0,0,0,NA,0,0,0,NA,0,0,NA,NA,0,NA,0,0,0,NA,NA,NA,0,NA,0,0,0,0,NA,0,NA,0,0,NA,0,0,NA,NA,0,0,NA))

modelo3<-stats::arima(z1,
        order=c(22,0,0), 
        seasonal=list(order=c(0,1,2),
        period=12), fixed = c(0,0,NA,0,NA,0,NA,0,NA,0,0,NA,0,0,NA,0,NA,0,0,0,NA,NA,0,NA))

modelo4<-stats::arima(z1,
        order=c(0,0,22), 
        seasonal=list(order=c(0,1,3),
        period=12), fixed = c(0,0,NA,0,0,0,0,0,0,NA,0,0,0,0,NA,0,NA,0,0,0,0,NA,0,0,NA))

Se ajustan los modelos y se obtienen los siguientes a los cuales también se le excluyeron los coeficientes no significativos:

  1. (0, 0 ,22) x (1,1,0)
  2. (22,0,21) x (1,1,3)
  3. (22,0, 0) x (0,1,2)
  4. (0 ,0,22) x (0,1,3)

Diagnostico de los Modelos

## [1] 2889.339
## [1] 2930.359
## [1] 2892.762
## [1] 2908.611

Pruebas para los Residuales

Se procede a realizar el diagnostico de los modelos para elegir el mejor en términos de BIC y pruebas de los residuales:

Modelo 1

En este modelo podemos evidenciar en los residuales que se alinea a los datos reales pero en algunos intervalos se desvía del comportamiento real, se evidencia también una varianza constante lo que permite inferir en una media cercana a cero, en los gráficos del ACF y el PACF observamos que una barra se sale del límite y otra esta sobre este, en la gráfica de normalidad evidenciamos algunos datos alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##               Jan          Feb          Mar          Apr          May
## 1980    15.135990    16.732989    20.015988    17.707988    18.018988
## 1981   -93.321570  1074.925229   -11.630846  3226.010387  1184.990612
## 1982  1381.456973  -322.515780    93.827659  2636.557947  2702.288789
## 1983   592.334931   517.279647  1917.149676 -2276.915747  3360.471403
## 1984     7.118951  2445.168112  1035.973144  -450.442626  2005.051781
## 1985   116.654822  1189.909043  -871.728786   536.327885   883.415560
## 1986  1118.185995  -519.581615 -1394.142930  2087.055739 -3141.971156
## 1987  2231.158188 -3665.572526 -2973.797995  3506.010496 -1118.022276
## 1988  1390.251143  1105.557660  -185.710608  -224.663564 -2010.168008
## 1989 -2812.242985 -2079.828137  1352.546714 -2531.049921 -3240.533736
## 1990 -3588.480769 -3623.281720  3537.916399  7262.550878  1752.035403
## 1991  -289.199534  2093.876143 -3924.697752 -9081.125127  2030.469992
## 1992  1586.739921  1292.219922    72.901200 -1121.074306  2352.418826
## 1993  2188.163892   850.343066  -209.394578  3154.705063  -347.287101
##               Jun          Jul          Aug          Sep          Oct
## 1980    19.226986    22.892984    23.738982    21.132983    22.590982
## 1981  2685.348286  2306.043889  4450.732084  -412.277253  -266.494213
## 1982   172.181397   641.055451  -456.240016  2292.363749   438.095263
## 1983   366.115961 -1372.138128  1846.269487  1226.408693   -69.873105
## 1984  -937.211866  1518.561160  4405.053215 -1430.482306   991.972567
## 1985   291.161933 -2122.817181 -1231.329306   527.521424  2750.216949
## 1986  1343.909361  4513.768474  -219.845696  2149.086214 -2183.605560
## 1987  -878.753656  2715.352113 -8523.928200   247.602991  -168.463486
## 1988  2647.034557   531.719140 -1643.963958 -3750.209040  -492.985025
## 1989 -1383.173325 -3442.818593  1449.742618 -1675.383380 -1246.753226
## 1990  -420.454520 -2503.608471   913.070603  1868.022188 -1013.013760
## 1991  1431.041332  1713.967421  1159.234889  1426.129713   430.966439
## 1992  1100.140636  2681.086388 -2528.527428 -1808.035329 -2008.785436
## 1993  1138.659792 -1086.525385  5796.830468 -3027.378359  1615.843828
##               Nov          Dec
## 1980    26.785977    29.739975
## 1981     8.646766   -81.943532
## 1982   618.993113   945.404660
## 1983   587.246186  2636.289468
## 1984  -664.168242  2103.512377
## 1985  2759.975918  1013.398262
## 1986  -170.647693  1185.281455
## 1987  1301.629835  2421.907225
## 1988  1322.641151 -4013.908071
## 1989 -1350.552919  3513.083042
## 1990  1940.862282  -311.146493
## 1991 -1164.478471  2045.847713
## 1992  -308.575285 -1091.073538
## 1993   732.598473  -209.863319
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 1980 15120.86 16716.27 19995.98 17690.29 18000.98 19207.77 22870.11 23715.26
## 1981 15121.32 16902.07 20019.63 18127.99 18313.01 19439.65 23510.96 24328.27
## 1982 15551.54 18214.52 20439.17 20932.44 19714.71 21911.82 25938.94 27910.24
## 1983 16303.67 19527.72 21553.85 24023.92 22260.53 23492.88 26872.14 29151.73
## 1984 17548.88 19631.83 24666.03 22664.44 24880.95 24128.21 26312.44 31000.95
## 1985 18333.35 20655.09 27359.73 21857.67 27173.58 25159.84 26994.82 34655.33
## 1986 18850.81 22220.58 27643.14 22405.94 27744.97 25141.09 26209.23 34788.85
## 1987 19105.84 23084.57 26139.80 24779.99 25688.02 24879.75 30435.65 33401.93
## 1988 19113.75 21954.44 23747.71 27786.66 25950.17 21936.97 33771.28 27160.96
## 1989 19803.24 23188.83 22387.45 28083.05 24992.53 21677.17 32451.82 24050.26
## 1990 18260.48 21166.28 21915.08 25420.45 20696.96 22736.45 30098.61 24537.93
## 1991 16341.20 20052.12 25122.70 28624.13 20053.53 22384.96 28247.03 25613.77
## 1992 15387.26 20404.78 24106.10 24878.07 22660.58 22918.86 27663.91 27016.53
## 1993 15277.84 18612.66 24561.39 23650.29 25583.29 23596.34 30442.53 25437.17
##           Sep      Oct      Nov      Dec
## 1980 21111.87 22568.41 26759.21 29710.26
## 1981 21372.28 22520.49 27383.35 30026.94
## 1982 21788.64 23012.90 28372.01 30440.60
## 1983 23248.59 23214.87 29113.75 31728.71
## 1984 24625.48 24118.03 30673.17 34138.49
## 1985 23524.48 25698.78 30773.02 36337.60
## 1986 24539.91 28340.61 32234.65 37684.72
## 1987 26556.40 29135.46 32009.37 37804.09
## 1988 27244.21 29587.99 31580.36 38392.91
## 1989 25841.38 28206.75 32572.55 35127.92
## 1990 23552.98 26301.01 30627.14 35421.15
## 1991 25208.87 26541.03 31371.48 36641.15
## 1992 26964.04 27658.79 31231.58 38331.07
## 1993 25751.38 26880.16 32124.40 37407.86
## [1] 136  92

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 12.134, df = 15, p-value = 0.6688

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = 0.13908, p-value = 0.8894
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 78.072, df = 2, p-value < 2.2e-16

Modelo 2

En este modelo podemos evidenciar en los residuales que se alinea a los datos reales un poco más ajustados, se evidencia también una varianza constante con algunos datos que se ven atípicos pero aun así se puede inferir que hay una media cercana a cero, en los gráficos del ACF y el PACF observamos todas las barras dentro del límite, en la gráfica de normalidad evidenciamos un poco menos de datos que el Modelo 1 alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##               Jan          Feb          Mar          Apr          May
## 1980    15.135980    16.732977    20.015974    17.707975    18.018973
## 1981   -66.896189   771.865369   -21.795727  2287.022342   842.529420
## 1982     6.075327  -462.530104  -458.841478  2697.228849  1821.159723
## 1983  -238.065982  -537.887648  2155.185270 -1661.894330  3446.891866
## 1984   409.815609  2011.809040  1319.637275   846.350701  1974.348205
## 1985  -248.964098   133.482145  -894.572208   933.247455  -113.965139
## 1986   756.395518  -117.472311  -855.449482  1516.298612 -3410.469977
## 1987   303.764936 -2236.303272 -2660.792553  1732.433476 -1825.110698
## 1988   686.464595   523.544508   546.441203  -157.434854 -1042.114589
## 1989 -1638.748516 -1363.822452  2088.673300 -1541.854667 -2458.332181
## 1990 -2513.859351 -1820.744705  2205.263517  5864.532245   419.450768
## 1991 -1004.840063  3848.858193 -2040.199476 -5660.026987  -584.684221
## 1992  1714.940467 -1319.908297  -514.345827 -1931.970970   798.964521
## 1993   519.691367  -112.526199  1866.201046  3034.648687  2876.350267
##               Jun          Jul          Aug          Sep          Oct
## 1980    19.226968    22.892960    23.738952    21.132956    22.590947
## 1981  1821.036350  1681.450262  3075.617632  -459.160531  -275.933899
## 1982  1303.202454   993.588943    41.449770  1109.918239  -617.714044
## 1983  -601.345543  -633.174747   899.100252   656.564079 -1109.934235
## 1984 -1180.803175  1422.483540  3497.453897 -1682.153710   402.577640
## 1985   855.484896 -2445.464184  -746.113034  -540.923242  1987.011486
## 1986   457.394615  1827.268737  1043.170579  1711.194436  -545.688452
## 1987  -911.863010  2487.320330 -5802.477297   808.555694    29.416971
## 1988   256.234221  -727.901771 -2193.126899 -2693.074415   800.685775
## 1989 -1457.056213 -1907.541554  -421.808024  -524.954518  1087.077136
## 1990   333.564680 -1109.399382   -11.587117   545.589196  -977.278530
## 1991   530.217792   900.453517   995.296811  1834.842831  1094.507570
## 1992  -664.435883  1294.109405 -1303.689684  -800.415182  -498.416153
## 1993  2517.573122  -808.514451  2744.605936 -1439.658343   768.411600
##               Nov          Dec
## 1980    26.785939    29.739935
## 1981  -417.449033  -345.387430
## 1982  -114.987617  -311.402163
## 1983   665.244559  1604.952173
## 1984  -800.620525  1357.897862
## 1985  1634.255551  2329.818786
## 1986   952.299587  2223.451345
## 1987  1684.601078  1666.445493
## 1988  2210.979535 -3143.342825
## 1989   180.530227  2341.906977
## 1990  1554.287446   136.723960
## 1991  -576.618417   437.339283
## 1992   166.863689  -883.584153
## 1993  -886.620833  -519.609834
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 1980 15120.86 16716.27 19995.98 17690.29 18000.98 19207.77 22870.11 23715.26
## 1981 15094.90 17205.13 20029.80 19066.98 18655.47 20303.96 24135.55 25703.38
## 1982 16926.92 18354.53 20991.84 20871.77 20595.84 20780.80 25586.41 27412.55
## 1983 17134.07 20582.89 21315.81 23408.89 22174.11 24460.35 26133.17 30098.90
## 1984 17146.18 20065.19 24382.36 21367.65 24911.65 24371.80 26408.52 31908.55
## 1985 18698.96 21711.52 27382.57 21460.75 28170.97 24595.52 27317.46 34170.11
## 1986 19212.60 21818.47 27104.45 22976.70 28013.47 26027.61 28895.73 33525.83
## 1987 21033.24 21655.30 25826.79 26553.57 26395.11 24912.86 30663.68 30680.48
## 1988 19817.54 22536.46 23015.56 27719.43 24982.11 24327.77 35030.90 27710.13
## 1989 18629.75 22472.82 21651.33 27093.85 24210.33 21751.06 30916.54 25921.81
## 1990 17185.86 19363.74 23247.74 26818.47 22029.55 21982.44 28704.40 25462.59
## 1991 17056.84 18297.14 23238.20 25203.03 22668.68 23285.78 29060.55 25777.70
## 1992 15259.06 23016.91 24693.35 25688.97 24214.04 24683.44 29050.89 25791.69
## 1993 16946.31 19575.53 22485.80 23770.35 22359.65 22217.43 30164.51 28489.39
##           Sep      Oct      Nov      Dec
## 1980 21111.87 22568.41 26759.21 29710.26
## 1981 21419.16 22529.93 27809.45 30290.39
## 1982 22971.08 24068.71 29105.99 31697.40
## 1983 23818.44 24254.93 29035.76 32760.05
## 1984 24877.15 24707.42 30809.62 34884.10
## 1985 24592.92 26461.99 31898.74 35021.18
## 1986 24977.81 26702.69 31111.70 36646.55
## 1987 25995.44 28937.58 31626.40 38559.55
## 1988 26187.07 28294.31 30692.02 37522.34
## 1989 24690.95 25872.92 31041.47 36299.09
## 1990 24875.41 26265.28 31013.71 34973.28
## 1991 24800.16 25877.49 30783.62 38249.66
## 1992 25956.42 26148.42 30756.14 38123.58
## 1993 24163.66 27727.59 33743.62 37717.61
## [1]  92 136

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 3.3524, df = 15, p-value = 0.9992

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = -0.8352, p-value = 0.4036
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 24.53, df = 2, p-value = 4.713e-06

Modelo 3

En este modelo el comportamiento es muy similar al Modelo 2 podemos evidenciar en los residuales que se alinea a los datos reales un poco más ajustados, se evidencia también una varianza constante con algunos datos que se ven atípicos, pero aun así se puede inferir que hay una media cercana a cero.

En los gráficos del ACF y el PACF observamos todas las barras dentro del límite, en la gráfica de normalidad evidenciamos un poco menos de datos que el Modelo 1 alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##              Jan         Feb         Mar         Apr         May         Jun
## 1980    15.13599    16.73299    20.01598    17.70798    18.01898    19.22697
## 1981   -84.77985   982.43231   -56.92364  2884.14260   913.61558  2291.99687
## 1982   -83.76819  -470.17432  -524.97050  2376.17798  2270.31696   934.03967
## 1983  -714.10833  -179.19625  2048.07804 -1949.49359  3003.71465  -295.71805
## 1984  -369.37065   592.93453  1279.75563  -150.61572  1583.49897  -828.25175
## 1985 -1300.92529   239.66585   335.90010 -1442.30398   542.68860   201.54106
## 1986  -522.30335 -1007.13177 -1278.73190  1066.18780 -3671.85647   209.54883
## 1987   945.61154 -3545.91729 -4728.55222  2010.97339  -852.27435 -1691.07663
## 1988   570.29839  1254.10644  -777.96517   319.14517 -3027.75880 -1068.93907
## 1989 -2335.06599 -1730.03150 -1062.29031  -494.01723 -1526.47173 -1394.60778
## 1990 -2969.81844 -2004.71879  3018.06744  8400.78670  -533.41273   198.13462
## 1991 -1381.39492  2197.19020 -2390.17965 -7119.82681   221.64963  2343.26776
## 1992   923.37243  -638.08368   977.09352  -707.57895  1443.33336   806.33041
## 1993  2641.17651  1046.72895   329.44928  1719.04281  2066.47868   659.70404
##              Jul         Aug         Sep         Oct         Nov         Dec
## 1980    22.89297    23.73896    21.13296    22.59096    26.78595    29.73995
## 1981  1774.82109  3831.28213  -969.16974  -691.78703  -581.55362  -491.82861
## 1982   729.34469  -644.16675  1000.76304 -1012.98707  1029.17710  -173.60676
## 1983  -795.24080  1873.18313   661.69548 -1507.37978   -41.54534  1996.66582
## 1984   439.51526  3380.95536 -1865.11722  -332.68549 -1540.42368  2040.43570
## 1985 -3004.45980    44.31698  -968.26000  2547.50876  2419.56187  2234.68668
## 1986  3117.19116   655.22197   613.45926 -1450.43119  -896.52854  1998.47590
## 1987  3241.55274 -8662.66013  -551.00782  1067.77063  3416.33081  1626.04787
## 1988  2192.60455 -3482.30806 -3687.02506    54.21520  1749.46684 -3230.55690
## 1989 -2809.85106 -3361.82121   652.45864   372.23679   359.79730  2365.27224
## 1990 -2943.01871 -1100.53690    30.47923   857.30873  2578.63341 -1620.23572
## 1991  2267.95650   532.40063  2532.62618   257.54293  -932.47956  3111.64562
## 1992   925.08471 -1865.30125   280.61377 -1024.82040  -938.81347 -1664.23532
## 1993  -945.08110  4193.14725 -3386.95303   736.55801   748.61296  1070.68659
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 1980 15120.86 16716.27 19995.98 17690.29 18000.98 19207.77 22870.11 23715.26
## 1981 15112.78 16994.57 20064.92 18469.86 18584.38 19833.00 24042.18 24947.72
## 1982 17016.77 18362.17 21057.97 21192.82 20146.68 21149.96 25850.66 28098.17
## 1983 17610.11 20224.20 21422.92 23696.49 22617.29 24154.72 26295.24 29124.82
## 1984 17925.37 21484.07 24422.24 22364.62 25302.50 24019.25 27391.48 32025.04
## 1985 19750.93 21605.33 26152.10 23836.30 27514.31 25249.46 27876.46 33379.68
## 1986 20491.30 22708.13 27527.73 23426.81 28274.86 26275.45 27605.81 33913.78
## 1987 20391.39 22964.92 27894.55 26275.03 25422.27 25692.08 29909.45 33540.66
## 1988 19933.70 21805.89 24339.97 27242.85 26967.76 25652.94 32110.40 28999.31
## 1989 19326.07 22839.03 24802.29 26046.02 23278.47 21688.61 31818.85 28861.82
## 1990 17641.82 19547.72 22434.93 24282.21 22982.41 22117.87 30538.02 26551.54
## 1991 17433.39 19948.81 23588.18 26662.83 21862.35 21472.73 27693.04 26240.60
## 1992 16050.63 22335.08 23201.91 24464.58 23569.67 23212.67 29419.92 26353.30
## 1993 14824.82 18416.27 24022.55 25085.96 23169.52 24075.30 30301.08 27040.85
##           Sep      Oct      Nov      Dec
## 1980 21111.87 22568.41 26759.21 29710.26
## 1981 21929.17 22945.79 27973.55 30436.83
## 1982 23080.24 24463.99 27961.82 31559.61
## 1983 23813.30 24652.38 29742.55 32368.33
## 1984 25060.12 25442.69 31549.42 34201.56
## 1985 25020.26 25901.49 31113.44 35116.31
## 1986 26075.54 27607.43 32960.53 36871.52
## 1987 27355.01 27899.23 29894.67 38599.95
## 1988 27181.03 29040.78 31153.53 37609.56
## 1989 23513.54 26587.76 30862.20 36275.73
## 1990 25390.52 24430.69 29989.37 36730.24
## 1991 24102.37 26714.46 31139.48 35575.35
## 1992 24875.39 26674.82 31861.81 38904.24
## 1993 26110.95 27759.44 32108.39 36127.31
## [1]  92 124

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 8.0248, df = 15, p-value = 0.9228

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = -0.71805, p-value = 0.4727
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 80.813, df = 2, p-value < 2.2e-16

Modelo 4

En este modelo podemos evidenciar en los residuales que se alinea a los datos reales un poco más ajustados, se evidencia también una varianza constante con algunos datos que se ven atípicos pero aun así se puede inferir que hay una media cercana a cero, en los gráficos del ACF y el PACF observamos que una barra se sale del límite y otra esta sobre este, en la gráfica de normalidad evidenciamos un poco menos de datos que el Modelo 1 alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##                Jan           Feb           Mar           Apr           May
## 1980     15.135990     16.732989     20.015986     17.707986     18.018985
## 1981    -94.436576   1087.586037     -1.839909   3152.293397   1220.818323
## 1982   1165.848870   -810.520684   -142.760505   1715.325831   2236.134256
## 1983   -580.187300   1167.153848   2496.486547  -2508.634215   2544.826589
## 1984    622.104459   1449.689993    486.554498    968.707659    952.416249
## 1985   -343.297702      6.059110   -703.760747    126.240119    349.479165
## 1986    293.511373   -106.114660   -876.510431   2226.284061  -3469.442087
## 1987   2056.791621  -3515.690088  -3102.402475   2388.024914    411.070709
## 1988    308.781601   2077.398328   1646.603522   -907.959547  -2405.731357
## 1989  -1026.833980  -2514.430156    437.258129  -1934.998775  -3372.984395
## 1990  -2981.557742  -2208.303118   3747.681211   7541.164373   3230.080808
## 1991    510.796741   4227.550116  -4691.027625 -11190.035014   -505.255826
## 1992    247.363891  -1894.408936   2018.117391   2445.965874   1819.342562
## 1993   1812.115153   1237.768587   -129.596484   3139.199607   -684.170047
##                Jun           Jul           Aug           Sep           Oct
## 1980     19.226982     22.892979     23.738976     21.132977     22.590975
## 1981   2428.394472   2161.698273   4350.861551   -880.273838   -738.323565
## 1982   -674.867027   -208.862734  -1740.334157   1887.932863    357.336403
## 1983    451.217450  -1131.604916   2920.462347    186.840667   -922.902905
## 1984   -867.835993   1995.690248   3467.483092   -969.369881    629.745806
## 1985    550.414090  -3426.180256  -2263.113531    864.149834   2008.506937
## 1986    812.050232   5639.009006   1329.787142   1942.345511  -2550.356226
## 1987  -1713.494337   1165.700305  -8228.638804  -1348.686856   1803.512123
## 1988   2068.200556    972.472542   1885.669162  -3459.879225   -828.349473
## 1989  -2565.448656  -3679.414770    166.353690    294.371520   -770.340900
## 1990    993.815036    210.327347     72.415187   2382.179235    791.180378
## 1991   1791.517063   1655.578708   -364.280421  -1310.037895   -565.890563
## 1992    795.945678    988.743077  -1206.435272    474.634974  -1919.827843
## 1993    633.139801  -1234.602223   6281.652535  -2717.043884   1826.208762
##                Nov           Dec
## 1980     26.785969     29.739967
## 1981   -259.420409   -179.429960
## 1982    161.408655    709.930554
## 1983    922.767905   2400.194001
## 1984   -640.089035   1473.603094
## 1985   3064.492188    408.902507
## 1986  -1149.623824   2303.791580
## 1987    998.840843    401.382956
## 1988   1548.520346  -4610.905540
## 1989  -2673.118827   4906.784202
## 1990   2981.737450  -1489.993451
## 1991  -1756.538551   2315.318818
## 1992    109.735839  -2170.248565
## 1993   1006.595216    -54.572363
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 1980 15120.86 16716.27 19995.98 17690.29 18000.98 19207.77 22870.11 23715.26
## 1981 15122.44 16889.41 20009.84 18201.71 18277.18 19696.61 23655.30 24428.14
## 1982 15767.15 18702.52 20675.76 21853.67 20180.87 22758.87 26788.86 29194.33
## 1983 17476.19 18877.85 20974.51 24255.63 23076.17 23407.78 26631.60 28077.54
## 1984 16933.90 20627.31 25215.45 21245.29 25933.58 24058.84 25835.31 31938.52
## 1985 18793.30 21838.94 27191.76 22267.76 27707.52 24900.59 28298.18 35687.11
## 1986 19675.49 21807.11 27125.51 22266.72 28072.44 25672.95 25083.99 33239.21
## 1987 19280.21 22934.69 26268.40 25897.98 24158.93 25714.49 31985.30 33106.64
## 1988 20195.22 20982.60 21915.40 28469.96 26345.73 22515.80 33330.53 23631.33
## 1989 18017.83 23623.43 23302.74 27487.00 25124.98 22859.45 32688.41 25333.65
## 1990 17653.56 19751.30 21705.32 25141.84 19218.92 21322.18 27384.67 25378.58
## 1991 15541.20 17918.45 25889.03 30733.04 22589.26 22024.48 28305.42 27137.28
## 1992 16726.64 23591.41 22160.88 21311.03 23193.66 23223.05 29356.26 25694.44
## 1993 15653.88 18225.23 24481.60 23665.80 25920.17 24101.86 30590.60 24952.35
##           Sep      Oct      Nov      Dec
## 1980 21111.87 22568.41 26759.21 29710.26
## 1981 21840.27 22992.32 27651.42 30124.43
## 1982 22193.07 23093.66 28829.59 30676.07
## 1983 24288.16 24067.90 28778.23 31964.81
## 1984 24164.37 24480.25 30649.09 34768.40
## 1985 23187.85 26440.49 30468.51 36942.10
## 1986 24746.65 28707.36 33213.62 36566.21
## 1987 28152.69 27163.49 32312.16 39824.62
## 1988 26953.88 29923.35 31354.48 38989.91
## 1989 23871.63 27730.34 33895.12 33734.22
## 1990 23038.82 24496.82 29586.26 36599.99
## 1991 27945.04 27537.89 31963.54 36371.68
## 1992 24681.37 27569.83 30813.26 39410.25
## 1993 25441.04 26669.79 31850.40 37252.57
## [1] 136  92

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 41.972, df = 15, p-value = 0.000227

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = -0.36733, p-value = 0.7134
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 156.89, df = 2, p-value < 2.2e-16

Luego se realizan las pruebas a los residuales y por autocorrelación se descarta el Modelo 4 y se decide continuar con el Modelo 1 y 3 que son los que muestran los mejores resultados.

Base / p-value |BIC |Lyun Box |Runs test |Normalidad | Modelo 1 |2889,34 |0,6688 |0,8894 |2,2E-16 | Modelo 2 |2930,36 |0,9992 |0,4036 |0,000004713 | Modelo 3 |2892,76 |0,9228 |0,4727 |2,2E-16 | Modelo 4 |908,61 |0,000227 |0,7134 |2,2E-16 |

Pronóstico fuera de Muestra

Se realiza la proyección de los dos Modelos seleccionados con un h=6.

##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Jan 1994       17065.44 14169.13 19961.75 12635.92 21494.97
## Feb 1994       20864.96 17968.68 23761.25 16435.48 25294.45
## Mar 1994       24582.48 21686.20 27478.76 20153.00 29011.96
## Apr 1994       26807.59 23866.17 29749.01 22309.08 31306.11
## May 1994       25842.18 22900.79 28783.58 21343.71 30340.65
## Jun 1994       25214.98 22273.58 28156.37 20716.51 29713.45

##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Jan 1994       19872.74 17194.37 22551.10 15776.53 23968.95
## Feb 1994       22117.57 19439.21 24795.94 18021.37 26213.78
## Mar 1994       25196.82 22518.45 27875.19 21100.61 29293.03
## Apr 1994       26197.79 23454.23 28941.36 22001.87 30393.71
## May 1994       25490.97 22747.41 28234.54 21295.05 29686.89
## Jun 1994       23807.19 21013.08 26601.30 19533.97 28080.42

Ecuaciones

Modelo 1: (0, 0 ,22) x (1,1,0)

Փ_1 (B^12 ) ∇_12=∝+ θ_22 (B)

(1+0,372B12)(1-B12)= ∝+(1+〖0,179B〗3+〖0,264B〗10+〖0,238B〗15+〖0,29B〗22)

Modelo 3: (22,0, 0) x (0,1,2)

∅_22 (B)∇_12=∝+ ʘ_2 (B^12)

(1-0,222B3-0,198B5-0,097B7-〖0,18B〗9+0,58B12-0,22B15-0,196B17-0,16B21-0,20B22)(1-B12)= ∝+(1-〖0,449B〗^24)

Identificar los Modelos (Base Precipitaciones)

Se utilizará la siguiente Base de datos “Precipitacioens.xlsx”, la cual cuenta con información desde enero de 2000 hasta diciembre del 2018, la cual corresponde a lasprecipitaciones del municipio de zipaquirá cuenca rio negro.

Identificar los Modelos

Se realiza inicialmente la identificación de los Modelos por medio de los gráficos con una diferencia ordinaria, una diferencia estacional y una diferencia ordianria-estacional y luego aplicamos las pruebas de estacionariedad.

|Base / p-value |Dickey- Fuller| Fhillips Perron| Urca |

|Base Original |0,02 |0,01 |-1,63 |

|d Ordinaria |0,01 | 0,01 |-7,58 |

|D Estacional |0,01 |0,01 |-4,64 |

|(D,d) Ord-Est |0,01 |0,01 |-8,08 |

Tabla 1: Pruebas de estacionariedad Base precipitaciones

## 
##  Augmented Dickey-Fuller Test
## 
## data:  z1
## Dickey-Fuller = -3.8707, Lag order = 6, p-value = 0.01631
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  z1
## Dickey-Fuller Z(alpha) = -148.87, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(z1)
## Dickey-Fuller = -7.7694, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff(z1)
## Dickey-Fuller Z(alpha) = -238.01, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(z1, 12)
## Dickey-Fuller = -4.9861, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff(z1, 12)
## Dickey-Fuller Z(alpha) = -182.9, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(diff(z1, 12))
## Dickey-Fuller = -9.0435, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff(diff(z1, 12))
## Dickey-Fuller Z(alpha) = -277.34, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1278.09  -270.24   -23.89   279.88  1914.23 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -0.07556    0.04645  -1.627   0.1053    
## z.diff.lag1 -0.57317    0.07893  -7.261 7.17e-12 ***
## z.diff.lag2 -0.45770    0.08830  -5.184 5.06e-07 ***
## z.diff.lag3 -0.45887    0.09189  -4.993 1.24e-06 ***
## z.diff.lag4 -0.45008    0.09039  -4.979 1.32e-06 ***
## z.diff.lag5 -0.20132    0.08859  -2.273   0.0241 *  
## z.diff.lag6 -0.01374    0.08194  -0.168   0.8670    
## z.diff.lag7  0.08858    0.06887   1.286   0.1998    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 503.6 on 212 degrees of freedom
## Multiple R-squared:  0.3589, Adjusted R-squared:  0.3347 
## F-statistic: 14.84 on 8 and 212 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -1.6267 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1305.19  -318.00   -67.93   239.01  1920.73 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -3.67546    0.48511  -7.577 1.10e-12 ***
## z.diff.lag1  2.04708    0.45624   4.487 1.19e-05 ***
## z.diff.lag2  1.52793    0.40766   3.748  0.00023 ***
## z.diff.lag3  0.99738    0.34449   2.895  0.00419 ** 
## z.diff.lag4  0.46001    0.27137   1.695  0.09153 .  
## z.diff.lag5  0.18087    0.19976   0.905  0.36628    
## z.diff.lag6  0.09635    0.13301   0.724  0.46962    
## z.diff.lag7  0.10517    0.06910   1.522  0.12953    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 505 on 211 degrees of freedom
## Multiple R-squared:  0.7591, Adjusted R-squared:   0.75 
## F-statistic: 83.11 on 8 and 211 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -7.5766 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2406.86  -344.90   -16.47   366.14  2279.52 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -0.63600    0.13701  -4.642 6.24e-06 ***
## z.diff.lag1 -0.19629    0.13234  -1.483    0.140    
## z.diff.lag2 -0.02338    0.12623  -0.185    0.853    
## z.diff.lag3 -0.04870    0.11960  -0.407    0.684    
## z.diff.lag4 -0.05180    0.11047  -0.469    0.640    
## z.diff.lag5  0.02988    0.10077   0.297    0.767    
## z.diff.lag6  0.02046    0.09063   0.226    0.822    
## z.diff.lag7  0.02808    0.07048   0.398    0.691    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 658.5 on 200 degrees of freedom
## Multiple R-squared:  0.4203, Adjusted R-squared:  0.3971 
## F-statistic: 18.12 on 8 and 200 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -4.642 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2503.02  -422.49    21.88   392.22  2432.86 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -3.90815    0.48369  -8.080 6.15e-14 ***
## z.diff.lag1  2.16776    0.45213   4.795 3.19e-06 ***
## z.diff.lag2  1.67502    0.40291   4.157 4.78e-05 ***
## z.diff.lag3  1.21655    0.34509   3.525 0.000525 ***
## z.diff.lag4  0.80625    0.27909   2.889 0.004295 ** 
## z.diff.lag5  0.53986    0.21036   2.566 0.011013 *  
## z.diff.lag6  0.32028    0.14238   2.250 0.025575 *  
## z.diff.lag7  0.14774    0.07132   2.071 0.039609 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 686.8 on 199 degrees of freedom
## Multiple R-squared:  0.7906, Adjusted R-squared:  0.7821 
## F-statistic: 93.89 on 8 and 199 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -8.0799 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62

Con estos resultados concluimos que la base de datos tiene una tendencia nula es decir se evidencia un comportamiento constante lo que nos indica que la base es estacionaria lo cual también se confirma con las pruebas, gráficamente si se puede evidenciar la presencia de ciclos por lo que se decide continuar con una diferencia estacional ya que no se hace necesaria la diferencia ordinaria.

Procedemos a crear el grafico para identificar el modelo por medio del ACF y el PACF, con el cual se obtienes los siguientes modelos (p, d, q) x (P, D, Q):

  1. (2, 0 2,) x (3,1,1)
  2. (0, 0 2,) x (3,1,1)
  3. (2,0, 0) x (3,1,1)
  4. (17 ,0,0) x (3,1,1)

Construcción de los Modelos

modelo1<-stats::arima(z1,
        order=c(2,0,2), 
        seasonal=list(order=c(3,1,1),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA,NA,NA))

modelo2<-stats::arima(z1,
        order=c(0,0,2), 
        seasonal=list(order=c(3,1,1),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA))

modelo3<-stats::arima(z1,
        order=c(2,0,0), 
        seasonal=list(order=c(3,1,1),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA))

modelo4<-stats::arima(z1,
        order=c(17,0,0), 
        seasonal=list(order=c(3,1,1),
        period=12), fixed = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA))

Ajsutes de los Modelos

A continuación, se procede a realizar el ajuste de los modelos planteados a partir de los coeficientes más significativos.

## 
## Call:
## stats::arima(x = z1, order = c(2, 0, 2), seasonal = list(order = c(3, 1, 1), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##           ar1     ar2     ma1      ma2     sar1    sar2     sar3     sma1
##       -0.0407  0.8110  0.2743  -0.6912  -0.0620  0.0273  -0.0603  -1.0000
## s.e.   0.0970  0.0798  0.1252   0.1119   0.0737  0.0748   0.0738   0.0754
## 
## sigma^2 estimated as 186215:  log likelihood = -1636.8,  aic = 3291.61
##          ar1          ar2          ma1          ma2         sar1         sar2 
## 3.376731e-01 0.000000e+00 1.480528e-02 1.687172e-09 2.005780e-01 3.579354e-01 
##         sar3         sma1 
## 2.074710e-01 0.000000e+00
## 
## Call:
## stats::arima(x = z1, order = c(0, 0, 2), seasonal = list(order = c(3, 1, 1), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##          ma1     ma2     sar1    sar2     sar3    sma1
##       0.2372  0.2073  -0.0353  0.0212  -0.0779  -1.000
## s.e.  0.0668  0.0671   0.0704  0.0730   0.0727   0.071
## 
## sigma^2 estimated as 195222:  log likelihood = -1640.91,  aic = 3295.83
##          ma1          ma2         sar1         sar2         sar3         sma1 
## 0.0002358367 0.0011388168 0.3083094610 0.3861477027 0.1423953852 0.0000000000
## 
## Call:
## stats::arima(x = z1, order = c(2, 0, 0), seasonal = list(order = c(3, 1, 1), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##          ar1     ar2     sar1    sar2     sar3     sma1
##       0.2406  0.1676  -0.0410  0.0245  -0.0675  -1.0000
## s.e.  0.0676  0.0678   0.0707  0.0734   0.0730   0.0713
## 
## sigma^2 estimated as 193558:  log likelihood = -1639.91,  aic = 3293.81
##          ar1          ar2         sar1         sar2         sar3         sma1 
## 0.0002294926 0.0070897195 0.2810484906 0.3694140112 0.1779887302 0.0000000000
## 
## Call:
## stats::arima(x = z1, order = c(17, 0, 0), seasonal = list(order = c(3, 1, 1), 
##     period = 12), fixed = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
##     NA, NA, NA, NA, NA, NA, NA, NA, NA))
## 
## Coefficients:
##          ar1     ar2     ar3     ar4     ar5      ar6     ar7      ar8     ar9
##       0.2441  0.1156  0.0004  0.0185  0.1790  -0.0150  0.0656  -0.0438  0.0623
## s.e.  0.0679  0.0703  0.0705  0.0706  0.0701   0.0653  0.0670   0.0642  0.0638
##          ar10    ar11     ar12    ar13    ar14     ar15    ar16    ar17    sar1
##       -0.0752  0.0936  -0.4039  0.0550  0.0375  -0.0295  0.0286  0.1490  0.3022
## s.e.   0.0667  0.0683   0.2371  0.0831  0.0825   0.0738  0.0728  0.0807  0.2592
##          sar2     sar3     sma1
##       -0.1106  -0.0599  -1.0000
## s.e.   0.1729   0.1062   0.0806
## 
## sigma^2 estimated as 177104:  log likelihood = -1631.7,  aic = 3307.41
##          ar1          ar2          ar3          ar4          ar5          ar6 
## 2.046997e-04 5.078971e-02 4.979325e-01 3.968899e-01 5.733729e-03 4.090250e-01 
##          ar7          ar8          ar9         ar10         ar11         ar12 
## 1.645787e-01 2.480457e-01 8.861967e-05 4.227305e-02 4.978662e-01 4.689736e-01 
##         ar13         ar14         ar15         ar16         ar17         sar1 
## 1.623951e-02 4.277501e-01 1.875860e-01 2.741937e-01 1.411785e-03 3.280256e-01 
##         sar2         sar3         sma1 
## 4.991572e-01 4.310215e-01 1.377423e-02

Se ajustan los modelos y se obtienen los siguientes a los cuales también se le excluyeron los coeficientes no significativos:

  1. (0, 0 ,22) x (1,1,0)
  2. (22,0,21) x (1,1,3)
  3. (22,0, 0) x (0,1,2)
  4. (0 ,0,22) x (0,1,3)
modelo1<-stats::arima(z1,
        order=c(2,0,2), 
        seasonal=list(order=c(0,1,1),
        period=12), fixed = c(0,NA,NA,NA,NA))

modelo2<-stats::arima(z1,
        order=c(0,0,2), 
        seasonal=list(order=c(0,1,1),
        period=12), fixed = c(NA,NA,NA))

modelo3<-stats::arima(z1,
        order=c(2,0,0), 
        seasonal=list(order=c(0,1,1),
        period=12), fixed = c(NA,NA,NA))

modelo4<-stats::arima(z1,
        order=c(17,0,0), 
        seasonal=list(order=c(0,1,1),
        period=12), fixed = c(NA,0,0,0,NA,0,0,0,NA,NA,0,0,NA,0,0,0,NA,NA))

Se ajustan los modelos y se obtienen los siguientes a los cuales también se le excluyeron los coeficientes no significativos:

  1. (2, 0,2) x (0,1,1)
  2. (0, 0,2) x (0,1,1)
  3. (2, 0, 0) x (0,1,1)
  4. (17,0,0) x (0,1,1)

Diagnostico de los Modelos

## [1] 3302.572
## [1] 3304.903
## [1] 3302.746
## [1] 3319.069

Pruebas para los Residuales

Se procede a realizar el diagnostico de los modelos para elegir el mejor en términos de BIC y pruebas de los residuales:

Modelo 1

En este modelo podemos evidenciar en los residuales que están alejados de los datos reales no siguen la alineación del histórico, se evidencia también una varianza no tan constante lo que permite inferir que no existe una media cercana a cero, en los gráficos del ACF y el PACF observamos todas las barras dentro del límite lo que quiere decir que los residuales son Nulos, en la gráfica de normalidad evidenciamos algunos datos alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##                Jan           Feb           Mar           Apr           May
## 2000     0.6249993     1.3289982     1.0279980     0.7769980     0.7779978
## 2001  -230.3170061  -735.4359537  -408.9393696  -314.2592869  -275.2507135
## 2002  -144.9556663  -178.4374305   690.7351732   108.5631486  1013.8837612
## 2003  -110.2688753   -39.1881712  -249.5484542  1039.5808562  -554.3256713
## 2004   312.6364879  -245.8083006  -175.4417261   984.3737005   351.0822514
## 2005  -234.3464496   483.1111312  -599.0538461   242.4935562   177.5856602
## 2006    -0.5742214   -39.8377773   612.5876996  1224.7173005   866.4288679
## 2007  -539.7921145  -615.2005437   -10.4140561   -61.0216321  -541.6292567
## 2008  -233.9003597  -274.5709065   378.3586077  -469.1239922     1.9147645
## 2009    85.7326213  -163.9100277  -235.1434493  -421.9922590  -391.2394071
## 2010  -128.8730769  -340.0359797  -221.8447305   830.2460698   602.9940694
## 2011  -246.4198813   538.3083498   375.8313287  1175.8782883   387.1851272
## 2012    99.6065567  -299.7259647   144.5070094   414.8429386  -352.6590183
## 2013   -84.1414569   129.8106953  -264.5325784 -1114.2159644    70.2540877
## 2014    92.3510989   287.0865791  -312.8377130  -387.4797026  -172.7014343
## 2015    75.6116514   338.3450315    15.1044714  -637.1689896  -766.7757292
## 2016    67.6914666    49.5854290   375.9744798   344.7173523  -111.5017119
## 2017    -1.0263862  -321.9921770  -512.5007282  -791.6783413   267.8227729
## 2018   -48.4839503   -15.8299193   250.3593155   312.1916431   226.2702542
##                Jun           Jul           Aug           Sep           Oct
## 2000     0.7439978     1.1109973     0.5819977     1.0639973     0.6459976
## 2001  -271.9483825  -509.5535552   197.0028072   -22.3946375    58.4822981
## 2002  -515.9783613  -152.6270374  -162.2882439  -495.6296689   714.7115448
## 2003   172.1465094   -60.6177771    44.7343276  -402.3796747  -624.1501876
## 2004    60.9446612   -79.2764737  -318.7035250   490.9565491   733.7145863
## 2005   275.8713600   116.8161463  -173.2805614  -118.7380281  -561.5380910
## 2006   790.6330778  -430.7446064  -341.2259689  -939.0336584   200.1357401
## 2007   575.2588269  -468.8012969   239.2263164  -345.2989823  1749.6211577
## 2008   575.7143489    66.6934673  -320.7881922   -25.1629581  -812.7660100
## 2009  -199.2255423    83.7565950   -53.2318136  -166.9796045   276.9559349
## 2010   100.3294246  1015.2987305   -91.8251445   229.1968354  -249.0481772
## 2011  -343.9427131  -582.7263249  -137.3692563  -163.7996175   644.9516775
## 2012  -320.0210428   281.3742882   -26.3490739  -471.5938538   686.8062356
## 2013  -313.5840943  -254.4897232   400.8280728  -450.9351417   -18.0078073
## 2014   161.0973967  -139.3895808   134.5242868  -327.7238237   276.2904784
## 2015    55.0683038   -35.7784812    55.0810231  -380.0677499  -263.2651326
## 2016    79.7383383  -166.9031180  -299.1513141   -29.0908352   143.9477464
## 2017   445.5212517   -85.9077318   481.0298464  -254.1767528  -170.7698989
## 2018  -267.8109303   -40.7561526  -206.6217809    18.0708978     2.3803696
##                Nov           Dec
## 2000     0.8019977     0.2119984
## 2001  -187.0231380   223.4535088
## 2002  -171.3379879   100.7509058
## 2003  -411.9025915  -147.7045179
## 2004  -553.8976518  -191.0305267
## 2005   655.5269071   156.4076723
## 2006   725.5663174  -181.9908489
## 2007 -1001.1033337   -74.9445520
## 2008  1438.1330684   148.0507647
## 2009  -158.8032561  -245.7564562
## 2010   579.0386923   159.9192937
## 2011   586.6485093  -112.4473256
## 2012  -200.0338847  -204.0666155
## 2013  -591.9238406    11.8177977
## 2014   104.8949705   133.0451044
## 2015  -505.6941452    49.6727451
## 2016  -617.7671542   311.6943338
## 2017   207.6443937   764.8307143
## 2018   -22.2194242  -412.6441016
##              Jan         Feb         Mar         Apr         May         Jun
## 2000  624.375001 1327.671002 1026.972002  776.223002  777.222002  743.256002
## 2001  513.317006  923.435954  582.939370  348.259287  323.250713  305.948383
## 2002  292.955666  527.437431  615.264827  452.436851  681.116239  578.978361
## 2003  402.268875  620.188171  837.548454  574.419144 1026.325671  275.853491
## 2004  234.363512  438.808301  623.441726  690.626299  920.917749  406.055339
## 2005  461.346450  538.888869  831.053846  843.506444 1013.414340  371.128640
## 2006  433.574221  701.837777  739.412300 1290.282699 1405.571132 1013.366922
## 2007  560.792114  629.200544  711.414056 1155.021632 1035.629257  492.741173
## 2008  525.900360  295.570907  837.641392 1023.123992 1025.835236  557.285651
## 2009  382.267379  682.910028  788.143449 1174.992259  894.239407  644.225542
## 2010  193.873077  354.035980  545.844730  927.753930 1023.005931  787.670575
## 2011  481.419881  727.691650  992.168671 1545.121712 1586.814873 1205.942713
## 2012  597.393443  775.725965  953.492991 1508.157061 1355.659018  851.021043
## 2013  418.141457  499.189305  883.532578 1209.215964  885.745912  544.584094
## 2014  151.648901  281.913421  705.837713  969.479703  905.701434  399.902603
## 2015  345.388349  443.654968  863.895529 1131.168990  975.775729  389.931696
## 2016  153.308533  268.414571  652.025520 1030.282648 1033.501712  566.261662
## 2017  318.026386  363.992177  683.500728  852.678341  706.177227  422.478748
## 2018  485.483950  498.829919  877.640684 1163.808357 1215.729746  793.810930
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2000 1109.889003  581.418002 1062.936003  645.354002  801.198002  211.788002
## 2001  557.553555  285.997193  828.394637  470.517702  642.023138  205.546491
## 2002  603.627037  656.288244  839.629669  766.288455  762.337988  445.249094
## 2003  736.617777  527.265672  863.379675  714.150188  518.902591  166.704518
## 2004  734.276474  557.703525  793.043451  931.285414  728.897652  376.030527
## 2005  811.183854  525.280561  929.738028  848.538091  470.473093  428.592328
## 2006 1248.744606  859.225969 1104.033658  890.864260  863.433683  602.990849
## 2007  696.801297  317.773684  740.298982  775.378842 1065.103334  158.944552
## 2008  761.306533  431.788192  712.162958  939.766010  544.866932  556.949235
## 2009  464.243405  392.231814  514.979604  885.044065  694.803256  288.756456
## 2010  786.701269  764.825144  824.803165 1281.048177  882.961308  725.080706
## 2011 1100.726325  686.369256  889.799617 1147.048322 1157.351491  711.447326
## 2012  823.625712  613.349074  760.593854 1081.193764 1079.033885  430.066615
## 2013  491.489723  273.171927  504.935142  862.007807  710.923841   57.182202
## 2014  581.389581  251.475713  513.723824  835.709522  804.105030  223.954896
## 2015  570.778481  256.918977  479.067750  810.265133  647.694145    8.327255
## 2016  703.903118  359.151314  480.090835  938.052254  752.767154  132.305666
## 2017  556.907732  291.970154  551.176753  903.769899  707.355606  296.169286
## 2018  784.756153  533.621781  575.929102 1081.619630  804.219424  417.644102
## [1]  94 107

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 11.051, df = 15, p-value = 0.749

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = -1.1258, p-value = 0.2603
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 48.177, df = 2, p-value = 3.456e-11

Modelo 2

En este modelo se puede evidenciar que el comportamiento de los residuales sigue estando alejado de los datos históricos, se evidencia también una varianza un poco más constante que permite inferir que existe una media cercana a cero, en los gráficos del ACF y el PACF observamos todas las barras dentro del límite y solo una fuera lo que quiere decir que casi todos los residuales son Nulos, en la gráfica de normalidad evidenciamos algunos datos alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##                Jan           Feb           Mar           Apr           May
## 2000     0.6249993     1.3289982     1.0279979     0.7769980     0.7779983
## 2001  -230.6391110  -734.8051901  -388.9817174  -281.0904051  -368.7271332
## 2002  -241.7942076  -302.8731198   695.8395179    26.1266420   894.8428224
## 2003   -21.6779379   -26.8449965  -203.8685865  1055.3490039  -524.8124602
## 2004   278.4562760  -402.6853668  -255.0762002   974.9068174   292.2961850
## 2005    20.8346255   479.7138479  -552.3753454   170.0293369   384.2671747
## 2006  -125.4534663    39.1982263   686.0308564  1271.8360005   818.2532396
## 2007  -464.9180605  -401.7422076   162.3762843   -34.7756430  -596.4453128
## 2008   254.8399498  -470.9384249   516.9595396  -603.3785644    33.7618304
## 2009  -201.7386978    43.8968972  -186.0512967  -295.6237192  -389.1993374
## 2010  -133.0384882  -353.1230040  -304.4919898   805.2417076   494.6070945
## 2011  -290.1319930   778.9326531   497.6042304  1243.5969381   502.3697025
## 2012   258.3992312   -71.3235961   273.7735877   585.6950890  -300.7569161
## 2013    95.8024925   158.9176599  -231.0206925 -1152.2961335   176.9285704
## 2014    66.9838451    61.5287432  -408.4020105  -538.5915691  -136.0104734
## 2015    81.6821814   246.2938792    40.1020093  -727.9983578  -670.2642154
## 2016    19.4629037  -196.4643522   294.9688832   199.9294589  -199.9734006
## 2017    77.3239351  -535.1532169  -484.6992803  -835.4792580   263.0617025
## 2018  -112.4145589  -132.1481831   423.7867222   300.7761504   262.4464185
##                Jun           Jul           Aug           Sep           Oct
## 2000     0.7439984     1.1109980     0.5819984     1.0639980     0.6459984
## 2001  -356.2938698  -590.4602235   143.7480178   -92.5272059   -91.0684232
## 2002  -482.4166189  -178.8497453   111.8072681  -471.3978975   817.1382831
## 2003    47.6119544   219.4546402   -16.3456412  -282.0392439  -618.9271763
## 2004  -143.7195137    47.2695117  -243.7482104   597.8023892   785.4922867
## 2005   143.8829441   195.7622078  -187.6377110    20.6891117  -508.8865907
## 2006   840.0880734  -209.0556435   -67.2870943  -523.6022245   422.5833326
## 2007   584.6121540  -425.7309665    65.7978835  -216.2414661  1625.4833339
## 2008   565.0603909    61.2424677  -475.6957635   118.7682522  -788.3472061
## 2009   -99.6664445    19.5659182   -74.0537964  -290.7664862   296.6188442
## 2010   -92.0111341  1036.3218497    11.9456611   178.0396406    23.9259394
## 2011  -227.4540457  -260.1862522   206.3551513    55.2849882   733.7815241
## 2012  -230.5514278   489.5629859    59.1192153  -491.0019045   806.9423225
## 2013  -254.6062547  -468.9391918   364.4006170  -560.6724729  -183.2305084
## 2014    40.6576064  -240.8786201   -43.2906729  -345.3508129   126.9199361
## 2015   100.6093778   -36.1886790  -169.8087877  -416.4698691  -379.2300762
## 2016     3.0714913  -100.5705475  -369.1386110    13.6166796   111.3962848
## 2017   326.9082037  -329.9328708   332.3500666  -247.7931216  -315.3683151
## 2018  -255.5561972    83.8050112   -94.5984694    68.0357443    57.8240304
##                Nov           Dec
## 2000     0.8019984     0.2119995
## 2001  -205.8019861   155.2364492
## 2002  -132.7413882   -17.3214618
## 2003  -240.7933685  -185.3615728
## 2004  -590.8632800  -164.9323296
## 2005   754.3166103   185.0503102
## 2006   979.1672881  -255.5737713
## 2007  -926.3866936  -387.1761876
## 2008  1451.2734213   175.5345319
## 2009  -227.5029753  -322.1235860
## 2010   642.3582958   362.6136617
## 2011   710.8430371  -121.0900534
## 2012   -94.2720313  -321.1778538
## 2013  -578.4408329  -137.7667723
## 2014   117.6067634   -66.6512198
## 2015  -495.8685649  -104.7137216
## 2016  -667.6446254   225.3548680
## 2017   282.3473477   685.5975388
## 2018    -9.6114683  -388.9819042
##             Jan        Feb        Mar        Apr        May        Jun
## 2000  624.37500 1327.67100 1026.97200  776.22300  777.22200  743.25600
## 2001  513.63911  922.80519  562.98172  315.09041  416.72713  390.29387
## 2002  389.79421  651.87312  610.16048  534.87336  800.15718  545.41662
## 2003  313.67794  607.84500  791.86859  558.65100  996.81246  400.38805
## 2004  268.54372  595.68537  703.07620  700.09318  979.70381  610.71951
## 2005  206.16537  542.28615  784.37535  915.97066  806.73283  503.11706
## 2006  558.45347  622.80177  665.96914 1243.16400 1453.74676  963.91193
## 2007  485.91806  415.74221  538.62372 1128.77564 1090.44531  483.38785
## 2008   37.16005  491.93842  699.04046 1157.37856  993.98817  567.93961
## 2009  669.73870  475.10310  739.05130 1048.62372  892.19934  544.66644
## 2010  198.03849  367.12300  628.49199  952.75829 1131.39291  980.01113
## 2011  525.13199  487.06735  870.39577 1477.40306 1471.63030 1089.45405
## 2012  438.60077  547.32360  824.22641 1337.30491 1303.75692  761.55143
## 2013  238.19751  470.08234  850.02069 1247.29613  779.07143  485.60625
## 2014  177.01615  507.47126  801.40201 1120.59157  869.01047  520.34239
## 2015  339.31782  535.70612  838.89799 1221.99836  879.26422  344.39062
## 2016  201.53710  514.46435  733.03112 1175.07054 1121.97340  642.92851
## 2017  239.67606  577.15322  655.69928  896.47926  710.93830  541.09180
## 2018  549.41456  615.14818  704.21328 1175.22385 1179.55358  781.55620
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2000 1109.88900  581.41800 1062.93600  645.35400  801.19800  211.78800
## 2001  638.46022  339.25198  898.52721  620.06842  660.80199  273.76355
## 2002  629.84975  382.19273  815.39790  663.86172  723.74139  563.32146
## 2003  456.54536  588.34564  743.03924  708.92718  347.79337  204.36157
## 2004  607.73049  482.74821  686.19761  879.50771  765.86328  349.93233
## 2005  732.23779  539.63771  790.31089  795.88659  371.68339  399.94969
## 2006 1027.05564  585.28709  688.60222  668.41667  609.83271  676.57377
## 2007  653.73097  491.20212  611.24147  899.51667  990.38669  471.17619
## 2008  766.75753  586.69576  568.23175  915.34721  531.72658  529.46547
## 2009  528.43408  413.05380  638.76649  865.38116  763.50298  365.12359
## 2010  765.67815  661.05434  875.96036 1008.07406  819.64170  522.38634
## 2011  778.18625  342.64485  670.71501 1058.21848 1033.15696  720.09005
## 2012  615.43701  527.88078  780.00190  961.05768  973.27203  547.17785
## 2013  705.93919  309.59938  614.67247 1027.23051  697.44083  206.76677
## 2014  682.87862  429.29067  531.35081  985.08006  791.39324  423.65122
## 2015  571.18868  481.80879  515.46987  926.23008  637.86856  162.71372
## 2016  637.57055  429.13861  437.38332  970.60372  802.64463  218.64513
## 2017  800.93287  440.64993  544.79312 1048.36832  632.65265  375.40246
## 2018  660.19499  421.59847  525.96426 1026.17597  791.61147  393.98190
## [1]  94 107

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 17.404, df = 15, p-value = 0.2953

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = -0.13159, p-value = 0.8953
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 35.922, df = 2, p-value = 1.584e-08

Modelo 3

En este modelo se puede evidenciar que el comportamiento de los residuales sigue estando alejado de los datos históricos, se evidencia también una varianza un poco más constante que permite inferir que existe una media cercana a cero.

En los gráficos del ACF y el PACF observamos todas las barras dentro del límite y solo una fuera lo que quiere decir que casi todos los residuales son Nulos, en la gráfica de normalidad evidenciamos algunos datos alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##                Jan           Feb           Mar           Apr           May
## 2000     0.6249993     1.3289981     1.0279976     0.7769976     0.7779977
## 2001  -228.1721203  -726.2972227  -369.6794206  -243.3620752  -288.1696365
## 2002  -214.7783137  -278.9349941   698.1553012    45.8985843   916.9750001
## 2003   -65.3133966   -40.3220504  -197.5787818  1058.8354059  -522.6689973
## 2004   353.9186432  -356.4918577  -234.2131798   964.0987951   319.0676095
## 2005   -53.1611575   508.9213477  -519.5838980   167.2061143   349.0264429
## 2006   -89.9976199   -11.3945977   644.9419735  1273.1316085   801.6658324
## 2007  -496.7915538  -496.8565654   160.6176764    22.8145005  -546.5488917
## 2008   137.9324695  -438.8338340   581.8939672  -606.3626732    59.9895487
## 2009  -158.6009599   -60.1073023  -250.1788034  -283.8340217  -381.7204265
## 2010  -141.3311938  -336.2294796  -263.6296464   836.1445121   533.4242433
## 2011  -308.8525663   715.5514758   444.0982183  1240.9033415   428.3853574
## 2012   180.2119082  -159.9912649   254.8431704   566.7547731  -310.9176795
## 2013    45.4647882   144.3790367  -201.0732683 -1151.5279336   167.5121414
## 2014   116.3278233   122.9447640  -376.7719178  -539.3434969  -134.7588365
## 2015    82.5060874   232.4447548    39.4352436  -737.6495419  -693.5395139
## 2016    79.5078570  -135.9025906   322.5518276   204.2186582  -189.0915121
## 2017    79.3385043  -482.7935681  -480.5071438  -839.1728759   320.4572426
## 2018   -81.2444691  -157.7973857   354.2236068   287.0543147   269.5582551
##                Jun           Jul           Aug           Sep           Oct
## 2000     0.7439978     1.1109974     0.5819978     1.0639975     0.6459980
## 2001  -290.5649796  -546.7294690   189.1364363   -48.6581736   -50.0401597
## 2002  -540.0828463  -223.2232775    33.8661587  -466.6417056   832.4947630
## 2003    48.9725336   138.3654237   -12.3259303  -278.3611153  -652.5713759
## 2004  -125.6679693   -38.0576127  -305.7389546   595.2915718   778.5474393
## 2005   171.4185951   191.4559433  -234.2340903   -13.1383093  -536.6711365
## 2006   750.1024668  -367.6737029  -203.1412977  -628.4598223   407.8631207
## 2007   586.6558746  -421.0377998   110.2391801  -243.8282133  1636.2082856
## 2008   545.3012792    93.5500949  -469.2413046    64.0166973  -812.1971216
## 2009   -78.0851372    59.4951269   -28.0845631  -270.5860225   295.5815565
## 2010   -68.5607301   965.0733184   -65.5280473   147.4059889   -72.5077958
## 2011  -324.9993401  -399.3882405   120.0342048    59.3486149   757.1123585
## 2012  -262.4362646   432.3874595    66.3993821  -470.3904344   767.8018441
## 2013  -219.7862285  -359.1588771   395.0058242  -538.8832071  -139.6860394
## 2014    85.2606925  -175.7662267   -12.4760321  -341.4526852   145.9421324
## 2015   103.4760428    39.3481989   -85.6376962  -401.8615727  -378.0643317
## 2016   -19.6447944  -126.1515845  -358.7682726    22.1685534   123.9434136
## 2017   403.6377921  -243.3771911   333.0843107  -283.6738002  -305.1149064
## 2018  -295.7903903    37.2486398  -125.6774633    79.2127161    58.1422048
##                Nov           Dec
## 2000     0.8019981     0.2119992
## 2001  -231.8913133   140.6528862
## 2002  -151.9735026     3.8267932
## 2003  -258.4700561  -151.3525313
## 2004  -599.8760814  -224.2955551
## 2005   752.8150232   192.3604497
## 2006   989.7720279  -218.6139424
## 2007  -928.9745638  -396.3796090
## 2008  1483.9027516   189.7218710
## 2009  -225.4268998  -298.3414629
## 2010   593.0968629   342.3869570
## 2011   691.1232509  -149.5997569
## 2012  -117.6520510  -293.0657240
## 2013  -589.5344826   -95.0651931
## 2014   130.6258087   -37.0705720
## 2015  -475.0831292   -52.7552752
## 2016  -635.7937052   237.6199383
## 2017   265.3849557   700.1607204
## 2018    -9.6026620  -393.1019592
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2000  624.3750 1327.6710 1026.9720  776.2230  777.2220  743.2560 1109.8890
## 2001  511.1721  914.2972  543.6794  277.3621  336.1696  324.5650  594.7295
## 2002  362.7783  627.9350  607.8447  515.1014  778.0250  603.0828  674.2233
## 2003  357.3134  621.3221  785.5788  555.1646  994.6690  399.0275  537.6346
## 2004  193.0814  549.4919  682.2132  710.9012  952.9324  592.6680  693.0576
## 2005  280.1612  513.0787  751.5839  918.7939  841.9736  475.5814  736.5441
## 2006  522.9976  673.3946  707.0580 1241.8684 1470.3342 1053.8975 1185.6737
## 2007  517.7916  510.8566  540.3823 1071.1855 1040.5489  481.3441  649.0378
## 2008  154.0675  459.8338  634.1060 1160.3627  967.7605  587.6987  734.4499
## 2009  626.6010  579.1073  803.1788 1036.8340  884.7204  523.0851  488.5049
## 2010  206.3312  350.2295  587.6296  921.8555 1092.5758  956.5607  836.9267
## 2011  543.8526  550.4485  923.9018 1480.0967 1545.6146 1186.9993  917.3882
## 2012  516.7881  635.9913  843.1568 1356.2452 1313.9177  793.4363  672.6125
## 2013  288.5352  484.6210  820.0733 1246.5279  788.4879  450.7862  596.1589
## 2014  127.6722  446.0552  769.7719 1121.3435  867.7588  475.7393  617.7662
## 2015  338.4939  549.5552  839.5648 1231.6495  902.5395  341.5240  495.6518
## 2016  141.4921  453.9026  705.4482 1170.7813 1111.0915  665.6448  663.1516
## 2017  237.6615  524.7936  651.5071  900.1729  653.5428  464.3622  714.3772
## 2018  518.2445  640.7974  773.7764 1188.9457 1172.4417  821.7904  706.7514
##            Aug       Sep       Oct       Nov       Dec
## 2000  581.4180 1062.9360  645.3540  801.1980  211.7880
## 2001  293.8636  854.6582  579.0402  686.8913  288.3471
## 2002  460.1338  810.6417  648.5052  742.9735  542.1732
## 2003  584.3259  739.3611  742.5714  365.4701  170.3525
## 2004  544.7390  688.7084  886.4526  774.8761  409.2956
## 2005  586.2341  824.1383  823.6711  373.1850  392.6396
## 2006  721.1413  793.4598  683.1369  599.2280  639.6139
## 2007  446.7608  638.8282  888.7917  992.9746  480.3796
## 2008  580.2413  622.9833  939.1971  499.0972  515.2781
## 2009  367.0846  618.5860  866.4184  761.4269  341.3415
## 2010  738.5280  906.5940 1104.5078  868.9031  542.6130
## 2011  428.9658  666.6514 1034.8876 1052.8767  748.5998
## 2012  520.6006  759.3904 1000.1982  996.6521  519.0657
## 2013  278.9942  592.8832  983.6860  708.5345  164.0652
## 2014  398.4760  527.4527  966.0579  778.3742  394.0706
## 2015  397.6377  500.8616  925.0643  617.0831  110.7553
## 2016  418.7683  428.8314  958.0566  770.7937  206.3801
## 2017  439.9157  580.6738 1038.1149  649.6150  360.8393
## 2018  452.6775  514.7873 1025.8578  791.6027  398.1020
## [1]  94 107

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 14.312, df = 15, p-value = 0.502

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = -0.35731, p-value = 0.7209
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 39.06, df = 2, p-value = 3.298e-09

Modelo 4

En este modelo podemos evidenciar en los residuales que están alejados de los datos reales con picos bastante alejados, no siguen la alineación del histórico, se evidencia también una varianza no tan constante por varios datos alejados de la media y que sobresalen de los limites lo que permite inferir que no existe una media cercana a cero.

En los gráficos del ACF y el PACF observamos todas las barras dentro del límite lo que quiere decir que los residuales son Nulos, en la gráfica de normalidad evidenciamos algunos datos alejados de la línea de normalidad lo que quizás nos dice que los residuales no son normales pero que se verificara con la prueba de normalidad.

##                Jan           Feb           Mar           Apr           May
## 2000     0.6249993     1.3289981     1.0279979     0.7769983     0.7779984
## 2001  -227.7837668  -725.2543049  -374.0005890  -357.2669684  -379.5593289
## 2002  -274.8922430  -230.1037518   683.9984332    21.9979858   929.0852108
## 2003   -47.1966671     2.9580415  -201.0051897  1060.2367137  -640.6725948
## 2004   162.2618370  -216.6825272  -152.4825132   978.8220086   297.2727011
## 2005  -168.8299408   446.8868308  -642.9667126   336.4900011   347.1285112
## 2006   -16.7544223   -24.0990071   705.0802935  1138.1211432   860.2534173
## 2007  -414.8759358  -335.2512156   110.4631334  -213.8907137  -571.1019032
## 2008    20.9444985  -335.4169914   160.3113786  -596.1843521   152.6384315
## 2009   199.5828513   -38.9087178  -221.9173992  -465.2263411  -416.7702144
## 2010  -118.7197917  -305.1896267  -295.1744306   691.7864742   469.1255371
## 2011  -355.5249734   758.8739685   413.3625756  1141.9758827   488.5291346
## 2012   206.8069519  -112.9817315   231.9075334   347.5487598  -382.7446889
## 2013   -14.4917586   260.6282629  -401.8436221 -1250.4575968   220.5680110
## 2014    35.3056441   119.8759814  -372.4795236  -376.6380373  -176.8775045
## 2015   113.5081375   326.8979338    33.1225493  -651.5131132  -646.9923932
## 2016    81.0630086   -44.9717529   350.9813636   276.7205914   -97.6378655
## 2017    56.2129715  -381.3291002  -445.5686018  -712.1142543   280.0501747
## 2018   -74.5187969   -85.1356921   405.1739556   320.0819051   120.3290153
##                Jun           Jul           Aug           Sep           Oct
## 2000     0.7439982     1.1109976     0.5819981     1.0639981     0.6459982
## 2001  -329.9613571  -508.6200618   177.9030503  -165.0559438    -9.7387328
## 2002  -476.6184040    58.3438142   -94.2693711  -555.9869432   731.9531488
## 2003   310.1045417    -5.8470148    54.8472742  -513.3803784  -618.6595823
## 2004    -3.4026921   151.2117860  -254.4444076   338.7021603   612.3610186
## 2005   126.5247079   146.4645696     2.7033207   -83.9576948  -640.9828882
## 2006   944.0115946  -184.4588082  -204.3735954  -878.9515232   196.8416960
## 2007   717.6930923  -499.3128934    80.4381066  -338.1840816  1726.8065431
## 2008   508.7854736    48.6134037  -300.3216540   189.0267043  -837.1930363
## 2009  -176.9760306    93.4915946  -268.0187397   -95.1988229   422.3085748
## 2010    82.3266987  1101.7294947    59.8843125   219.8725580  -127.6448422
## 2011   -68.3308340  -342.0160435     1.2929276  -325.0454149   614.4603248
## 2012  -208.8638499   300.1836459  -101.9048829  -595.9042202   751.3604553
## 2013  -397.8309967  -490.5045805   406.6889981  -434.5537260   -57.9286862
## 2014    79.5129880  -286.9398256   103.3545776  -215.5029051   208.4582542
## 2015    33.1515120  -194.5787169  -121.1926407  -239.5264631  -199.6310850
## 2016    61.6677646  -118.0208464  -408.1902470   -26.6214024   128.6850905
## 2017   205.0665694  -159.6263131   531.7486356  -209.3789581  -212.6032207
## 2018  -213.6809172   157.9173119  -228.2434709    51.9457812    12.3580861
##                Nov           Dec
## 2000     0.8019981     0.2119990
## 2001  -132.9678233   248.6604711
## 2002  -152.7505642   158.3247833
## 2003  -241.5208321  -237.6165438
## 2004  -477.7742343   -83.3236783
## 2005   702.5070905   107.9424965
## 2006   648.4971665  -292.5417585
## 2007 -1155.6914476   -69.4602302
## 2008  1475.7494415   -88.5846358
## 2009  -234.5010294  -214.2318110
## 2010   685.5804738   118.3367630
## 2011   579.0854365   -56.7158813
## 2012  -110.4350311  -250.8206718
## 2013  -558.4950200    -7.6256033
## 2014   122.8175423    98.1775188
## 2015  -483.2530567   -49.1221897
## 2016  -612.9644473   262.9447688
## 2017   249.6859513   704.7080450
## 2018    34.5460911  -414.8419900
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2000  624.3750 1327.6710 1026.9720  776.2230  777.2220  743.2560 1109.8890
## 2001  510.7838  913.2543  548.0006  391.2670  427.5593  363.9614  556.6201
## 2002  422.8922  579.1038  622.0016  539.0020  765.9148  539.6184  392.6562
## 2003  339.1967  578.0420  789.0052  553.7633 1112.6726  137.8955  681.8470
## 2004  384.7382  409.6825  600.4825  696.1780  974.7273  470.4027  503.7882
## 2005  395.8299  575.1132  874.9667  749.5100  843.8715  520.4753  781.5354
## 2006  449.7544  686.0990  646.9197 1376.8789 1411.7466  859.9884 1002.4588
## 2007  435.8759  349.2512  590.5369 1307.8907 1065.1019  350.3069  727.3129
## 2008  271.0555  356.4170 1055.6886 1150.1844  875.1116  624.2145  779.3866
## 2009  268.4171  557.9087  774.9174 1218.2263  919.7702  621.9760  454.5084
## 2010  183.7198  319.1896  619.1744 1066.2135 1156.8745  805.6733  700.2705
## 2011  590.5250  507.1260  954.6374 1579.0241 1485.4709  930.3308  860.0160
## 2012  490.1930  588.9817  866.0925 1575.4512 1385.7447  739.8638  804.8164
## 2013  348.4918  368.3717 1020.8436 1345.4576  735.4320  628.8310  727.5046
## 2014  208.6944  449.1240  765.4795  958.6380  909.8775  481.4870  728.9398
## 2015  307.4919  455.1021  845.8775 1145.5131  855.9924  411.8485  729.5787
## 2016  139.9370  362.9718  677.0186 1098.2794 1019.6379  584.3322  655.0208
## 2017  260.7870  423.3291  616.5686  773.1143  693.9498  662.9334  630.6263
## 2018  511.5188  568.1357  722.8260 1155.9181 1321.6710  739.6809  586.0827
##            Aug       Sep       Oct       Nov       Dec
## 2000  581.4180 1062.9360  645.3540  801.1980  211.7880
## 2001  305.0969  971.0559  538.7387  587.9678  180.3395
## 2002  588.2694  899.9869  749.0469  743.7506  387.6752
## 2003  517.1527  974.3804  708.6596  348.5208  256.6165
## 2004  493.4444  945.2978 1052.6390  652.7742  268.3237
## 2005  349.2967  894.9577  927.9829  423.4929  477.0575
## 2006  722.3736 1043.9515  894.1583  940.5028  713.5418
## 2007  476.5619  733.1841  798.1935 1219.6914  153.4602
## 2008  411.3217  497.9733  964.1930  507.2506  793.5846
## 2009  607.0187  443.1988  739.6914  770.5010  257.2318
## 2010  613.1157  834.1274 1159.6448  776.4195  766.6632
## 2011  547.7071 1051.0454 1177.5397 1164.9146  655.7159
## 2012  688.9049  884.9042 1016.6395  989.4350  476.8207
## 2013  267.3110  488.5537  901.9287  677.4950   76.6256
## 2014  282.6454  401.5029  903.5417  786.1825  258.8225
## 2015  433.1926  338.5265  746.6311  625.2531  107.1222
## 2016  468.1902  477.6214  953.3149  747.9644  181.0552
## 2017  241.2514  506.3790  945.6032  665.3140  356.2920
## 2018  555.2435  542.0542 1071.6419  747.4539  419.8420
## [1]  94 107

## 
##  Box-Ljung test
## 
## data:  et
## X-squared = 11.631, df = 15, p-value = 0.7067

## 
##  Runs Test
## 
## data:  as.factor(sign(et))
## Standard Normal = 0.67468, p-value = 0.4999
## alternative hypothesis: two.sided
## 
##  Jarque Bera Test
## 
## data:  et
## X-squared = 45.204, df = 2, p-value = 1.528e-10

Luego se realizan las pruebas a los residuales donde todos los modelos pasan las pruebas de autocorrelación y aleatoriedad, pero ninguno pasa las pruebas de normalidad aunque no se descartan por esta. Se decide elegir el Modelo 3 con el mejor BIC y el cual también tiene los p-value más altos.

Base / p-value |BIC |Lyun Box |Runs test |Normalidad | Modelo 1 |3321,99 |0,7796 |0,2603 |6,37E-14 | Modelo 2 |3319,46 |0,2953 |0,8953 |1,58E-08 | Modelo 3 |3317,44 |0,5000 |0,7209 |3,30E-09 | Modelo 4 |3381,67 |0,7067 |0,4999 |1,53E-10 |

Pronóstico fuera de Muestra

Se realiza la proyección del Modelo seleccionado con un h=6.

##          Point Forecast      Lo 80     Hi 80     Lo 95    Hi 95
## Jan 2019       240.7144 -342.33807  823.7669 -650.9874 1132.416
## Feb 2019       409.0617 -190.41979 1008.5432 -507.7661 1325.890
## Mar 2019       731.9369  117.87910 1345.9948 -207.1835 1671.057
## Apr 2019      1089.1404  472.56246 1705.7183  146.1658 2032.115
## May 2019      1019.2519  401.61875 1636.8851   74.6635 1963.840
## Jun 2019       646.5068   28.60651 1264.4071 -298.4901 1591.504

Ecuaciones

Modelo 3: (22,0, 0) x (0,1,2)

∅_2 (B)∇_12=∝+ ʘ_1 (B^12)

(1-0,2394B1-0,1711B3)(1-B^12)= ∝+(1-B^12)