Propósito del ejercicio

En este ejercicio se analizo una base de datos de pacientes con cáncer de mama donde se tuvo que dar una comparacion en cuanto a lo fueron los diagnosticos tanto buenos como malos, donde se puede apreciar un arbol de decisiones el cual dividio esta enfermedad en tres diferentes secciones, las cuales retomare mas adelante

Tema por ver: Cáncer de mama

El cáncer de mama es una enfermedad en la cual las células de la mama se multiplican sin control. Existen distintos tipos de cáncer de mama. El tipo de cáncer de mama depende de qué células de la mama se vuelven cancerosas. El cáncer de mama puede comenzar en distintas partes de la mama donde como parte de la actividad presentaré a continuación.

Importar la base de datos

#file.choose()
base_de_datos <- read.csv("/Users/emilioolvera/Downloads/cancer_de_mama.csv")

Entender base de datos

summary(base_de_datos)
##   diagnosis          radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave.points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave.points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave.points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750

Entender la base de datos

library(rpart)
arbol <- rpart(formula =diagnosis ~ ., data = base_de_datos)
arbol
## n= 569 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 569 212 B (0.62741652 0.37258348)  
##    2) radius_worst< 16.795 379  33 B (0.91292876 0.08707124)  
##      4) concave.points_worst< 0.1358 333   5 B (0.98498498 0.01501502) *
##      5) concave.points_worst>=0.1358 46  18 M (0.39130435 0.60869565)  
##       10) texture_worst< 25.67 19   4 B (0.78947368 0.21052632) *
##       11) texture_worst>=25.67 27   3 M (0.11111111 0.88888889) *
##    3) radius_worst>=16.795 190  11 M (0.05789474 0.94210526) *

Después de ver la base de datos me di cuenta de que a menudo los valores más grandes sugieren una mayor probabilidad de malignidad. Estas son las características que obtuve y que daré a conocer dentro de mi análisis:

Radio: Esta característica muestra la longitud de los segmentos de línea radial que definen el centroide y otros lugares que se promedian para obtener el radio de cada núcleo individual.

Textura: la variación de intensidad de la escala de grises en los píxeles digitalizados de la muestra se utiliza para determinar la textura del núcleo celular.

Concavidad: Se logra contando y clasificando las muescas o concavidades en el núcleo de una célula. Crean puntos no adyacentes en la serpiente y evalúan cuánto encaja el límite del núcleo real dentro de cada línea.

Puntos cóncavos: esta característica es comparable a Concavidad, pero solo cuenta el número de concavidades de contorno en lugar de su tamaño.

Instalación de paquetes para el plot y algunas gráficas

#install.packages("rpart.plot")
library(rpart.plot)

rpart.plot(arbol)

prp(arbol,extra=7, prefix="fraccion\n")

#install.packages("ggplot")
library("ggplot2")

library("tidyverse")
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.0      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ✔ purrr   0.3.4      
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()

Graficamos lo que es la diagnosis

ggplot(data=base_de_datos, mapping = aes(radius_worst, concave.points_worst))+geom_point(aes(color=diagnosis ))+theme_bw()

Conclusión

Según el primer árbol hay 37 % de posibilidades de que una célula sea maligna y un 67 % de que sea buena si su peor radio es inferior a 17. Sin embargo, dentro de ese 67 % de radio bueno, también existe la posibilidad de que el peor punto de concavidad del núcleo celular es bueno, con una probabilidad del 59%; sin embargo, si este peor punto de concavidad es inferior a 0.14, existe un 8% de probabilidad de que el núcleo celular sea maligno. Finalmente, el 33% de probabilidad de que el radio sea maligno mostrará que al examinar su peor textura del núcleo celular, hay un 3% de probabilidad de que sea bueno si es menor de 26, pero un 33% de probabilidad de que sea maligno. si es mayor de 26. Se entiende que la probabilidad de que la célula sea buena frente a maligna es mayor. Mientras la célula se mantenga en un cierto margen de tamaño conforme a las carácterísticas que tiene que llevar, la probabilidad de voverse maligna será baja mientras que si va aumentando de tamaño con el tiempo, la probabilidad de que sea maligna se acercara más.