En este ejercicio se analizo una base de datos de pacientes con cáncer de mama donde se tuvo que dar una comparacion en cuanto a lo fueron los diagnosticos tanto buenos como malos, donde se puede apreciar un arbol de decisiones el cual dividio esta enfermedad en tres diferentes secciones, las cuales retomare mas adelante
El cáncer de mama es una enfermedad en la cual las células de la mama se multiplican sin control. Existen distintos tipos de cáncer de mama. El tipo de cáncer de mama depende de qué células de la mama se vuelven cancerosas. El cáncer de mama puede comenzar en distintas partes de la mama donde como parte de la actividad presentaré a continuación.
#file.choose()
base_de_datos <- read.csv("/Users/emilioolvera/Downloads/cancer_de_mama.csv")
summary(base_de_datos)
## diagnosis radius_mean texture_mean perimeter_mean
## Length:569 Min. : 6.981 Min. : 9.71 Min. : 43.79
## Class :character 1st Qu.:11.700 1st Qu.:16.17 1st Qu.: 75.17
## Mode :character Median :13.370 Median :18.84 Median : 86.24
## Mean :14.127 Mean :19.29 Mean : 91.97
## 3rd Qu.:15.780 3rd Qu.:21.80 3rd Qu.:104.10
## Max. :28.110 Max. :39.28 Max. :188.50
## area_mean smoothness_mean compactness_mean concavity_mean
## Min. : 143.5 Min. :0.05263 Min. :0.01938 Min. :0.00000
## 1st Qu.: 420.3 1st Qu.:0.08637 1st Qu.:0.06492 1st Qu.:0.02956
## Median : 551.1 Median :0.09587 Median :0.09263 Median :0.06154
## Mean : 654.9 Mean :0.09636 Mean :0.10434 Mean :0.08880
## 3rd Qu.: 782.7 3rd Qu.:0.10530 3rd Qu.:0.13040 3rd Qu.:0.13070
## Max. :2501.0 Max. :0.16340 Max. :0.34540 Max. :0.42680
## concave.points_mean symmetry_mean fractal_dimension_mean radius_se
## Min. :0.00000 Min. :0.1060 Min. :0.04996 Min. :0.1115
## 1st Qu.:0.02031 1st Qu.:0.1619 1st Qu.:0.05770 1st Qu.:0.2324
## Median :0.03350 Median :0.1792 Median :0.06154 Median :0.3242
## Mean :0.04892 Mean :0.1812 Mean :0.06280 Mean :0.4052
## 3rd Qu.:0.07400 3rd Qu.:0.1957 3rd Qu.:0.06612 3rd Qu.:0.4789
## Max. :0.20120 Max. :0.3040 Max. :0.09744 Max. :2.8730
## texture_se perimeter_se area_se smoothness_se
## Min. :0.3602 Min. : 0.757 Min. : 6.802 Min. :0.001713
## 1st Qu.:0.8339 1st Qu.: 1.606 1st Qu.: 17.850 1st Qu.:0.005169
## Median :1.1080 Median : 2.287 Median : 24.530 Median :0.006380
## Mean :1.2169 Mean : 2.866 Mean : 40.337 Mean :0.007041
## 3rd Qu.:1.4740 3rd Qu.: 3.357 3rd Qu.: 45.190 3rd Qu.:0.008146
## Max. :4.8850 Max. :21.980 Max. :542.200 Max. :0.031130
## compactness_se concavity_se concave.points_se symmetry_se
## Min. :0.002252 Min. :0.00000 Min. :0.000000 Min. :0.007882
## 1st Qu.:0.013080 1st Qu.:0.01509 1st Qu.:0.007638 1st Qu.:0.015160
## Median :0.020450 Median :0.02589 Median :0.010930 Median :0.018730
## Mean :0.025478 Mean :0.03189 Mean :0.011796 Mean :0.020542
## 3rd Qu.:0.032450 3rd Qu.:0.04205 3rd Qu.:0.014710 3rd Qu.:0.023480
## Max. :0.135400 Max. :0.39600 Max. :0.052790 Max. :0.078950
## fractal_dimension_se radius_worst texture_worst perimeter_worst
## Min. :0.0008948 Min. : 7.93 Min. :12.02 Min. : 50.41
## 1st Qu.:0.0022480 1st Qu.:13.01 1st Qu.:21.08 1st Qu.: 84.11
## Median :0.0031870 Median :14.97 Median :25.41 Median : 97.66
## Mean :0.0037949 Mean :16.27 Mean :25.68 Mean :107.26
## 3rd Qu.:0.0045580 3rd Qu.:18.79 3rd Qu.:29.72 3rd Qu.:125.40
## Max. :0.0298400 Max. :36.04 Max. :49.54 Max. :251.20
## area_worst smoothness_worst compactness_worst concavity_worst
## Min. : 185.2 Min. :0.07117 Min. :0.02729 Min. :0.0000
## 1st Qu.: 515.3 1st Qu.:0.11660 1st Qu.:0.14720 1st Qu.:0.1145
## Median : 686.5 Median :0.13130 Median :0.21190 Median :0.2267
## Mean : 880.6 Mean :0.13237 Mean :0.25427 Mean :0.2722
## 3rd Qu.:1084.0 3rd Qu.:0.14600 3rd Qu.:0.33910 3rd Qu.:0.3829
## Max. :4254.0 Max. :0.22260 Max. :1.05800 Max. :1.2520
## concave.points_worst symmetry_worst fractal_dimension_worst
## Min. :0.00000 Min. :0.1565 Min. :0.05504
## 1st Qu.:0.06493 1st Qu.:0.2504 1st Qu.:0.07146
## Median :0.09993 Median :0.2822 Median :0.08004
## Mean :0.11461 Mean :0.2901 Mean :0.08395
## 3rd Qu.:0.16140 3rd Qu.:0.3179 3rd Qu.:0.09208
## Max. :0.29100 Max. :0.6638 Max. :0.20750
library(rpart)
arbol <- rpart(formula =diagnosis ~ ., data = base_de_datos)
arbol
## n= 569
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 569 212 B (0.62741652 0.37258348)
## 2) radius_worst< 16.795 379 33 B (0.91292876 0.08707124)
## 4) concave.points_worst< 0.1358 333 5 B (0.98498498 0.01501502) *
## 5) concave.points_worst>=0.1358 46 18 M (0.39130435 0.60869565)
## 10) texture_worst< 25.67 19 4 B (0.78947368 0.21052632) *
## 11) texture_worst>=25.67 27 3 M (0.11111111 0.88888889) *
## 3) radius_worst>=16.795 190 11 M (0.05789474 0.94210526) *
Después de ver la base de datos me di cuenta de que a menudo los valores más grandes sugieren una mayor probabilidad de malignidad. Estas son las características que obtuve y que daré a conocer dentro de mi análisis:
Radio: Esta característica muestra la longitud de los segmentos de línea radial que definen el centroide y otros lugares que se promedian para obtener el radio de cada núcleo individual.
Textura: la variación de intensidad de la escala de grises en los píxeles digitalizados de la muestra se utiliza para determinar la textura del núcleo celular.
Concavidad: Se logra contando y clasificando las muescas o concavidades en el núcleo de una célula. Crean puntos no adyacentes en la serpiente y evalúan cuánto encaja el límite del núcleo real dentro de cada línea.
Puntos cóncavos: esta característica es comparable a Concavidad, pero solo cuenta el número de concavidades de contorno en lugar de su tamaño.
#install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(arbol)
prp(arbol,extra=7, prefix="fraccion\n")
#install.packages("ggplot")
library("ggplot2")
library("tidyverse")
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.0 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ✔ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
ggplot(data=base_de_datos, mapping = aes(radius_worst, concave.points_worst))+geom_point(aes(color=diagnosis ))+theme_bw()
Según el primer árbol hay 37 % de posibilidades de que una célula sea maligna y un 67 % de que sea buena si su peor radio es inferior a 17. Sin embargo, dentro de ese 67 % de radio bueno, también existe la posibilidad de que el peor punto de concavidad del núcleo celular es bueno, con una probabilidad del 59%; sin embargo, si este peor punto de concavidad es inferior a 0.14, existe un 8% de probabilidad de que el núcleo celular sea maligno. Finalmente, el 33% de probabilidad de que el radio sea maligno mostrará que al examinar su peor textura del núcleo celular, hay un 3% de probabilidad de que sea bueno si es menor de 26, pero un 33% de probabilidad de que sea maligno. si es mayor de 26. Se entiende que la probabilidad de que la célula sea buena frente a maligna es mayor. Mientras la célula se mantenga en un cierto margen de tamaño conforme a las carácterísticas que tiene que llevar, la probabilidad de voverse maligna será baja mientras que si va aumentando de tamaño con el tiempo, la probabilidad de que sea maligna se acercara más.