R Notebook: Provides reproducible analysis for Soil Chemistry data in the following manuscript:
Citation: Romanowicz KJ and Kling GW. (In Press) Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra. Environmental Microbiology. https://doi.org/10.1111/1462-2920.16218
GitHub Repository: https://github.com/kromanowicz/2022-Annual-Thaw-Microbes
NCBI BioProject: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA794857
Accepted for Publication: 22 September 2022 Environmental Microbiology
This R Notebook provides complete reproducibility of the data analysis presented in “Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra” by Romanowicz and Kling.
This pipeline processes soil chemistry data related to the soil samples from which 16S rRNA gene sequences were generated using the Illumina MiSeq platform.
# Make a vector of required packages
required.packages <- c("corrr","data.table","devtools","dplyr","forcats","ggalluvial","ggdendro","ggplot2","ggpubr","grid","gridExtra","knitr","magrittr","microeco","patchwork","pheatmap","pvclust","qiime2R","RColorBrewer","tidyr","UpSetR","vegan")
# Load required packages
lapply(required.packages, library, character.only = TRUE)
Import the metadata metrics
# Load in the environmental metadata (qualitative and quantitative data)
asv.env <- read.csv("QIIME/R_Data/metadata.csv")
# Convert first column to row names
rownames(asv.env)<-asv.env[,1]
asv.env<-asv.env[,-1]
# Make dataframe
asv.env <- as.data.frame(asv.env)
chem.plot<-asv.env
chem.plot$Increment<-factor(chem.plot$Increment, levels = c("90-100","80-90","70-80","60-70","50-60","40-50","30-40","20-30","10-20","0-10"))
pH.plot<-ggplot(data=chem.plot, aes(x=Increment, y=pH, group=site_tundra)) + geom_line(aes(linetype=site_tundra)) + geom_point(size=5, aes(shape=Tundra, fill=Site)) + scale_shape_manual("Tundra", values=c(21,24)) + coord_flip() + xlab("Soil Depth (cm)") + ylab("Soil pH") + theme_minimal() + theme(axis.line = element_line(colour = 'black', size = 1), axis.ticks = element_line(colour = "black", size = 2), axis.text.x = element_text(size = 14), axis.text.y = element_text(size = 14), panel.background = element_blank(), axis.title.x = element_text(size = 16), axis.title.y = element_text(size = 16), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.position = "none") + scale_y_continuous(expand = c(0, 0), limits = c(4.0, 7.1), position = "right") + guides(linetype = FALSE)
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> = "none")` instead.
pH.plot
# Save as .png width=400, height=650 ("chem.pH.png")
chem.plot$Increment<-factor(chem.plot$Increment, levels = c("90-100","80-90","70-80","60-70","50-60","40-50","30-40","20-30","10-20","0-10"))
EC.plot<-ggplot(data=chem.plot, aes(x=Increment, y=EC, group=site_tundra)) + geom_line(aes(linetype=site_tundra)) + geom_point(size=5, aes(shape=Tundra, fill=Site)) + scale_shape_manual("Tundra", values=c(21,24)) + coord_flip() + xlab("Soil Depth (cm)") + ylab("EC (uS/cm)") + theme_minimal() + theme(axis.line = element_line(colour = 'black', size = 1), axis.ticks = element_line(colour = "black", size = 2), axis.text.x = element_text(size = 14), axis.text.y = element_blank(), panel.background = element_blank(), axis.title.x = element_text(size = 16), axis.title.y = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.position = "none") + scale_y_continuous(expand = c(0, 0), limits = c(0, 205), position = "right")
EC.plot
# Save as .png width=350, height=650 ("chem.EC.png")
chem.plot$Increment<-factor(chem.plot$Increment, levels = c("90-100","80-90","70-80","60-70","50-60","40-50","30-40","20-30","10-20","0-10"))
GWC.plot<-ggplot(data=chem.plot, aes(x=Increment, y=GWC, group=site_tundra)) + geom_line(aes(linetype=site_tundra)) + geom_point(size=5, aes(shape=Tundra, fill=Site)) + scale_shape_manual("Tundra", values=c(21,24)) + coord_flip() + xlab("Soil Depth (cm)") + ylab("GWC (%)") + theme_minimal() + theme(axis.line = element_line(colour = 'black', size = 1), axis.ticks = element_line(colour = "black", size = 2), axis.text.x = element_text(size = 14), axis.text.y = element_blank(), panel.background = element_blank(), axis.title.x = element_text(size = 16), axis.title.y = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.position = "none") + scale_y_continuous(expand = c(0, 0), limits = c(0, 105), position = "right")
GWC.plot
# Save as .png width=350, height=650 ("chem.GWC.png")
chem.plot$Increment<-factor(chem.plot$Increment, levels = c("90-100","80-90","70-80","60-70","50-60","40-50","30-40","20-30","10-20","0-10"))
OC.plot<-ggplot(data=chem.plot, aes(x=Increment, y=OC, group=site_tundra)) + geom_line(aes(linetype=site_tundra)) + geom_point(size=5, aes(shape=Tundra, fill=Site)) + scale_shape_manual("Tundra", values=c(21,24)) + coord_flip() + xlab("Soil Depth (cm)") + ylab("OC (%)") + theme_minimal() + theme(axis.line = element_line(colour = 'black', size = 1), axis.ticks = element_line(colour = "black", size = 2), axis.text.x = element_text(size = 14), axis.text.y = element_blank(), panel.background = element_blank(), axis.title.x = element_text(size = 16), axis.title.y = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.text = element_text(size=14), legend.title = element_text(size=16)) + scale_y_continuous(expand = c(0, 0), limits = c(0, 52), position = "right") + guides(linetype = FALSE)
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> = "none")` instead.
OC.plot
# Save as .png width=450, height=650 ("chem.OC.png")
Save the soil chemistry plots together
soil.chem.plot <- (pH.plot | EC.plot | GWC.plot | OC.plot) + plot_annotation(tag_levels = "A")
soil.chem.plot
# Save as .eps image (width = 1000, height = 500; "soil.chem.eps")
Statistics on Environmental Differences Across Sites
#Create matrix of numeric columns
env.bind.mat<-as.matrix(cbind(asv.env[,8:12]))
# MANOVA
env.manova<-manova(env.bind.mat~site_tundra, data=asv.env)
env.man.sum<-summary.aov(env.manova)
env.man.sum
Response pH :
Df Sum Sq Mean Sq F value Pr(>F)
site_tundra 5 14.7356 2.94712 21.959 4.521e-11 ***
Residuals 45 6.0396 0.13421
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response EC :
Df Sum Sq Mean Sq F value Pr(>F)
site_tundra 5 28901 5780.2 4.3622 0.002538 **
Residuals 45 59628 1325.1
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response GWC :
Df Sum Sq Mean Sq F value Pr(>F)
site_tundra 5 11724 2344.80 9.5988 2.765e-06 ***
Residuals 45 10993 244.28
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response OM :
Df Sum Sq Mean Sq F value Pr(>F)
site_tundra 5 22945 4589.0 12.941 8.072e-08 ***
Residuals 45 15957 354.6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response OC :
Df Sum Sq Mean Sq F value Pr(>F)
site_tundra 5 4599.6 919.91 15.71 6.187e-09 ***
Residuals 45 2635.1 58.56
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Run individual ANOVA on environmental factors with significant site differences to get at Post-hoc analysis
# pH ANOVA with Post-Hoc for Site Differences
env.pH<-aov(pH~Site*Tundra, data=asv.env)
TukeyHSD(env.pH)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = pH ~ Site * Tundra, data = asv.env)
$Site
diff lwr upr p adj
Sagwon-Imnavait 1.1269853 0.81771910 1.4362515 0.0000000
Toolik-Imnavait 0.2732353 -0.02704943 0.5735200 0.0811416
Toolik-Sagwon -0.8537500 -1.15882256 -0.5486774 0.0000001
$Tundra
diff lwr upr p adj
WS-MAT -0.2521673 -0.4588512 -0.04548337 0.0179161
$`Site:Tundra`
diff lwr upr p adj
Sagwon:MAT-Imnavait:MAT 0.95285714 0.4034225 1.50229179 0.0000754
Toolik:MAT-Imnavait:MAT -0.29380952 -0.8432442 0.25562512 0.6083047
Imnavait:WS-Imnavait:MAT -0.67214286 -1.2094242 -0.13486151 0.0067958
Sagwon:WS-Imnavait:MAT 0.44714286 -0.1356206 1.02990631 0.2221141
Toolik:WS-Imnavait:MAT 0.04952381 -0.4999108 0.59895846 0.9997983
Toolik:MAT-Sagwon:MAT -1.24666667 -1.7606157 -0.73271761 0.0000001
Imnavait:WS-Sagwon:MAT -1.62500000 -2.1259356 -1.12406443 0.0000000
Sagwon:WS-Sagwon:MAT -0.50571429 -1.0551489 0.04372036 0.0871509
Toolik:WS-Sagwon:MAT -0.90333333 -1.4172824 -0.38938428 0.0000599
Imnavait:WS-Toolik:MAT -0.37833333 -0.8792689 0.12260224 0.2370564
Sagwon:WS-Toolik:MAT 0.74095238 0.1915177 1.29038703 0.0028931
Toolik:WS-Toolik:MAT 0.34333333 -0.1706157 0.85728239 0.3650193
Sagwon:WS-Imnavait:WS 1.11928571 0.5820044 1.65656707 0.0000023
Toolik:WS-Imnavait:WS 0.72166667 0.2207311 1.22260224 0.0012536
Toolik:WS-Sagwon:WS -0.39761905 -0.9470537 0.15181560 0.2794650
# EC ANOVA with Post-Hoc for Site Differences
env.EC<-aov(EC~Site*Tundra, data=asv.env)
TukeyHSD(env.EC)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = EC ~ Site * Tundra, data = asv.env)
$Site
diff lwr upr p adj
Sagwon-Imnavait 48.040074 17.31060 78.76954 0.0012762
Toolik-Imnavait 2.108824 -27.72823 31.94587 0.9839596
Toolik-Sagwon -45.931250 -76.24403 -15.61847 0.0018069
$Tundra
diff lwr upr p adj
WS-MAT -13.84301 -34.37965 6.693628 0.1813492
$`Site:Tundra`
diff lwr upr p adj
Sagwon:MAT-Imnavait:MAT 62.4365079 7.843293 117.029723 0.0166027
Toolik:MAT-Imnavait:MAT 8.5809524 -46.012263 63.174167 0.9970249
Imnavait:WS-Imnavait:MAT 0.7742857 -52.611347 54.159919 1.0000000
Sagwon:WS-Imnavait:MAT 30.5714286 -27.333420 88.476277 0.6211644
Toolik:WS-Imnavait:MAT -3.4523810 -58.045596 51.140834 0.9999649
Toolik:MAT-Sagwon:MAT -53.8555556 -104.922832 -2.788279 0.0333490
Imnavait:WS-Sagwon:MAT -61.6622222 -111.436446 -11.887998 0.0075396
Sagwon:WS-Sagwon:MAT -31.8650794 -86.458294 22.728136 0.5154641
Toolik:WS-Sagwon:MAT -65.8888889 -116.956165 -14.821612 0.0048420
Imnavait:WS-Toolik:MAT -7.8066667 -57.580891 41.967558 0.9970551
Sagwon:WS-Toolik:MAT 21.9904762 -32.602739 76.583691 0.8351243
Toolik:WS-Toolik:MAT -12.0333333 -63.100610 39.033943 0.9808473
Sagwon:WS-Imnavait:WS 29.7971429 -23.588490 83.182776 0.5638103
Toolik:WS-Imnavait:WS -4.2266667 -54.000891 45.547558 0.9998495
Toolik:WS-Sagwon:WS -34.0238095 -88.617025 20.569405 0.4425236
# GWC ANOVA with Post-Hoc for Site Differences
env.GWC<-aov(GWC~Site*Tundra, data=asv.env)
TukeyHSD(env.GWC)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = GWC ~ Site * Tundra, data = asv.env)
$Site
diff lwr upr p adj
Sagwon-Imnavait 1.203432 -11.990711 14.39757 0.9734369
Toolik-Imnavait 7.346686 -5.464283 20.15765 0.3546789
Toolik-Sagwon 6.143254 -6.871977 19.15848 0.4925096
$Tundra
diff lwr upr p adj
WS-MAT 28.94202 20.12432 37.75972 0
$`Site:Tundra`
diff lwr upr p adj
Sagwon:MAT-Imnavait:MAT 7.3913179 -16.0490695 30.83171 0.9342732
Toolik:MAT-Imnavait:MAT 16.2975075 -7.1428798 39.73789 0.3214960
Imnavait:WS-Imnavait:MAT 34.3479734 11.4260789 57.26987 0.0007318
Sagwon:WS-Imnavait:MAT 39.4297275 14.5674422 64.29201 0.0003192
Toolik:WS-Imnavait:MAT 38.8052440 15.3648566 62.24563 0.0001631
Toolik:MAT-Sagwon:MAT 8.9061897 -13.0202850 30.83266 0.8302900
Imnavait:WS-Sagwon:MAT 26.9566555 5.5853716 48.32794 0.0062186
Sagwon:WS-Sagwon:MAT 32.0384096 8.5980222 55.47880 0.0024569
Toolik:WS-Sagwon:MAT 31.4139261 9.4874515 53.34040 0.0013488
Imnavait:WS-Toolik:MAT 18.0504658 -3.3208181 39.42175 0.1418070
Sagwon:WS-Toolik:MAT 23.1322200 -0.3081674 46.57261 0.0549681
Toolik:WS-Toolik:MAT 22.5077364 0.5812618 44.43421 0.0411684
Sagwon:WS-Imnavait:WS 5.0817541 -17.8401403 28.00365 0.9854035
Toolik:WS-Imnavait:WS 4.4572706 -16.9140133 25.82855 0.9889215
Toolik:WS-Sagwon:WS -0.6244835 -24.0648709 22.81590 0.9999995
# OM ANOVA with Post-Hoc for Site Differences
env.OM<-aov(OM~Site*Tundra, data=asv.env)
TukeyHSD(env.OM)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = OM ~ Site * Tundra, data = asv.env)
$Site
diff lwr upr p adj
Sagwon-Imnavait 4.8052099 -11.09141 20.70183 0.7455468
Toolik-Imnavait 4.0444377 -11.39052 19.47940 0.8016619
Toolik-Sagwon -0.7607722 -16.44183 14.92029 0.9924080
$Tundra
diff lwr upr p adj
WS-MAT 40.37454 29.75077 50.99832 0
$`Site:Tundra`
diff lwr upr p adj
Sagwon:MAT-Imnavait:MAT -0.4904492 -28.7319864 27.75109 0.9999999
Toolik:MAT-Imnavait:MAT 7.7258999 -20.5156373 35.96744 0.9634286
Imnavait:WS-Imnavait:MAT 34.0033835 6.3865389 61.62023 0.0080412
Sagwon:WS-Imnavait:MAT 57.3327492 27.3780756 87.28742 0.0000126
Toolik:WS-Imnavait:MAT 40.3669560 12.1254188 68.60849 0.0013909
Toolik:MAT-Sagwon:MAT 8.2163491 -18.2011899 34.63389 0.9378073
Imnavait:WS-Sagwon:MAT 34.4938327 8.7452006 60.24246 0.0031331
Sagwon:WS-Sagwon:MAT 57.8231984 29.5816613 86.06474 0.0000033
Toolik:WS-Sagwon:MAT 40.8574052 14.4398661 67.27494 0.0004646
Imnavait:WS-Toolik:MAT 26.2774836 0.5288515 52.02612 0.0430269
Sagwon:WS-Toolik:MAT 49.6068493 21.3653122 77.84839 0.0000606
Toolik:WS-Toolik:MAT 32.6410561 6.2235170 59.05860 0.0077512
Sagwon:WS-Imnavait:WS 23.3293658 -4.2874788 50.94621 0.1416870
Toolik:WS-Imnavait:WS 6.3635725 -19.3850595 32.11220 0.9763816
Toolik:WS-Sagwon:WS -16.9657933 -45.2073304 11.27574 0.4836118
# OC ANOVA with Post-Hoc for Site Differences
env.OC<-aov(OC~Site*Tundra, data=asv.env)
TukeyHSD(env.OC)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = OC ~ Site * Tundra, data = asv.env)
$Site
diff lwr upr p adj
Sagwon-Imnavait -0.02693466 -6.486824 6.432954 0.9999437
Toolik-Imnavait -0.22250958 -6.494796 6.049776 0.9959332
Toolik-Sagwon -0.19557492 -6.567868 6.176718 0.9969544
$Tundra
diff lwr upr p adj
WS-MAT 18.28222 13.96504 22.59939 0
$`Site:Tundra`
diff lwr upr p adj
Sagwon:MAT-Imnavait:MAT -2.7665803 -14.243059 8.709899 0.9788234
Toolik:MAT-Imnavait:MAT -0.2301445 -11.706623 11.246334 0.9999999
Imnavait:WS-Imnavait:MAT 14.1632508 2.940628 25.385874 0.0061824
Sagwon:WS-Imnavait:MAT 22.5384932 10.365849 34.711137 0.0000236
Toolik:WS-Imnavait:MAT 16.4477734 4.971295 27.924252 0.0013429
Toolik:MAT-Sagwon:MAT 2.5364358 -8.198827 13.271699 0.9806182
Imnavait:WS-Sagwon:MAT 16.9298311 6.466391 27.393271 0.0002345
Sagwon:WS-Sagwon:MAT 25.3050734 13.828595 36.781552 0.0000007
Toolik:WS-Sagwon:MAT 19.2143536 8.479091 29.949617 0.0000436
Imnavait:WS-Toolik:MAT 14.3933953 3.929955 24.856835 0.0022699
Sagwon:WS-Toolik:MAT 22.7686377 11.292159 34.245116 0.0000062
Toolik:WS-Toolik:MAT 16.6779179 5.942655 27.413181 0.0004348
Sagwon:WS-Imnavait:WS 8.3752423 -2.847381 19.597866 0.2486409
Toolik:WS-Imnavait:WS 2.2845225 -8.178917 12.747963 0.9863730
Toolik:WS-Sagwon:WS -6.0907198 -17.567199 5.385759 0.6159537
Statistics on Environmental Differences by Soil Type (Org vs. Min)
# MANOVA by Soil Type
env.manova.2<-manova(env.bind.mat~Soil, data=asv.env)
env.man.sum.2<-summary.aov(env.manova.2)
env.man.sum.2
Response pH :
Df Sum Sq Mean Sq F value Pr(>F)
Soil 1 1.8816 1.88163 4.88 0.03188 *
Residuals 49 18.8935 0.38558
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response EC :
Df Sum Sq Mean Sq F value Pr(>F)
Soil 1 4179 4178.8 2.4275 0.1257
Residuals 49 84350 1721.4
Response GWC :
Df Sum Sq Mean Sq F value Pr(>F)
Soil 1 11690 11690 51.945 3.169e-09 ***
Residuals 49 11027 225
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response OM :
Df Sum Sq Mean Sq F value Pr(>F)
Soil 1 23705 23705.3 76.434 1.43e-11 ***
Residuals 49 15197 310.1
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response OC :
Df Sum Sq Mean Sq F value Pr(>F)
Soil 1 4616.8 4616.8 86.414 2.145e-12 ***
Residuals 49 2617.9 53.4
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
The session information is provided for full reproducibility.
devtools::session_info()
─ Session info ────────────────────────────────────────────────────────────────────
setting value
version R version 4.2.1 (2022-06-23)
os macOS Monterey 12.6
system x86_64, darwin17.0
ui RStudio
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/Los_Angeles
date 2022-09-22
rstudio 2022.07.1+554 Spotted Wakerobin (desktop)
pandoc 2.18 @ /Applications/RStudio.app/Contents/MacOS/quarto/bin/tools/ (via rmarkdown)
─ Packages ────────────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
abind 1.4-5 2016-07-21 [1] CRAN (R 4.2.0)
ade4 1.7-19 2022-04-19 [1] CRAN (R 4.2.0)
agricolae * 1.3-5 2021-06-06 [1] CRAN (R 4.2.0)
AlgDesign 1.2.1 2022-05-25 [1] CRAN (R 4.2.0)
ape 5.6-2 2022-03-02 [1] CRAN (R 4.2.0)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.2.0)
Biobase 2.56.0 2022-04-26 [1] Bioconductor
BiocGenerics 0.42.0 2022-04-26 [1] Bioconductor
biomformat 1.24.0 2022-04-26 [1] Bioconductor
Biostrings 2.64.1 2022-08-18 [1] Bioconductor
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.2.0)
broom 1.0.0 2022-07-01 [1] CRAN (R 4.2.0)
bslib 0.4.0 2022-07-16 [1] CRAN (R 4.2.0)
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.2.0)
callr 3.7.2 2022-08-22 [1] CRAN (R 4.2.0)
car 3.1-0 2022-06-15 [1] CRAN (R 4.2.0)
carData 3.0-5 2022-01-06 [1] CRAN (R 4.2.0)
checkmate 2.1.0 2022-04-21 [1] CRAN (R 4.2.0)
cli 3.3.0 2022-04-25 [1] CRAN (R 4.2.0)
cluster 2.1.3 2022-03-28 [1] CRAN (R 4.2.1)
codetools 0.2-18 2020-11-04 [1] CRAN (R 4.2.1)
colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
combinat 0.0-8 2012-10-29 [1] CRAN (R 4.2.0)
corrr * 0.4.4 2022-08-16 [1] CRAN (R 4.2.0)
crayon 1.5.1 2022-03-26 [1] CRAN (R 4.2.0)
data.table * 1.14.2 2021-09-27 [1] CRAN (R 4.2.0)
deldir 1.0-6 2021-10-23 [1] CRAN (R 4.2.0)
devtools * 2.4.4 2022-07-20 [1] CRAN (R 4.2.0)
digest 0.6.29 2021-12-01 [1] CRAN (R 4.2.0)
dplyr * 1.0.9 2022-04-28 [1] CRAN (R 4.2.0)
DT 0.24 2022-08-09 [1] CRAN (R 4.2.0)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
evaluate 0.16 2022-08-09 [1] CRAN (R 4.2.0)
fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
farver 2.1.1 2022-07-06 [1] CRAN (R 4.2.0)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
forcats * 0.5.2 2022-08-19 [1] CRAN (R 4.2.0)
foreach 1.5.2 2022-02-02 [1] CRAN (R 4.2.0)
foreign 0.8-82 2022-01-16 [1] CRAN (R 4.2.1)
Formula 1.2-4 2020-10-16 [1] CRAN (R 4.2.0)
fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
GenomeInfoDb 1.32.3 2022-08-09 [1] Bioconductor
GenomeInfoDbData 1.2.8 2022-08-29 [1] Bioconductor
ggalluvial * 0.12.3 2020-12-05 [1] CRAN (R 4.2.0)
ggdendro * 0.1.23 2022-02-16 [1] CRAN (R 4.2.0)
ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.2.0)
ggpubr * 0.4.0 2020-06-27 [1] CRAN (R 4.2.0)
ggsignif 0.6.3 2021-09-09 [1] CRAN (R 4.2.0)
glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
gridExtra * 2.3 2017-09-09 [1] CRAN (R 4.2.0)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.2.0)
haven 2.5.1 2022-08-22 [1] CRAN (R 4.2.0)
highr 0.9 2021-04-16 [1] CRAN (R 4.2.0)
Hmisc 4.7-1 2022-08-15 [1] CRAN (R 4.2.0)
hms 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
htmlTable 2.4.1 2022-07-07 [1] CRAN (R 4.2.0)
htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.0)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.2.0)
httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.2.0)
igraph 1.3.4 2022-07-19 [1] CRAN (R 4.2.0)
interp 1.1-3 2022-07-13 [1] CRAN (R 4.2.0)
IRanges 2.30.1 2022-08-18 [1] Bioconductor
iterators 1.0.14 2022-02-05 [1] CRAN (R 4.2.0)
jpeg 0.1-9 2021-07-24 [1] CRAN (R 4.2.0)
jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.2.0)
jsonlite 1.8.0 2022-02-22 [1] CRAN (R 4.2.0)
klaR 1.7-1 2022-06-27 [1] CRAN (R 4.2.0)
knitr * 1.40 2022-08-24 [1] CRAN (R 4.2.0)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.2.0)
labelled 2.9.1 2022-05-05 [1] CRAN (R 4.2.0)
later 1.3.0 2021-08-18 [1] CRAN (R 4.2.0)
lattice * 0.20-45 2021-09-22 [1] CRAN (R 4.2.1)
latticeExtra 0.6-30 2022-07-04 [1] CRAN (R 4.2.0)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.2.0)
magrittr * 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
MASS 7.3-57 2022-04-22 [1] CRAN (R 4.2.1)
Matrix 1.4-1 2022-03-23 [1] CRAN (R 4.2.1)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.0)
mgcv 1.8-40 2022-03-29 [1] CRAN (R 4.2.1)
microeco * 0.11.0 2022-06-22 [1] CRAN (R 4.2.0)
mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.2.0)
multtest 2.52.0 2022-04-26 [1] Bioconductor
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
NADA 1.6-1.1 2020-03-22 [1] CRAN (R 4.2.0)
nlme 3.1-157 2022-03-25 [1] CRAN (R 4.2.1)
nnet 7.3-17 2022-01-16 [1] CRAN (R 4.2.1)
patchwork * 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
permute * 0.9-7 2022-01-27 [1] CRAN (R 4.2.0)
pheatmap * 1.0.12 2019-01-04 [1] CRAN (R 4.2.0)
phyloseq 1.40.0 2022-04-26 [1] Bioconductor
pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.0)
pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.2.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
pkgload 1.3.0 2022-06-27 [1] CRAN (R 4.2.0)
plyr 1.8.7 2022-03-24 [1] CRAN (R 4.2.0)
png 0.1-7 2013-12-03 [1] CRAN (R 4.2.0)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.0)
processx 3.7.0 2022-07-07 [1] CRAN (R 4.2.0)
profvis 0.3.7 2020-11-02 [1] CRAN (R 4.2.0)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.0)
ps 1.7.1 2022-06-18 [1] CRAN (R 4.2.0)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.2.0)
pvclust * 2.2-0 2019-11-19 [1] CRAN (R 4.2.0)
qiime2R * 0.99.6 2022-08-29 [1] Github (jbisanz/qiime2R@2a3cee1)
questionr 0.7.7 2022-01-31 [1] CRAN (R 4.2.0)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
RColorBrewer * 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)
Rcpp 1.0.9 2022-07-08 [1] CRAN (R 4.2.0)
RCurl 1.98-1.8 2022-07-30 [1] CRAN (R 4.2.0)
remotes 2.4.2 2021-11-30 [1] CRAN (R 4.2.0)
reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.2.0)
rhdf5 2.40.0 2022-04-26 [1] Bioconductor
rhdf5filters 1.8.0 2022-04-26 [1] Bioconductor
Rhdf5lib 1.18.2 2022-05-17 [1] Bioconductor
rlang 1.0.4 2022-07-12 [1] CRAN (R 4.2.0)
rmarkdown 2.16 2022-08-24 [1] CRAN (R 4.2.0)
rpart 4.1.16 2022-01-24 [1] CRAN (R 4.2.1)
rsconnect 0.8.27 2022-07-12 [1] CRAN (R 4.2.1)
rstatix 0.7.0 2021-02-13 [1] CRAN (R 4.2.0)
rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
S4Vectors 0.34.0 2022-04-26 [1] Bioconductor
sass 0.4.2 2022-07-16 [1] CRAN (R 4.2.0)
scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
shiny 1.7.2 2022-07-19 [1] CRAN (R 4.2.0)
stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.0)
stringr 1.4.1 2022-08-20 [1] CRAN (R 4.2.0)
survival 3.3-1 2022-03-03 [1] CRAN (R 4.2.1)
tibble 3.1.8 2022-07-22 [1] CRAN (R 4.2.0)
tidyr * 1.2.0 2022-02-01 [1] CRAN (R 4.2.0)
tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.2.0)
truncnorm 1.0-8 2018-02-27 [1] CRAN (R 4.2.0)
UpSetR * 1.4.0 2019-05-22 [1] CRAN (R 4.2.0)
urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.2.0)
usethis * 2.1.6 2022-05-25 [1] CRAN (R 4.2.0)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.2.0)
vegan * 2.6-2 2022-04-17 [1] CRAN (R 4.2.0)
withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
xfun 0.32 2022-08-10 [1] CRAN (R 4.2.0)
xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
XVector 0.36.0 2022-04-26 [1] Bioconductor
yaml 2.3.5 2022-02-21 [1] CRAN (R 4.2.0)
zCompositions 1.4.0-1 2022-03-26 [1] CRAN (R 4.2.0)
zlibbioc 1.42.0 2022-04-26 [1] Bioconductor
[1] /Library/Frameworks/R.framework/Versions/4.2/Resources/library
───────────────────────────────────────────────────────────────────────────────────