R Notebook: Provides reproducible analysis for Thaw Duration Correlation data in the following manuscript:
Citation: Romanowicz KJ and Kling GW. (In Press) Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra. Environmental Microbiology. https://doi.org/10.1111/1462-2920.16218
GitHub Repository: https://github.com/kromanowicz/2022-Annual-Thaw-Microbes
NCBI BioProject: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA794857
Accepted for Publication: 22 September 2022 Environmental Microbiology
This R Notebook provides complete reproducibility of the data analysis presented in “Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra” by Romanowicz and Kling.
This pipeline calculates correlations between the relative abundance of microbial taxa at the phylum-level with soil chemistry variables or annual thaw duration by soil depth.
# Make a vector of required packages
required.packages <- c("corrr","data.table","devtools","dplyr","forcats","ggalluvial","ggdendro","ggplot2","ggpubr","grid","gridExtra","knitr","magrittr","microeco","patchwork","pheatmap","pvclust","qiime2R","RColorBrewer","tidyr","UpSetR","vegan")
# Load required packages
lapply(required.packages, library, character.only = TRUE)
Correlation analysis uses non-parametric Spearman Rank Correlations to overcome the lack of normally distributed data. Examples of normality (or lack thereof) within the data are provided in the “Normality Check” section of this workbook.
TTT Thaw Probability Correlations – Soil Chemistry and Taxonomy
ttt.data.corr<-read.csv("QIIME/SILVA/R_Data/ttt.data.corr.csv")
# Convert first column to row names
rownames(ttt.data.corr)<-ttt.data.corr[,1]
ttt.data.corr<-ttt.data.corr[,-1]
“Thaw Days” as well as many taxa have non-normal distributions. Use Spearman’s correlation as a non-parametric statistical analysis to overcome lack of normality.
# Spearman Correlation Tests between Thaw Days and Taxonomy
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Acidobacteriota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Acidobacteriota
S = 11.928, p-value = 0.0009239
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.9006029
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Actinobacteriota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Actinobacteriota
S = 234.37, p-value = 7.043e-05
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.9530652
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Bacteroidota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Bacteroidota
S = 223.88, p-value = 0.002561
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.8656281
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Caldisericota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Caldisericota
S = 229.59, p-value = 0.0005811
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.9132515
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Chloroflexi, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Chloroflexi
S = 135.74, p-value = 0.7366
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.1311558
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Desulfobacterota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Desulfobacterota
S = 196.59, p-value = 0.06432
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.6382914
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Firmicutes, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Firmicutes
S = 225.97, p-value = 0.001601
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.8831155
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Gemmatimonadota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Gemmatimonadota
S = 114.75, p-value = 0.9111
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.04371859
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Myxococcota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Myxococcota
S = 21.371, p-value = 0.006563
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8219095
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Patescibacteria, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Patescibacteria
S = 165.12, p-value = 0.3186
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.3759799
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Planctomycetota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Planctomycetota
S = 7.7307, p-value = 0.0002097
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.9355778
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Verrucomicrobiota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Verrucomicrobiota
S = 8.7799, p-value = 0.0003246
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.9268341
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Alphaproteobacteria, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Alphaproteobacteria
S = 5.6322, p-value = 7.043e-05
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.9530652
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Gammaproteobacteria, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Gammaproteobacteria
S = 43.405, p-value = 0.06432
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.6382914
cor.test(ttt.data.corr$Thaw_Days, ttt.data.corr$Archaea, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$Thaw_Days and ttt.data.corr$Archaea
S = 231.22, p-value = 0.0003246
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.9268341
Use Spearman’s correlation for soil chemistry variables and taxa.
# Correlation Tests between pH and Taxonomy
cor.test(ttt.data.corr$pH, ttt.data.corr$Acidobacteriota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Acidobacteriota
S = 200.34, p-value = 0.04857
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.6694619
cor.test(ttt.data.corr$pH, ttt.data.corr$Actinobacteriota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Actinobacteriota
S = 25.606, p-value = 0.01191
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7866178
cor.test(ttt.data.corr$pH, ttt.data.corr$Bacteroidota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Bacteroidota
S = 4.5178, p-value = 3.286e-05
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.9623515
cor.test(ttt.data.corr$pH, ttt.data.corr$Caldisericota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Caldisericota
S = 29.799, p-value = 0.01951
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7516724
cor.test(ttt.data.corr$pH, ttt.data.corr$Chloroflexi, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Chloroflexi
S = 98.912, p-value = 0.6511
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1757338
cor.test(ttt.data.corr$pH, ttt.data.corr$Desulfobacterota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Desulfobacterota
S = 33.639, p-value = 0.02882
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7196716
cor.test(ttt.data.corr$pH, ttt.data.corr$Firmicutes, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Firmicutes
S = 37.656, p-value = 0.04124
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.6861985
cor.test(ttt.data.corr$pH, ttt.data.corr$Gemmatimonadota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Gemmatimonadota
S = 92.887, p-value = 0.5588
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2259434
cor.test(ttt.data.corr$pH, ttt.data.corr$Myxococcota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Myxococcota
S = 200.34, p-value = 0.04857
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.6694619
cor.test(ttt.data.corr$pH, ttt.data.corr$Patescibacteria, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Patescibacteria
S = 58.744, p-value = 0.1603
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.5104647
cor.test(ttt.data.corr$pH, ttt.data.corr$Planctomycetota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Planctomycetota
S = 207.36, p-value = 0.02615
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.7280398
cor.test(ttt.data.corr$pH, ttt.data.corr$Verrucomicrobiota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Verrucomicrobiota
S = 201.34, p-value = 0.04481
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.6778302
cor.test(ttt.data.corr$pH, ttt.data.corr$Alphaproteobacteria, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Alphaproteobacteria
S = 205.36, p-value = 0.03166
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.7113033
cor.test(ttt.data.corr$pH, ttt.data.corr$Gammaproteobacteria, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Gammaproteobacteria
S = 181.26, p-value = 0.1603
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.5104647
cor.test(ttt.data.corr$pH, ttt.data.corr$Archaea, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$pH and ttt.data.corr$Archaea
S = 22.593, p-value = 0.007889
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8117226
# Correlation Tests between EC and Taxonomy
cor.test(ttt.data.corr$EC, ttt.data.corr$Acidobacteriota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Acidobacteriota
S = 114, p-value = 0.9116
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.05
cor.test(ttt.data.corr$EC, ttt.data.corr$Actinobacteriota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Actinobacteriota
S = 122, p-value = 0.9816
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.01666667
cor.test(ttt.data.corr$EC, ttt.data.corr$Bacteroidota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Bacteroidota
S = 156, p-value = 0.4366
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.3
cor.test(ttt.data.corr$EC, ttt.data.corr$Caldisericota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Caldisericota
S = 91.799, p-value = 0.5427
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2350048
cor.test(ttt.data.corr$EC, ttt.data.corr$Chloroflexi, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Chloroflexi
S = 236, p-value = 0.0001653
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.9666667
cor.test(ttt.data.corr$EC, ttt.data.corr$Desulfobacterota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Desulfobacterota
S = 106, p-value = 0.7756
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1166667
cor.test(ttt.data.corr$EC, ttt.data.corr$Firmicutes, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Firmicutes
S = 104, p-value = 0.7435
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1333333
cor.test(ttt.data.corr$EC, ttt.data.corr$Gemmatimonadota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Gemmatimonadota
S = 210, p-value = 0.02549
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.75
cor.test(ttt.data.corr$EC, ttt.data.corr$Myxococcota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Myxococcota
S = 100, p-value = 0.6777
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1666667
cor.test(ttt.data.corr$EC, ttt.data.corr$Patescibacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Patescibacteria
S = 190, p-value = 0.108
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.5833333
cor.test(ttt.data.corr$EC, ttt.data.corr$Planctomycetota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Planctomycetota
S = 120, p-value = 1
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0
cor.test(ttt.data.corr$EC, ttt.data.corr$Verrucomicrobiota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Verrucomicrobiota
S = 110, p-value = 0.8432
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.08333333
cor.test(ttt.data.corr$EC, ttt.data.corr$Alphaproteobacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Alphaproteobacteria
S = 100, p-value = 0.6777
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1666667
cor.test(ttt.data.corr$EC, ttt.data.corr$Gammaproteobacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Gammaproteobacteria
S = 148, p-value = 0.5517
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.2333333
cor.test(ttt.data.corr$EC, ttt.data.corr$Archaea, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$EC and ttt.data.corr$Archaea
S = 124, p-value = 0.9484
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.03333333
# Correlation Tests between GWC and Taxonomy
cor.test(ttt.data.corr$GWC, ttt.data.corr$Acidobacteriota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Acidobacteriota
S = 142, p-value = 0.6436
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.1833333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Actinobacteriota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Actinobacteriota
S = 148, p-value = 0.5517
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.2333333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Bacteroidota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Bacteroidota
S = 150, p-value = 0.5206
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.25
cor.test(ttt.data.corr$GWC, ttt.data.corr$Caldisericota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Caldisericota
S = 122.09, p-value = 0.9645
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.01740777
cor.test(ttt.data.corr$GWC, ttt.data.corr$Chloroflexi, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Chloroflexi
S = 196, p-value = 0.07604
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.6333333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Desulfobacterota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Desulfobacterota
S = 88, p-value = 0.4933
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2666667
cor.test(ttt.data.corr$GWC, ttt.data.corr$Firmicutes, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Firmicutes
S = 116, p-value = 0.9484
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.03333333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Gemmatimonadota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Gemmatimonadota
S = 220, p-value = 0.008267
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.8333333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Myxococcota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Myxococcota
S = 104, p-value = 0.7435
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1333333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Patescibacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Patescibacteria
S = 202, p-value = 0.05032
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.6833333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Planctomycetota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Planctomycetota
S = 96, p-value = 0.6134
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2
cor.test(ttt.data.corr$GWC, ttt.data.corr$Verrucomicrobiota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Verrucomicrobiota
S = 126, p-value = 0.9116
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.05
cor.test(ttt.data.corr$GWC, ttt.data.corr$Alphaproteobacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Alphaproteobacteria
S = 110, p-value = 0.8432
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.08333333
cor.test(ttt.data.corr$GWC, ttt.data.corr$Gammaproteobacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Gammaproteobacteria
S = 120, p-value = 1
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0
cor.test(ttt.data.corr$GWC, ttt.data.corr$Archaea, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$GWC and ttt.data.corr$Archaea
S = 132, p-value = 0.81
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.1
# Correlation Tests between TOC and Taxonomy
cor.test(ttt.data.corr$OC, ttt.data.corr$Acidobacteriota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Acidobacteriota
S = 134, p-value = 0.7756
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.1166667
cor.test(ttt.data.corr$OC, ttt.data.corr$Actinobacteriota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Actinobacteriota
S = 140, p-value = 0.6777
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.1666667
cor.test(ttt.data.corr$OC, ttt.data.corr$Bacteroidota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Bacteroidota
S = 162, p-value = 0.3586
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.35
cor.test(ttt.data.corr$OC, ttt.data.corr$Caldisericota, method="spearman")
Warning: Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Caldisericota
S = 111.64, p-value = 0.8587
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.06963106
cor.test(ttt.data.corr$OC, ttt.data.corr$Chloroflexi, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Chloroflexi
S = 218, p-value = 0.01077
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.8166667
cor.test(ttt.data.corr$OC, ttt.data.corr$Desulfobacterota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Desulfobacterota
S = 100, p-value = 0.6777
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1666667
cor.test(ttt.data.corr$OC, ttt.data.corr$Firmicutes, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Firmicutes
S = 112, p-value = 0.8801
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.06666667
cor.test(ttt.data.corr$OC, ttt.data.corr$Gemmatimonadota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Gemmatimonadota
S = 228, p-value = 0.002028
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.9
cor.test(ttt.data.corr$OC, ttt.data.corr$Myxococcota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Myxococcota
S = 104, p-value = 0.7435
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1333333
cor.test(ttt.data.corr$OC, ttt.data.corr$Patescibacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Patescibacteria
S = 208, p-value = 0.03112
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.7333333
cor.test(ttt.data.corr$OC, ttt.data.corr$Planctomycetota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Planctomycetota
S = 106, p-value = 0.7756
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1166667
cor.test(ttt.data.corr$OC, ttt.data.corr$Verrucomicrobiota, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Verrucomicrobiota
S = 122, p-value = 0.9816
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.01666667
cor.test(ttt.data.corr$OC, ttt.data.corr$Alphaproteobacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Alphaproteobacteria
S = 108, p-value = 0.81
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1
cor.test(ttt.data.corr$OC, ttt.data.corr$Gammaproteobacteria, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Gammaproteobacteria
S = 126, p-value = 0.9116
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.05
cor.test(ttt.data.corr$OC, ttt.data.corr$Archaea, method="spearman")
Spearman's rank correlation rho
data: ttt.data.corr$OC and ttt.data.corr$Archaea
S = 136, p-value = 0.7435
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.1333333
Before plotting, need to remove columns from full dataset
# Remove thaw probability columns and soil chemistry for plotting
ttt.data.corr <- subset(ttt.data.corr, select = -c(Thaw_Prob_July_All, Thaw_Prob_Aug_All, Thaw_Prob_Aug_10, Thaw_Prob_Aug_5, pH, EC, GWC, OC))
# Correlation plot for annual thaw duration (thaw days) using Spearman's rho
ttt.thaw.day.corr.plot <- ttt.data.corr %>% correlate(method = "spearman") %>% focus(Thaw_Days) %>% mutate(term = factor(term, levels = term[order(Thaw_Days)])) %>% ggplot(aes(x = term, y = Thaw_Days)) + geom_bar(stat = "identity") + theme_classic() + theme(axis.text.x = element_text(angle = 45, hjust=1), axis.title.x = element_blank(), text = element_text(size=16)) + ylab(expression(atop("Annual Thaw Duration", paste("Spearman Correlation")))) + ylim(-1,1)
Correlation computed with
• Method: 'spearman'
• Missing treated using: 'pairwise.complete.obs'
ttt.thaw.day.corr.plot
# Save as .eps file (width = 600; height = 450; "ttt.thaw.day.corr.eps")
The session information is provided for full reproducibility.
devtools::session_info()
─ Session info ────────────────────────────────────────────────────────────────────
setting value
version R version 4.2.1 (2022-06-23)
os macOS Monterey 12.6
system x86_64, darwin17.0
ui RStudio
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/Los_Angeles
date 2022-09-22
rstudio 2022.07.1+554 Spotted Wakerobin (desktop)
pandoc 2.18 @ /Applications/RStudio.app/Contents/MacOS/quarto/bin/tools/ (via rmarkdown)
─ Packages ────────────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
abind 1.4-5 2016-07-21 [1] CRAN (R 4.2.0)
ade4 1.7-19 2022-04-19 [1] CRAN (R 4.2.0)
agricolae * 1.3-5 2021-06-06 [1] CRAN (R 4.2.0)
AlgDesign 1.2.1 2022-05-25 [1] CRAN (R 4.2.0)
ape 5.6-2 2022-03-02 [1] CRAN (R 4.2.0)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.2.0)
Biobase 2.56.0 2022-04-26 [1] Bioconductor
BiocGenerics 0.42.0 2022-04-26 [1] Bioconductor
biomformat 1.24.0 2022-04-26 [1] Bioconductor
Biostrings 2.64.1 2022-08-18 [1] Bioconductor
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.2.0)
broom 1.0.0 2022-07-01 [1] CRAN (R 4.2.0)
bslib 0.4.0 2022-07-16 [1] CRAN (R 4.2.0)
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.2.0)
callr 3.7.2 2022-08-22 [1] CRAN (R 4.2.0)
car 3.1-0 2022-06-15 [1] CRAN (R 4.2.0)
carData 3.0-5 2022-01-06 [1] CRAN (R 4.2.0)
checkmate 2.1.0 2022-04-21 [1] CRAN (R 4.2.0)
cli 3.3.0 2022-04-25 [1] CRAN (R 4.2.0)
cluster 2.1.3 2022-03-28 [1] CRAN (R 4.2.1)
codetools 0.2-18 2020-11-04 [1] CRAN (R 4.2.1)
colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
combinat 0.0-8 2012-10-29 [1] CRAN (R 4.2.0)
corrr * 0.4.4 2022-08-16 [1] CRAN (R 4.2.0)
crayon 1.5.1 2022-03-26 [1] CRAN (R 4.2.0)
data.table * 1.14.2 2021-09-27 [1] CRAN (R 4.2.0)
deldir 1.0-6 2021-10-23 [1] CRAN (R 4.2.0)
devtools * 2.4.4 2022-07-20 [1] CRAN (R 4.2.0)
digest 0.6.29 2021-12-01 [1] CRAN (R 4.2.0)
dplyr * 1.0.9 2022-04-28 [1] CRAN (R 4.2.0)
DT 0.24 2022-08-09 [1] CRAN (R 4.2.0)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
evaluate 0.16 2022-08-09 [1] CRAN (R 4.2.0)
fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
farver 2.1.1 2022-07-06 [1] CRAN (R 4.2.0)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
forcats * 0.5.2 2022-08-19 [1] CRAN (R 4.2.0)
foreach 1.5.2 2022-02-02 [1] CRAN (R 4.2.0)
foreign 0.8-82 2022-01-16 [1] CRAN (R 4.2.1)
Formula 1.2-4 2020-10-16 [1] CRAN (R 4.2.0)
fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
GenomeInfoDb 1.32.3 2022-08-09 [1] Bioconductor
GenomeInfoDbData 1.2.8 2022-08-29 [1] Bioconductor
ggalluvial * 0.12.3 2020-12-05 [1] CRAN (R 4.2.0)
ggdendro * 0.1.23 2022-02-16 [1] CRAN (R 4.2.0)
ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.2.0)
ggpubr * 0.4.0 2020-06-27 [1] CRAN (R 4.2.0)
ggsignif 0.6.3 2021-09-09 [1] CRAN (R 4.2.0)
glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
gridExtra * 2.3 2017-09-09 [1] CRAN (R 4.2.0)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.2.0)
haven 2.5.1 2022-08-22 [1] CRAN (R 4.2.0)
highr 0.9 2021-04-16 [1] CRAN (R 4.2.0)
Hmisc 4.7-1 2022-08-15 [1] CRAN (R 4.2.0)
hms 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
htmlTable 2.4.1 2022-07-07 [1] CRAN (R 4.2.0)
htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.0)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.2.0)
httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.2.0)
igraph 1.3.4 2022-07-19 [1] CRAN (R 4.2.0)
interp 1.1-3 2022-07-13 [1] CRAN (R 4.2.0)
IRanges 2.30.1 2022-08-18 [1] Bioconductor
iterators 1.0.14 2022-02-05 [1] CRAN (R 4.2.0)
jpeg 0.1-9 2021-07-24 [1] CRAN (R 4.2.0)
jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.2.0)
jsonlite 1.8.0 2022-02-22 [1] CRAN (R 4.2.0)
klaR 1.7-1 2022-06-27 [1] CRAN (R 4.2.0)
knitr * 1.40 2022-08-24 [1] CRAN (R 4.2.0)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.2.0)
labelled 2.9.1 2022-05-05 [1] CRAN (R 4.2.0)
later 1.3.0 2021-08-18 [1] CRAN (R 4.2.0)
lattice * 0.20-45 2021-09-22 [1] CRAN (R 4.2.1)
latticeExtra 0.6-30 2022-07-04 [1] CRAN (R 4.2.0)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.2.0)
magrittr * 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
MASS 7.3-57 2022-04-22 [1] CRAN (R 4.2.1)
Matrix 1.4-1 2022-03-23 [1] CRAN (R 4.2.1)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.0)
mgcv 1.8-40 2022-03-29 [1] CRAN (R 4.2.1)
microeco * 0.11.0 2022-06-22 [1] CRAN (R 4.2.0)
mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.2.0)
multtest 2.52.0 2022-04-26 [1] Bioconductor
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
NADA 1.6-1.1 2020-03-22 [1] CRAN (R 4.2.0)
nlme 3.1-157 2022-03-25 [1] CRAN (R 4.2.1)
nnet 7.3-17 2022-01-16 [1] CRAN (R 4.2.1)
patchwork * 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
permute * 0.9-7 2022-01-27 [1] CRAN (R 4.2.0)
pheatmap * 1.0.12 2019-01-04 [1] CRAN (R 4.2.0)
phyloseq 1.40.0 2022-04-26 [1] Bioconductor
pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.0)
pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.2.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
pkgload 1.3.0 2022-06-27 [1] CRAN (R 4.2.0)
plyr 1.8.7 2022-03-24 [1] CRAN (R 4.2.0)
png 0.1-7 2013-12-03 [1] CRAN (R 4.2.0)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.0)
processx 3.7.0 2022-07-07 [1] CRAN (R 4.2.0)
profvis 0.3.7 2020-11-02 [1] CRAN (R 4.2.0)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.0)
ps 1.7.1 2022-06-18 [1] CRAN (R 4.2.0)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.2.0)
pvclust * 2.2-0 2019-11-19 [1] CRAN (R 4.2.0)
qiime2R * 0.99.6 2022-08-29 [1] Github (jbisanz/qiime2R@2a3cee1)
questionr 0.7.7 2022-01-31 [1] CRAN (R 4.2.0)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
RColorBrewer * 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)
Rcpp 1.0.9 2022-07-08 [1] CRAN (R 4.2.0)
RCurl 1.98-1.8 2022-07-30 [1] CRAN (R 4.2.0)
remotes 2.4.2 2021-11-30 [1] CRAN (R 4.2.0)
reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.2.0)
rhdf5 2.40.0 2022-04-26 [1] Bioconductor
rhdf5filters 1.8.0 2022-04-26 [1] Bioconductor
Rhdf5lib 1.18.2 2022-05-17 [1] Bioconductor
rlang 1.0.4 2022-07-12 [1] CRAN (R 4.2.0)
rmarkdown 2.16 2022-08-24 [1] CRAN (R 4.2.0)
rpart 4.1.16 2022-01-24 [1] CRAN (R 4.2.1)
rsconnect 0.8.27 2022-07-12 [1] CRAN (R 4.2.1)
rstatix 0.7.0 2021-02-13 [1] CRAN (R 4.2.0)
rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
S4Vectors 0.34.0 2022-04-26 [1] Bioconductor
sass 0.4.2 2022-07-16 [1] CRAN (R 4.2.0)
scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
shiny 1.7.2 2022-07-19 [1] CRAN (R 4.2.0)
stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.0)
stringr 1.4.1 2022-08-20 [1] CRAN (R 4.2.0)
survival 3.3-1 2022-03-03 [1] CRAN (R 4.2.1)
tibble 3.1.8 2022-07-22 [1] CRAN (R 4.2.0)
tidyr * 1.2.0 2022-02-01 [1] CRAN (R 4.2.0)
tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.2.0)
truncnorm 1.0-8 2018-02-27 [1] CRAN (R 4.2.0)
UpSetR * 1.4.0 2019-05-22 [1] CRAN (R 4.2.0)
urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.2.0)
usethis * 2.1.6 2022-05-25 [1] CRAN (R 4.2.0)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.2.0)
vegan * 2.6-2 2022-04-17 [1] CRAN (R 4.2.0)
withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
xfun 0.32 2022-08-10 [1] CRAN (R 4.2.0)
xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
XVector 0.36.0 2022-04-26 [1] Bioconductor
yaml 2.3.5 2022-02-21 [1] CRAN (R 4.2.0)
zCompositions 1.4.0-1 2022-03-26 [1] CRAN (R 4.2.0)
zlibbioc 1.42.0 2022-04-26 [1] Bioconductor
[1] /Library/Frameworks/R.framework/Versions/4.2/Resources/library
───────────────────────────────────────────────────────────────────────────────────