python xarray and zarr

Python in quarto on rstudio server on nectar

import xarray as xr 
import geopandas as gp 
import pandas as pd 
import sparse

store = 'https://ncsa.osn.xsede.org/Pangeo/pangeo-forge/gpcp-feedstock/gpcp.zarr'

ds = xr.open_dataset(store, engine='zarr', chunks={})
ds
<xarray.Dataset>
Dimensions:      (latitude: 180, nv: 2, longitude: 360, time: 9226)
Coordinates:
    lat_bounds   (latitude, nv) float32 dask.array<chunksize=(180, 2), meta=np.ndarray>
  * latitude     (latitude) float32 -90.0 -89.0 -88.0 -87.0 ... 87.0 88.0 89.0
    lon_bounds   (longitude, nv) float32 dask.array<chunksize=(360, 2), meta=np.ndarray>
  * longitude    (longitude) float32 0.0 1.0 2.0 3.0 ... 356.0 357.0 358.0 359.0
  * time         (time) datetime64[ns] 1996-10-01 1996-10-02 ... 2021-12-31
    time_bounds  (time, nv) datetime64[ns] dask.array<chunksize=(200, 2), meta=np.ndarray>
Dimensions without coordinates: nv
Data variables:
    precip       (time, latitude, longitude) float32 dask.array<chunksize=(200, 180, 360), meta=np.ndarray>
Attributes: (12/45)
    Conventions:                CF-1.6, ACDD 1.3
    Metadata_Conventions:       CF-1.6, Unidata Dataset Discovery v1.0, NOAA ...
    acknowledgment:             This project was supported in part by a grant...
    cdm_data_type:              Grid
    cdr_program:                NOAA Climate Data Record Program for satellit...
    cdr_variable:               precipitation
    ...                         ...
    standard_name_vocabulary:   CF Standard Name Table (v41, 22 February 2017)
    summary:                    Global Precipitation Climatology Project (GPC...
    time_coverage_duration:     P1D
    time_coverage_end:          1996-10-01T23:59:59Z
    time_coverage_start:        1996-10-01T00:00:00Z
    title:                      Global Precipitation Climatatology Project (G...