Who invented the round table?
Sir Cumference
Use our Ch2.5 lake pollution model to address the following:
From Ch2.5, the IVP and exact solution are given by
\[ \begin{aligned} \frac{dC}{dt} & = \frac{F}{V}\left[c_{in} - C(t) \right] , \,\, C(0)= c_0 \\ \\ C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \end{aligned} \]
\[ \small{ \frac{dC}{dt} = \frac{F}{V}\left[c_{in} - C(t) \right] , \,\, C(0)= c_0 } \]
Do units make sense for the physical quantities?
\[ \small{ \begin{aligned} \left[\frac{dC}{dt}\right] &= \frac{bacteria}{(m^3 water)month} \\ \left[\frac{F}{V}c_{in}\right] &= \left(\frac{ m^3 water}{(m^3 water)month}\right)\left(\frac{bacteria}{ m^3 water}\right) = \frac{ bacteria}{(m^3 water)month} \\ \left[\frac{{F}}{V}C\right] &= \left(\frac{ m^3 water}{(m^3 water)month}\right)\left(\frac{bacteria}{ m^3 water}\right) = \frac{ bacteria}{(m^3 water)month} \end{aligned} } \]
How long will it take for lake pollution to reach a specified level \( C_L \) if only fresh water flows into lake (\( c_{in} = 0 \))?
\[ \small{ \begin{aligned} C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \\ C_L & = c_0 e^{-Ft/V } \ln \left( \frac{C_L}{c_0} \right) \\ t &= - \frac{V}{F} \ln \left( \frac{C_L}{c_0} \right) \end{aligned} } \]
V<-28*10^6; F<-4*10^6; CL<-4*10^6; c0<-10^7
(t <- -V/F*log(CL/c0) )
[1] 6.414035
#Perform Rk4 on Lake Burley Griffen Pollution IVP
F1 <- 4; c1 <- 0; V <- 28
f <- function(x, C) { F1/V*(c1 - C) }
LakeModel(f,10,8)
\[ \small{ \begin{aligned} C(t) & = c_{in} - (c_{in} - c_0) e^{-Ft/V } \\ \lim_{t \rightarrow \infty} & \left(c_{in} - (c_{in} - c_0) e^{-Ft/V }\right) = c_{in} \end{aligned} } \]
#Perform Rk4 on Lake Burley Griffen Pollution IVP
F1 <- 4; c1 <- 3; V <- 28
f <- function(x, C) { F1/V*(c1 - C) }
LakeModel(f,10,20)
\[ \small{ \begin{aligned} F(t) & = 10^6 \left[ 10 + 6 \sin(2 \pi t) \right] \mathrm{m}^3/ \mathrm{year} \\ c_{in}(t) & = 10^6 \left[ 10 + 10 \cos(2 \pi t) \right] \mathrm{bacteria}/ \mathrm{m}^3 \end{aligned} } \]
\[ \small{ \begin{aligned} \frac{dC}{dt} & = \frac{F(t)}{V}\left[c_{in}(t) - C(t) \right] , \,\, C(0)= c_0 \\ F(t) & = 10^6 \left[ 10 + 6 \sin(2 \pi t) \right] \\ c_{in}(t) & = 10^6 \left[ 10 + 10 \cos(2 \pi t) \right] \end{aligned} } \]
#Perform Rk4 on Lake Burley Griffen Pollution IVP
F1 <- function(x) {(10 + 6*sin(2*pi*x))}
c1 <- function(x) {(10 + 10*cos(2*pi*x))}
f <- function(x, C) { F1(x)/V*(c1(x) - C) }
V <- 28; LakeModel(f,0,20)
\[ \small{ \begin{aligned} F(t) & = 10^6 \left[ 4 + 2 \sin(2 \pi t) \right] \\ c_{in}(t) & = 10^6 \left[ 3 + 2\cos(2 \pi t) \right] \end{aligned} } \]
#Perform Rk4 on Lake Burley Griffen Pollution IVP
F1 <- function(x) {(4 + 2*sin(2*pi*x))}
c1 <- function(x) {(3 + 2*cos(2*pi*x))}
f <- function(x, C) { F1(x)/V*(c1(x) - C) }
V <- 28; LakeModel(f,10,20)
[1] Mathematical Modeling with Case Studies, Barnes and Fulford, CRC Press, 2015.
[2] Coliform Bacteria in Well Water, https://www.aces.edu/blog/topics/fish-water/coliform-bacteria-in-well-water/, retrieved on 9/7/2022.
[3] Farmland and Fecal Coliform, https://www.stormh2o.com/erosion-control/vegetation-management/article/13006167/farmland-and-fecal-coliform, retrieved on 9/7/2022.
[4] Lake Burley Griffin, https://en.wikipedia.org/wiki/Lake_Burley_Griffin, retrieved on 9/6/2022.
[5] Queanbeyan flooding, https://www.canberratimes.com.au/story/7179470/good-news-queanbeyan-flood-warning-downgraded/, retrieved on 9/7/2022.
[6] How Much Bacteria Is In Your Drinking Water?, https://www.youtube.com/watch?v=OU2MD3sSTeM, retrieved on 9/7/2022.
[7] Seasonal Variations in River Flow and Nutrient Concentrations in a Northwestern USA Watershed, Anne Sigleo (EPA), Walter Frick (EPA), Research Gate, 2003.