My Packages and data

library(fpp3)
library(tidyverse)
library(readr)
library(ggplot2)
library(tsibble)
library(tidyquant)
library(readxl)
library(tidyr)
library(USgas)
library(dplyr)
# Data for exercise 1
tute1 <- read_csv("C:/Users/14047/Downloads/tute1.csv")
# Data for exercise 3
readxl::read_excel("C:/Users/14047/Downloads/tourism.xlsx")
## # A tibble: 24,320 × 5
##    Quarter    Region   State           Purpose  Trips
##    <chr>      <chr>    <chr>           <chr>    <dbl>
##  1 1998-01-01 Adelaide South Australia Business  135.
##  2 1998-04-01 Adelaide South Australia Business  110.
##  3 1998-07-01 Adelaide South Australia Business  166.
##  4 1998-10-01 Adelaide South Australia Business  127.
##  5 1999-01-01 Adelaide South Australia Business  137.
##  6 1999-04-01 Adelaide South Australia Business  200.
##  7 1999-07-01 Adelaide South Australia Business  169.
##  8 1999-10-01 Adelaide South Australia Business  134.
##  9 2000-01-01 Adelaide South Australia Business  154.
## 10 2000-04-01 Adelaide South Australia Business  169.
## # … with 24,310 more rows
## # ℹ Use `print(n = ...)` to see more rows

Questions

Exercise 1

# 1. 

tsibble <- tute1 %>% 
  mutate(Quarter = yearquarter(Quarter)) %>% 
  as_tsibble(index = Quarter)

tsibble
## # A tsibble: 100 x 4 [1Q]
##    Quarter Sales AdBudget   GDP
##      <qtr> <dbl>    <dbl> <dbl>
##  1 1981 Q1 1020.     659.  252.
##  2 1981 Q2  889.     589   291.
##  3 1981 Q3  795      512.  291.
##  4 1981 Q4 1004.     614.  292.
##  5 1982 Q1 1058.     647.  279.
##  6 1982 Q2  944.     602   254 
##  7 1982 Q3  778.     531.  296.
##  8 1982 Q4  932.     608.  272.
##  9 1983 Q1  996.     638.  260.
## 10 1983 Q2  908.     582.  280.
## # … with 90 more rows
## # ℹ Use `print(n = ...)` to see more rows
# 2.

# plotting each variable using geom_line

ggplot(data = tsibble, mapping = aes(x = Quarter, y = Sales)) +
  geom_line()

ggplot(data = tsibble, mapping = aes(x = Quarter, y = AdBudget)) +
  geom_line()

ggplot(tsibble, aes(x = Quarter, y = GDP)) +
  geom_line()

# 3. 

# changing the rows and columns to use for facet_grid

tsibble2 <- tsibble %>% 
  pivot_longer(cols = Sales:GDP, names_to = "Variable", values_to = "count")
tsibble2
## # A tsibble: 300 x 3 [1Q]
## # Key:       Variable [3]
##    Quarter Variable count
##      <qtr> <chr>    <dbl>
##  1 1981 Q1 Sales    1020.
##  2 1981 Q1 AdBudget  659.
##  3 1981 Q1 GDP       252.
##  4 1981 Q2 Sales     889.
##  5 1981 Q2 AdBudget  589 
##  6 1981 Q2 GDP       291.
##  7 1981 Q3 Sales     795 
##  8 1981 Q3 AdBudget  512.
##  9 1981 Q3 GDP       291.
## 10 1981 Q4 Sales    1004.
## # … with 290 more rows
## # ℹ Use `print(n = ...)` to see more rows
# Now, plotting with facet_grid

ggplot(data = tsibble2) +
  geom_line(mapping = aes(x = Quarter, y = count)) +
  facet_grid(cols = vars(Variable))

Exercise 2

# 1.
 # I used the function 'install.packages("USgas")' to install USgas and then viewed the data 

View(us_total)

# 2.
 # I constructed a tsibble with year as the index and state as the key.

tsibl <- us_total %>% 
  as_tsibble(index = year, key = state)
tsibl
## # A tsibble: 1,266 x 3 [1Y]
## # Key:       state [53]
##     year state        y
##    <int> <chr>    <int>
##  1  1997 Alabama 324158
##  2  1998 Alabama 329134
##  3  1999 Alabama 337270
##  4  2000 Alabama 353614
##  5  2001 Alabama 332693
##  6  2002 Alabama 379343
##  7  2003 Alabama 350345
##  8  2004 Alabama 382367
##  9  2005 Alabama 353156
## 10  2006 Alabama 391093
## # … with 1,256 more rows
## # ℹ Use `print(n = ...)` to see more rows
# 3. 
# I first manipulated the data below 

tsibl2 <- tsibl %>% 
  filter(state == c("Maine", "Vermont", "New Hampshire", "Massachusetts", "Connecticut", "Rhode Island")) %>% 
  mutate(y = y / 1e3)

# and then plotted the results 

ggplot(tsibl2, mapping = aes(x = year, y = y, color = state)) +
  geom_line() +
  labs(y = "Gas Consumption (thousands)", x = "Year", title = "Demand for Natural Gas")

Exercise 3

# 1. 

# Make it a tsibble identical to tourism data set
# When you want to make a date into a year with quarter that looks better
tourism2 <- tourism %>% 
  mutate(Quarter = yearquarter(Quarter))%>% 
  as_tsibble(index = Quarter, key = c(Region, State, Purpose))

tourism2
## # A tsibble: 24,320 x 5 [1Q]
## # Key:       Region, State, Purpose [304]
##    Quarter Region   State           Purpose  Trips
##      <qtr> <chr>    <chr>           <chr>    <dbl>
##  1 1998 Q1 Adelaide South Australia Business  135.
##  2 1998 Q2 Adelaide South Australia Business  110.
##  3 1998 Q3 Adelaide South Australia Business  166.
##  4 1998 Q4 Adelaide South Australia Business  127.
##  5 1999 Q1 Adelaide South Australia Business  137.
##  6 1999 Q2 Adelaide South Australia Business  200.
##  7 1999 Q3 Adelaide South Australia Business  169.
##  8 1999 Q4 Adelaide South Australia Business  134.
##  9 2000 Q1 Adelaide South Australia Business  154.
## 10 2000 Q2 Adelaide South Australia Business  169.
## # … with 24,310 more rows
## # ℹ Use `print(n = ...)` to see more rows
# 2. 
# It says to find the combination of 'Region' and 'Purpose'
# had the max number of overnight trips on avg, so I grouped 
# it by Region and Purpose, found the average for each combo.
# and then put the Avg column in descending order to show the
# max averages. I then made another column to prove that 
# Avg is in the correct order (showing max values).

avg <- tourism2 %>% 
  group_by(Region, Purpose) %>% 
  mutate(Avg = mean(Trips)) %>% 
  arrange(desc(Avg)) %>% 
  ungroup() %>% 
  mutate(Max = max(Avg))

avg
## # A tsibble: 24,320 x 7 [1Q]
## # Key:       Region, State, Purpose [304]
##    Quarter Region State           Purpose  Trips   Avg   Max
##      <qtr> <chr>  <chr>           <chr>    <dbl> <dbl> <dbl>
##  1 1998 Q1 Sydney New South Wales Visiting  818.  747.  747.
##  2 1998 Q2 Sydney New South Wales Visiting  639.  747.  747.
##  3 1998 Q3 Sydney New South Wales Visiting  674.  747.  747.
##  4 1998 Q4 Sydney New South Wales Visiting  881.  747.  747.
##  5 1999 Q1 Sydney New South Wales Visiting  784.  747.  747.
##  6 1999 Q2 Sydney New South Wales Visiting  767.  747.  747.
##  7 1999 Q3 Sydney New South Wales Visiting  681.  747.  747.
##  8 1999 Q4 Sydney New South Wales Visiting  728.  747.  747.
##  9 2000 Q1 Sydney New South Wales Visiting  645.  747.  747.
## 10 2000 Q2 Sydney New South Wales Visiting  590.  747.  747.
## # … with 24,310 more rows
## # ℹ Use `print(n = ...)` to see more rows
# 3. 

# Show me the total amount of trips per state because
# When you combine Region and Purpose, you get state

tt <- tourism %>% 
  group_by(State) %>% 
  summarise(Trips = sum(Trips)) %>% 
  ungroup()

tt
## # A tsibble: 640 x 3 [1Q]
## # Key:       State [8]
##    State Quarter Trips
##    <chr>   <qtr> <dbl>
##  1 ACT   1998 Q1  551.
##  2 ACT   1998 Q2  416.
##  3 ACT   1998 Q3  436.
##  4 ACT   1998 Q4  450.
##  5 ACT   1999 Q1  379.
##  6 ACT   1999 Q2  558.
##  7 ACT   1999 Q3  449.
##  8 ACT   1999 Q4  595.
##  9 ACT   2000 Q1  600.
## 10 ACT   2000 Q2  557.
## # … with 630 more rows
## # ℹ Use `print(n = ...)` to see more rows

Exercise 4

# 1. 
# Using autoplot

autoplot(aus_arrivals)
## Plot variable not specified, automatically selected `.vars = Arrivals`

# Using gg_season

aus_arrivals %>% 
  mutate(Arrivals = Arrivals/ 1e3) %>% 
  gg_season() +
  labs(y = "Arrivals (thousands)")
## Plot variable not specified, automatically selected `y = Arrivals`

# Using gg_subseries 

aus_arrivals %>% 
  mutate(Arrivals = Arrivals/ 1e3) %>% 
  gg_subseries() +
  labs(y = "Arrivals (thousands)")
## Plot variable not specified, automatically selected `y = Arrivals`

# 2. Any unsual observations?

# I am curious to why there are so many fulctuations through out each year. Every country seems to 
# follow their own individual trend, seasonality, or cyclic pattern. Towards the year 2010, I noticed 
# that New Zealand continues its increasing trend; However, the other countries Arrival's seem
# to decrease. Japan seems to have the most bizzare pattern, increasing to then tremendously 
# decreasing. I wonder if the 9/11 attack had any impact. 

Exercise 5

set.seed(8)
myseries <- aus_retail %>%
  filter(`Series ID` == sample(aus_retail$`Series ID`,1))
myseries
## # A tsibble: 441 x 5 [1M]
## # Key:       State, Industry [1]
##    State           Industry                  `Series ID`    Month Turnover
##    <chr>           <chr>                     <chr>          <mth>    <dbl>
##  1 New South Wales Household goods retailing A3349397X   1982 Apr     211.
##  2 New South Wales Household goods retailing A3349397X   1982 May     224.
##  3 New South Wales Household goods retailing A3349397X   1982 Jun     216.
##  4 New South Wales Household goods retailing A3349397X   1982 Jul     226.
##  5 New South Wales Household goods retailing A3349397X   1982 Aug     217.
##  6 New South Wales Household goods retailing A3349397X   1982 Sep     213.
##  7 New South Wales Household goods retailing A3349397X   1982 Oct     224.
##  8 New South Wales Household goods retailing A3349397X   1982 Nov     244.
##  9 New South Wales Household goods retailing A3349397X   1982 Dec     393.
## 10 New South Wales Household goods retailing A3349397X   1983 Jan     220.
## # … with 431 more rows
## # ℹ Use `print(n = ...)` to see more rows
autoplot(myseries)
## Plot variable not specified, automatically selected `.vars = Turnover`

gg_season(myseries)
## Plot variable not specified, automatically selected `y = Turnover`

gg_subseries(myseries)
## Plot variable not specified, automatically selected `y = Turnover`

gg_lag(myseries)
## Plot variable not specified, automatically selected `y = Turnover`

myseries %>% 
  ACF(Turnover) %>% 
  autoplot()

# There is a seasonal pattern and there is an increasing trend
# If turnover represents the retail trade turnover, then after
# analyzing the data, it seems as if Australia's purchasing power
# is increasing overtime. In other words, Australia is becoming wealthier

Exercise 6

# 1. 
# I added on two columns of the mean and std of the Closing Stocks of FB

mean <- gafa_stock %>% 
  filter(Symbol == "FB") %>% 
  mutate(Mean = mean(Close), Std = sd(Close)) %>% 
  select(Close, Mean, Std)
mean
## # A tsibble: 1,258 x 4 [!]
##    Close  Mean   Std Date      
##    <dbl> <dbl> <dbl> <date>    
##  1  54.7  120.  41.3 2014-01-02
##  2  54.6  120.  41.3 2014-01-03
##  3  57.2  120.  41.3 2014-01-06
##  4  57.9  120.  41.3 2014-01-07
##  5  58.2  120.  41.3 2014-01-08
##  6  57.2  120.  41.3 2014-01-09
##  7  57.9  120.  41.3 2014-01-10
##  8  55.9  120.  41.3 2014-01-13
##  9  57.7  120.  41.3 2014-01-14
## 10  57.6  120.  41.3 2014-01-15
## # … with 1,248 more rows
## # ℹ Use `print(n = ...)` to see more rows
# To check my values, I calculated the values separately 
# by using $.

# To check and see if the value is correct, I first made 
# a data set with filter on FB to find nrow.

mean2 <- gafa_stock %>% 
  filter(Symbol == "FB")

mean(mean2$Close)
## [1] 120.4625
sd(mean2$Close)
## [1] 41.32364
# 2. 


# using the diff function to find the difference of facebook stock prices 


df <- diff(mean2$Close)
df
##    [1]  -0.149998   2.640000   0.719997   0.310002  -1.009999   0.719998
##    [7]  -2.029999   1.830002  -0.140004  -0.409999  -0.890000   2.209999
##   [13]  -1.000000  -0.879997  -2.180000  -0.900002   1.590000  -1.610000
##   [19]   7.550003   1.489998  -1.090000   1.270000  -0.560001  -0.029999
##   [25]   2.160000  -0.770001   1.299999  -0.400001   2.880005  -0.240006
##   [31]   0.210007   0.759995   1.569999  -1.040001   2.190003  -0.930001
##   [37]  -0.589996  -0.320000  -0.480003  -1.049995   1.389999   2.769997
##   [43]  -0.730004  -1.039993   2.229996  -1.930001   0.779999  -2.049995
##   [49]  -1.110001   1.019997   0.450004  -0.950004  -1.269997   0.269997
##   [55]  -3.140000   0.790001  -4.500000   0.580002  -0.960003   0.230004
##   [61]   2.379997   0.100002  -3.229999  -2.740002   0.200001   1.239998
##   [67]   4.220001  -3.250000  -0.630001   0.360000   0.200001   0.630001
##   [73]  -0.780002   2.300003   1.789997  -1.669998  -0.490002  -3.160000
##   [79]  -1.570000   2.010003   1.629997   1.370003  -0.690003   0.760002
##   [85]  -2.690002  -1.140000  -0.630001   0.480004   2.590000   0.000000
##   [91]  -0.600002  -1.310002   0.100002   1.189999  -0.649998   1.930001
##   [97]   0.029998   0.829998   2.130002   0.029998   0.320004  -0.530003
##  [103]  -0.219997  -0.210003   0.470001  -0.150001  -0.689999   0.380001
##  [109]   2.889996   0.010002  -1.489998   0.209999  -0.309998   0.210000
##  [115]   1.199996  -1.260002   0.160004   0.870003   0.349998   1.720001
##  [121]  -0.310005   0.470001  -0.309997   0.769997  -1.610001  -0.159996
##  [127]  -1.000000  -2.530003   2.210003  -0.099998   1.469993   1.560006
##  [133]  -0.730004   0.490006  -1.250000   2.009994   0.980004  -0.130005
##  [139]   2.020004   3.690002   0.209999  -0.270004  -1.209999   0.970001
##  [145]  -2.029998  -0.290001   1.150001  -0.820000  -0.220001   0.699997
##  [151]  -0.110000   0.380004  -0.610000   0.939995   0.530006  -0.670006
##  [157]   0.959999   0.700005  -0.480003  -0.239998   0.000000   0.449997
##  [163]   0.940002  -1.330002  -0.769996   0.959999   1.860000  -0.849998
##  [169]   0.119995   1.310005   0.629997  -1.220001   0.760002   0.489998
##  [175]  -0.439995  -2.900001   1.500000   0.349998   0.570000   0.910004
##  [181]  -1.110001   1.489998   0.250000  -1.320000   1.570000   0.209999
##  [187]   0.040001  -2.489998   0.529999   0.360000   0.119996  -1.269997
##  [193]   1.229996  -1.609993  -3.000000   0.079994   0.599998  -0.379997
##  [199]  -0.580002   3.320000   1.000000   1.740005  -0.319999   1.669998
##  [205]   0.629997  -0.389999   0.489998  -4.909996  -1.750000   0.879997
##  [211]  -1.110001   1.880005  -0.930000   0.430000   0.339996  -0.599998
##  [217]  -0.389999   0.110000  -0.470001   0.629997  -0.639999   0.099998
##  [223]  -1.009994   0.269996   0.150002   0.260002   1.619995   1.990006
##  [229]   0.079994  -2.599999   0.360001  -0.580002   0.360001   1.120003
##  [235]   0.159996   0.319999  -0.659996   1.550003   0.099999  -0.840004
##  [241]  -2.299996   1.419999   2.290001   1.479995   1.570000  -0.839996
##  [247]   0.159996   0.010002  -0.760002  -0.799996  -1.200004   0.430000
##  [253]  -1.259995  -1.040000   0.000000   2.029998  -0.440002  -1.019997
##  [259]  -0.270004  -0.169998  -2.229996   1.129997   1.059998   0.500000
##  [265]   0.910004   0.180000  -0.330002  -1.720001   0.459999   1.760002
##  [271]  -2.089996  -0.920006   0.410004   0.229995  -0.019996  -1.140000
##  [277]  -0.029999   0.750000   1.320000  -0.279999  -0.490005  -0.140000
##  [283]   1.110001   2.709999   0.480004  -1.060006  -0.389999   1.110001
##  [289]   0.850006  -1.440003   0.779999  -0.150002   1.300004   0.309997
##  [295]  -1.199997  -0.570000  -1.889999   0.019997   1.360000  -0.879997
##  [301]   0.019997   1.290001   1.550003   1.839996   1.050003   0.629997
##  [307]   0.879998  -2.390000   0.090004   0.290001  -0.100006  -0.979996
##  [313]  -0.550003  -0.110000   0.880004  -0.120002  -0.040001  -0.110001
##  [319]  -0.129997   0.970001   0.509995  -0.809998  -0.400001  -1.529999
##  [325]   2.309997   0.530007   1.009994  -2.219993  -0.880005   0.380005
##  [331]  -1.230004  -0.209999  -1.700004   0.220001  -0.180000  -1.250000
##  [337]   0.540000   0.330002   0.080002  -0.500000  -0.550003   0.980003
##  [343]   2.930001  -0.950005   0.459999  -0.250000  -0.079994  -0.070000
##  [349]   0.059998  -1.209999   1.220001  -0.400001  -0.960000   1.099999
##  [355]   0.150001   2.000000  -0.389999   0.089996  -1.470001   0.000000
##  [361]   1.490006  -0.330002  -0.300003  -0.820000   0.349999   0.730003
##  [367]   1.120003  -0.400002   2.229996   3.139999   0.980004  -0.879998
##  [373]   0.029999  -2.209999  -0.030006   1.140007   0.379997   0.260002
##  [379]  -0.330002  -1.569999   0.229995   2.070000   2.150001  -0.419998
##  [385]   0.080002   1.089996   4.120003   2.940003   0.479995  -1.349998
##  [391]  -1.599999   1.509995  -2.779999   1.120003   1.699997  -1.779999
##  [397]  -1.199997   0.129997  -0.080001   2.380004  -1.319999  -0.820000
##  [403]  -0.150001  -0.529999   0.569999  -0.760002   0.989998  -0.489998
##  [409]   1.239998   0.140000  -4.750000  -4.500000  -3.970002   0.910004
##  [415]   4.190002   2.540001   1.279999  -1.580002  -2.199997   2.659996
##  [421]  -1.739997   0.110000   1.269997   0.910003   1.540001   0.070000
##  [427]   0.259995   0.590004   0.549995   0.889999   0.060006   1.150001
##  [433]  -2.590004   1.010002   0.440003  -1.640007  -3.559998  -2.540001
##  [439]   3.230004   1.049995   1.120003   1.940002  -1.209999  -0.400001
##  [445]   0.069999   0.769997   1.020004  -0.139999  -0.050003   1.889999
##  [451]   1.580002   0.930000  -1.470001   0.110001   2.559997   2.520004
##  [457]   1.579995  -0.070000   0.500000   0.680000  -2.909996   1.339997
##  [463]  -0.729996   1.360000   4.820000  -1.660004  -0.610000   1.420006
##  [469]   1.099998  -0.990005  -4.070000   0.090004   1.089996   2.640000
##  [475]  -1.509995   1.059998  -0.370003  -1.209999  -0.329994   0.039993
##  [481]  -1.209999   2.880005  -1.050003  -1.690003   1.800003  -0.569999
##  [487]   0.879997  -1.890000   0.820000  -3.299995   2.540001  -0.110001
##  [493]   2.239998  -0.570000  -2.180000   0.729996   0.740005  -0.880005
##  [499]   0.390000   0.910003   1.330002  -1.040001  -1.559997  -2.440003
##  [505]   0.510002   0.239998  -5.050003  -0.589996   0.180000   1.860001
##  [511]  -3.930001   2.930001  -3.400002   0.290001  -0.910004  -0.189994
##  [517]   3.779998  -0.930000   0.329994  -2.889999  14.660004   3.099998
##  [523]   2.879997  -0.479995  -1.919999  -2.200004  -6.419998  -4.320000
##  [529]  -0.209999   1.459999   0.910004   0.099998  -0.400001   3.589996
##  [535]  -1.729996   1.099999   2.590004  -1.700005   1.419998   1.190003
##  [541]  -0.150002  -1.000000   2.900002   0.129997  -0.369995  -1.190003
##  [547]  -2.659996   0.199997   1.580002  -0.190002   2.090004   0.479995
##  [553]   0.779999   1.510002  -1.160003   0.430000   0.400001   0.400002
##  [559]   0.290001   0.510002   0.639999   2.449997  -1.440002  -0.599999
##  [565]   1.960000  -3.509995  -0.330002   1.489998  -0.070000  -3.010002
##  [571]  -1.639999   1.620003  -0.099999   0.329994  -1.199997   0.809998
##  [577]   1.840004   0.129997   1.020004  -2.880004  -0.460000  -1.339996
##  [583]   0.129997   7.840004   0.849999   0.989998  -1.140000   0.629998
##  [589]  -0.250000   1.680000  -0.250000   1.260002  -0.980003   0.760002
##  [595]  -0.470001  -1.140000  -1.320000   0.300004  -0.840004   0.540000
##  [601]  -1.379997   1.729996   0.190002   1.580002  -0.090004  -0.569999
##  [607]  -0.029999   0.150001  -0.459999   0.320000  -1.029999   0.629997
##  [613]   0.169999  -1.939995  -2.670006   0.990005  -0.340004  -0.209999
##  [619]  -1.370002   0.350006   1.009994  -0.469993   1.169998  -3.000000
##  [625]  -3.110001   3.729996   1.460007   0.119995  -0.089997   0.009995
##  [631]   2.500000  -0.849999   1.390000   0.630005   0.059997  -1.150001
##  [637]   0.510002  -0.430000   2.510002   1.239998   1.309997  -1.309997
##  [643]   0.389999   0.629997  -0.409996   2.119995   1.660004  -1.059998
##  [649]   0.369996  -1.220002  -0.579994   1.849999   0.790001   0.110000
##  [655]  -0.200004  -0.180001   0.020005  -0.020005  -0.979995  -0.599999
##  [661]   1.070000  -0.459999  -0.350006   0.590004   0.220001  -0.890000
##  [667]   0.409996   1.070000   1.580002  -0.700005   0.280007   0.049995
##  [673]   0.340004   3.219994   1.320007  -0.779999  -3.170006   1.590004
##  [679]  -1.480003   0.559998   0.580009   0.720001  -0.420013  -0.009995
##  [685]   1.300003   0.140000  -2.120003  -0.650001   1.380004   0.539994
##  [691]  -1.140000   0.180008   0.500000  -0.580002   0.279999   0.270004
##  [697]   0.250000   1.250000  -1.360000   0.169998  -1.230003   0.059997
##  [703]  -0.339996   1.030006   1.539994  -0.110001   2.070007   1.209992
##  [709]  -0.990006  -1.250000  -1.349991   1.599991  -0.299988  -1.490005
##  [715]  -2.330002  -7.169998   0.750000   1.400002   2.069999  -1.040001
##  [721]  -2.379997  -1.780006  -3.939995   2.119995  -0.860001   1.450005
##  [727]  -0.770004   4.750000  -0.299996  -0.630005  -0.459999   0.030007
##  [733]   0.459999  -2.450005  -3.320000   0.300004   2.029998  -0.120002
##  [739]   0.639999   0.960007   0.769996  -1.910003   2.540001  -0.099999
##  [745]   0.360001  -0.699997  -0.630005  -0.150002  -0.049995  -1.639999
##  [751]  -0.130005   0.740005  -1.090004  -0.570000  -1.299995   1.809998
##  [757]   1.830001   1.979996   2.740006   1.489998  -0.550004   1.739998
##  [763]   0.530007   1.719993  -0.469993   0.049995  -0.369995  -0.510002
##  [769]   1.889992   0.440002   2.110001   1.300003  -0.600006  -1.199997
##  [775]  -0.659989   2.909989  -2.390000   0.140000   1.080002  -0.220002
##  [781]   2.360001  -0.059998   0.050003  -0.139999  -0.199997  -0.410004
##  [787]   0.399994  -0.309997   0.190002   2.399994  -0.759994   0.080001
##  [793]   0.970002  -0.870011   1.880005  -0.660003   0.410003   0.250000
##  [799]  -0.119995   0.419998   0.520004   0.549988   0.810013  -0.279999
##  [805]   0.399994   0.270004  -0.150009   0.100006  -1.430007   1.080001
##  [811]  -0.059997   0.809997  -0.019989   1.439988   0.889999  -0.239990
##  [817]  -0.360001   0.229996  -0.550003   0.120010  -0.680008  -0.389999
##  [823]   0.259994  -1.119995  -0.339996  -0.190003   2.029999  -0.459991
##  [829]   1.309997   1.529999  -0.120010   1.790008   1.020004   0.069993
##  [835]   1.139999   2.550003   2.210007   0.319992  -0.979996  -0.949997
##  [841]  -0.610001   0.819993  -0.580002  -0.190003  -0.250000   0.290009
##  [847]  -0.140000  -0.410003  -4.929993   2.809998   0.399994   0.180007
##  [853]  -0.169998   1.969986   1.920014   0.169998   0.250000  -0.919998
##  [859]   0.069992   2.080002   0.020004  -0.820007   0.309997   1.590012
##  [865]  -5.110001  -1.160004   2.239991  -0.429993  -0.449997   0.839996
##  [871]   2.229996  -0.619995   1.660004  -0.510010   1.670013  -1.480011
##  [877]  -3.009994   2.660003  -2.200012  -0.059997  -2.550003   1.910003
##  [883]  -1.519989   2.619995   2.059998   1.770004   3.629990   0.360001
##  [889]   0.710006  -0.240005   3.130005   1.279998   0.390000  -0.100006
##  [895]   1.570007  -0.720001   0.330002   4.830001   2.009995  -3.199997
##  [901]   0.610001  -0.559998  -0.710007   1.029999   2.360001  -0.750000
##  [907]  -0.050003  -3.779999   0.680008   2.669998   0.250000  -1.000000
##  [913]  -3.089996   0.500000   0.369995   1.860000  -0.929992  -0.970002
##  [919]  -1.419998   0.919998   0.809998   1.869995   2.050003   0.050003
##  [925]  -1.300003   1.369995   1.120011  -2.260010   2.559998  -0.549988
##  [931]   0.089996  -2.089996   0.679992  -1.630004   2.510009  -0.350006
##  [937]  -1.059997  -0.570008  -7.669998   1.340012   3.469986   1.050003
##  [943]   2.139999  -1.399994   0.490006  -1.540009   2.820007   0.989991
##  [949]   0.270004  -0.910004   1.150009  -0.190002   1.190002   0.779999
##  [955]   1.589997  -0.080002  -1.470001   0.419998  -3.709992   0.529999
##  [961]  -1.199997   0.029999   7.250000   1.989990   0.190003   2.600006
##  [967]  -3.740006   0.000000   1.250000   0.080002  -0.690002  -0.259995
##  [973]  -0.839996   0.309997  -0.699997  -0.120010   1.639999  -0.589996
##  [979]  -0.259995   3.119996  -0.990006   1.910004   0.250000  -0.610001
##  [985]  -7.289993   2.049988  -2.079987  -3.630005   1.360001   3.229996
##  [991]   4.080001  -1.139999   0.039993  -2.079986   1.339996   0.089996
##  [997]   1.789994   0.640014  -1.310012  -1.619996  -0.440002  -0.250000
## [1003]  -1.209992   1.629990   0.300003  -1.459991   4.959991   3.250000
## [1009]  -0.339996   2.520004   1.429993  -0.410004  -0.029999  -0.069992
## [1015]  -8.400009  -0.979996  -0.789993   2.199997   1.489990   4.080002
## [1021]   3.980011  -2.800003   0.929993   2.520004  -4.020004   1.139999
## [1027]  -0.229996   6.199997  -2.809997  -9.020004   4.050003  -5.130005
## [1033]  -8.599991   4.529999   0.300003  -3.260010   6.370010   0.440003
## [1039]  -2.600006  -1.350006   1.900009   1.080001   4.299988   1.640000
## [1045]  -3.469986  -3.140000  -2.380005   0.679993   3.779999  -0.619995
## [1051]   3.930008  -1.370011   2.890000  -0.470001  -2.879990   2.309997
## [1057]  -0.330001   1.229995 -12.529998  -4.410004   1.240005  -4.500000
## [1063]  -5.500000   0.669999  -7.839997   0.809998   6.759994  -4.399994
## [1069]   0.720002  -1.009995   4.239990  -2.139999   0.729996   7.110000
## [1075]   1.280014  -2.450012   0.650009   0.309998   3.830002  -2.300003
## [1081]   1.740005  -1.820007  -0.440003  -6.149994   0.000000  14.470002
## [1087]  -0.570008  -1.589996   1.860001   2.210006  -2.050003   2.589997
## [1093]   1.360000   0.949997   3.740006   2.869995   1.460006  -0.350006
## [1099]  -2.319992  -1.120010   0.559998  -1.080002   1.810012  -0.690002
## [1105]   3.099991  -0.970001  -1.009995   0.820007   1.929993   4.110001
## [1111]   2.210006  -0.710006  -0.339997  -1.600006  -3.160003   0.920013
## [1117]   2.439987   0.860001   0.010010   4.399994  -0.959992   2.459992
## [1123]  -0.819993   4.509995  -0.500000   0.240005  -5.389999   2.649994
## [1129]  -3.160004   0.390000  -1.909989   3.039994  -4.630005   5.720001
## [1135]   4.779999   1.510009  -1.200012  -1.000000   4.380005   0.400009
## [1141]  -0.090011   2.760009  -0.630004  -1.270005   1.850006   0.970002
## [1147]   3.759994   2.830002 -41.240005  -1.369996  -3.830001   1.520004
## [1153]  -0.930008   4.720001   1.410004   7.910003  -1.880004   1.369995
## [1159]  -2.089997  -2.830001  -0.209992   1.059998  -1.580002  -4.830002
## [1165]  -0.899994  -1.300003   0.119995   1.020004  -0.740005   1.750000
## [1171]   2.810013  -1.200012  -0.360001   1.740005  -1.910003  -4.569992
## [1177]  -3.980011  -4.649994   0.509994   1.140000   1.760009  -3.940002
## [1183]  -0.639999   0.960006  -1.740005  -0.279999   2.759995   2.960006
## [1189]  -3.090011   2.480011  -0.500000   2.039993   1.889999  -4.379989
## [1195]  -2.020005  -3.110000   3.099991  -3.579987  -1.520004  -0.080002
## [1201]   0.649994  -6.519989   1.970001   0.389999  -0.220001   5.259995
## [1207]   0.639999  -4.500000  -0.869995   0.729996  -0.390000  -8.350006
## [1213]   4.910004  -5.580002  -3.279999   4.130005   5.569992  -0.039993
## [1219]  -1.399994  -1.670013   1.260009   1.589997  -3.660004  -2.909988
## [1225]  -3.410004   0.610001   2.059997  -0.369995  -4.320007  -7.979996
## [1231]   0.879990   2.390014  -3.090011   4.650009  -1.380005   1.759995
## [1237]   1.919998   1.930008   0.479995  -3.160003   1.700012  -2.210007
## [1243]   4.430008   0.229996   2.419998   0.509995  -0.949997  -3.869996
## [1249]   3.470002 -10.419999   0.159989  -8.449997  -0.889999  10.119995
## [1255]   0.340011  -1.320007  -2.110001
# Now I am finding the mean, standard deviation, kurtosis
# and Skewness of df

mean(df)
## [1] 0.06076372
sd(df)
## [1] 2.414555
kurtosis(df)
## [1] 71.02921
skewness(df)
## [1] -3.973192
# 3. 

# I am first plotting the data to get an idea of the distribution 

ggplot(data = mean2, mapping = aes(x = Close)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# Now to calculate them by hand. 

# I found the sum of the FB close by 

mean3 <- gafa_stock %>% 
  filter(Symbol == "FB") %>% 
  pull(Close)
mean3
##    [1]  54.71  54.56  57.20  57.92  58.23  57.22  57.94  55.91  57.74  57.60
##   [11]  57.19  56.30  58.51  57.51  56.63  54.45  53.55  55.14  53.53  61.08
##   [21]  62.57  61.48  62.75  62.19  62.16  64.32  63.55  64.85  64.45  67.33
##   [31]  67.09  67.30  68.06  69.63  68.59  70.78  69.85  69.26  68.94  68.46
##   [41]  67.41  68.80  71.57  70.84  69.80  72.03  70.10  70.88  68.83  67.72
##   [51]  68.74  69.19  68.24  66.97  67.24  64.10  64.89  60.39  60.97  60.01
##   [61]  60.24  62.62  62.72  59.49  56.75  56.95  58.19  62.41  59.16  58.53
##   [71]  58.89  59.09  59.72  58.94  61.24  63.03  61.36  60.87  57.71  56.14
##   [81]  58.15  59.78  61.15  60.46  61.22  58.53  57.39  56.76  57.24  59.83
##   [91]  59.83  59.23  57.92  58.02  59.21  58.56  60.49  60.52  61.35  63.48
##  [101]  63.51  63.83  63.30  63.08  62.87  63.34  63.19  62.50  62.88  65.77
##  [111]  65.78  64.29  64.50  64.19  64.40  65.60  64.34  64.50  65.37  65.72
##  [121]  67.44  67.13  67.60  67.29  68.06  66.45  66.29  65.29  62.76  64.97
##  [131]  64.87  66.34  67.90  67.17  67.66  66.41  68.42  69.40  69.27  71.29
##  [141]  74.98  75.19  74.92  73.71  74.68  72.65  72.36  73.51  72.69  72.47
##  [151]  73.17  73.06  73.44  72.83  73.77  74.30  73.63  74.59  75.29  74.81
##  [161]  74.57  74.57  75.02  75.96  74.63  73.86  74.82  76.68  75.83  75.95
##  [171]  77.26  77.89  76.67  77.43  77.92  77.48  74.58  76.08  76.43  77.00
##  [181]  77.91  76.80  78.29  78.54  77.22  78.79  79.00  79.04  76.55  77.08
##  [191]  77.44  77.56  76.29  77.52  75.91  72.91  72.99  73.59  73.21  72.63
##  [201]  75.95  76.95  78.69  78.37  80.04  80.67  80.28  80.77  75.86  74.11
##  [211]  74.99  73.88  75.76  74.83  75.26  75.60  75.00  74.61  74.72  74.25
##  [221]  74.88  74.24  74.34  73.33  73.60  73.75  74.01  75.63  77.62  77.70
##  [231]  75.10  75.46  74.88  75.24  76.36  76.52  76.84  76.18  77.73  77.83
##  [241]  76.99  74.69  76.11  78.40  79.88  81.45  80.61  80.77  80.78  80.02
##  [251]  79.22  78.02  78.45  77.19  76.15  76.15  78.18  77.74  76.72  76.45
##  [261]  76.28  74.05  75.18  76.24  76.74  77.65  77.83  77.50  75.78  76.24
##  [271]  78.00  75.91  74.99  75.40  75.63  75.61  74.47  74.44  75.19  76.51
##  [281]  76.23  75.74  75.60  76.71  79.42  79.90  78.84  78.45  79.56  80.41
##  [291]  78.97  79.75  79.60  80.90  81.21  80.01  79.44  77.55  77.57  78.93
##  [301]  78.05  78.07  79.36  80.91  82.75  83.80  84.43  85.31  82.92  83.01
##  [311]  83.30  83.20  82.22  81.67  81.56  82.44  82.32  82.28  82.17  82.04
##  [321]  83.01  83.52  82.71  82.31  80.78  83.09  83.62  84.63  82.41  81.53
##  [331]  81.91  80.68  80.47  78.77  78.99  78.81  77.56  78.10  78.43  78.51
##  [341]  78.01  77.46  78.44  81.37  80.42  80.88  80.63  80.55  80.48  80.54
##  [351]  79.33  80.55  80.15  79.19  80.29  80.44  82.44  82.05  82.14  80.67
##  [361]  80.67  82.16  81.83  81.53  80.71  81.06  81.79  82.91  82.51  84.74
##  [371]  87.88  88.86  87.98  88.01  85.80  85.77  86.91  87.29  87.55  87.22
##  [381]  85.65  85.88  87.95  90.10  89.68  89.76  90.85  94.97  97.91  98.39
##  [391]  97.04  95.44  96.95  94.17  95.29  96.99  95.21  94.01  94.14  94.06
##  [401]  96.44  95.12  94.30  94.15  93.62  94.19  93.43  94.42  93.93  95.17
##  [411]  95.31  90.56  86.06  82.09  83.00  87.19  89.73  91.01  89.43  87.23
##  [421]  89.89  88.15  88.26  89.53  90.44  91.98  92.05  92.31  92.90  93.45
##  [431]  94.34  94.40  95.55  92.96  93.97  94.41  92.77  89.21  86.67  89.90
##  [441]  90.95  92.07  94.01  92.80  92.40  92.47  93.24  94.26  94.12  94.07
##  [451]  95.96  97.54  98.47  97.00  97.11  99.67 102.19 103.77 103.70 104.20
##  [461] 104.88 101.97 103.31 102.58 103.94 108.76 107.10 106.49 107.91 109.01
##  [471] 108.02 103.95 104.04 105.13 107.77 106.26 107.32 106.95 105.74 105.41
##  [481] 105.45 104.24 107.12 106.07 104.38 106.18 105.61 106.49 104.60 105.42
##  [491] 102.12 104.66 104.55 106.79 106.22 104.04 104.77 105.51 104.63 105.02
##  [501] 105.93 107.26 106.22 104.66 102.22 102.73 102.97  97.92  97.33  97.51
##  [511]  99.37  95.44  98.37  94.97  95.26  94.35  94.16  97.94  97.01  97.34
##  [521]  94.45 109.11 112.21 115.09 114.61 112.69 110.49 104.07  99.75  99.54
##  [531] 101.00 101.91 102.01 101.61 105.20 103.47 104.57 107.16 105.46 106.88
##  [541] 108.07 107.92 106.92 109.82 109.95 109.58 108.39 105.73 105.93 107.51
##  [551] 107.32 109.41 109.89 110.67 112.18 111.02 111.45 111.85 112.25 112.54
##  [561] 113.05 113.69 116.14 114.70 114.10 116.06 112.55 112.22 113.71 113.64
##  [571] 110.63 108.99 110.61 110.51 110.84 109.64 110.45 112.29 112.42 113.44
##  [581] 110.56 110.10 108.76 108.89 116.73 117.58 118.57 117.43 118.06 117.81
##  [591] 119.49 119.24 120.50 119.52 120.28 119.81 118.67 117.35 117.65 116.81
##  [601] 117.35 115.97 117.70 117.89 119.47 119.38 118.81 118.78 118.93 118.47
##  [611] 118.79 117.76 118.39 118.56 116.62 113.95 114.94 114.60 114.39 113.02
##  [621] 113.37 114.38 113.91 115.08 112.08 108.97 112.70 114.16 114.28 114.19
##  [631] 114.20 116.70 115.85 117.24 117.87 117.93 116.78 117.29 116.86 119.37
##  [641] 120.61 121.92 120.61 121.00 121.63 121.22 123.34 125.00 123.94 124.31
##  [651] 123.09 122.51 124.36 125.15 125.26 125.06 124.88 124.90 124.88 123.90
##  [661] 123.30 124.37 123.91 123.56 124.15 124.37 123.48 123.89 124.96 126.54
##  [671] 125.84 126.12 126.17 126.51 129.73 131.05 130.27 127.10 128.69 127.21
##  [681] 127.77 128.35 129.07 128.65 128.64 129.94 130.08 127.96 127.31 128.69
##  [691] 129.23 128.09 128.27 128.77 128.19 128.47 128.74 128.99 130.24 128.88
##  [701] 129.05 127.82 127.88 127.54 128.57 130.11 130.00 132.07 133.28 132.29
##  [711] 131.04 129.69 131.29 130.99 129.50 127.17 120.00 120.75 122.15 124.22
##  [721] 123.18 120.80 119.02 115.08 117.20 116.34 117.79 117.02 121.77 121.47
##  [731] 120.84 120.38 120.41 120.87 118.42 115.10 115.40 117.43 117.31 117.95
##  [741] 118.91 119.68 117.77 120.31 120.21 120.57 119.87 119.24 119.09 119.04
##  [751] 117.40 117.27 118.01 116.92 116.35 115.05 116.86 118.69 120.67 123.41
##  [761] 124.90 124.35 126.09 126.62 128.34 127.87 127.92 127.55 127.04 128.93
##  [771] 129.37 131.48 132.78 132.18 130.98 130.32 133.23 130.84 130.98 132.06
##  [781] 131.84 134.20 134.14 134.19 134.05 133.85 133.44 133.84 133.53 133.72
##  [791] 136.12 135.36 135.44 136.41 135.54 137.42 136.76 137.17 137.42 137.30
##  [801] 137.72 138.24 138.79 139.60 139.32 139.72 139.99 139.84 139.94 138.51
##  [811] 139.59 139.53 140.34 140.32 141.76 142.65 142.41 142.05 142.28 141.73
##  [821] 141.85 141.17 140.78 141.04 139.92 139.58 139.39 141.42 140.96 142.27
##  [831] 143.80 143.68 145.47 146.49 146.56 147.70 150.25 152.46 152.78 151.80
##  [841] 150.85 150.24 151.06 150.48 150.29 150.04 150.33 150.19 149.78 144.85
##  [851] 147.66 148.06 148.24 148.07 150.04 151.96 152.13 152.38 151.46 151.53
##  [861] 153.61 153.63 152.81 153.12 154.71 149.60 148.44 150.68 150.25 149.80
##  [871] 150.64 152.87 152.25 153.91 153.40 155.07 153.59 150.58 153.24 151.04
##  [881] 150.98 148.43 150.34 148.82 151.44 153.50 155.27 158.90 159.26 159.97
##  [891] 159.73 162.86 164.14 164.53 164.43 166.00 165.28 165.61 170.44 172.45
##  [901] 169.25 169.86 169.30 168.59 169.62 171.98 171.23 171.18 167.40 168.08
##  [911] 170.75 171.00 170.00 166.91 167.41 167.78 169.64 168.71 167.74 166.32
##  [921] 167.24 168.05 169.92 171.97 172.02 170.72 172.09 173.21 170.95 173.51
##  [931] 172.96 173.05 170.96 171.64 170.01 172.52 172.17 171.11 170.54 162.87
##  [941] 164.21 167.68 168.73 170.87 169.47 169.96 168.42 171.24 172.23 172.50
##  [951] 171.59 172.74 172.55 173.74 174.52 176.11 176.03 174.56 174.98 171.27
##  [961] 171.80 170.60 170.63 177.88 179.87 180.06 182.66 178.92 178.92 180.17
##  [971] 180.25 179.56 179.30 178.46 178.77 178.07 177.95 179.59 179.00 178.74
##  [981] 181.86 180.87 182.78 183.03 182.42 175.13 177.18 175.10 171.47 172.83
##  [991] 176.06 180.14 179.00 179.04 176.96 178.30 178.39 180.18 180.82 179.51
## [1001] 177.89 177.45 177.20 175.99 177.62 177.92 176.46 181.42 184.67 184.33
## [1011] 186.85 188.28 187.87 187.84 187.77 179.37 178.39 177.60 179.80 181.29
## [1021] 185.37 189.35 186.55 187.48 190.00 185.98 187.12 186.89 193.09 190.28
## [1031] 181.26 185.31 180.18 171.58 176.11 176.41 173.15 179.52 179.96 177.36
## [1041] 176.01 177.91 178.99 183.29 184.93 181.46 178.32 175.94 176.62 180.40
## [1051] 179.78 183.71 182.34 185.23 184.76 181.88 184.19 183.86 185.09 172.56
## [1061] 168.15 169.39 164.89 159.39 160.06 152.22 153.03 159.79 155.39 156.11
## [1071] 155.10 159.34 157.20 157.93 165.04 166.32 163.87 164.52 164.83 168.66
## [1081] 166.36 168.10 166.28 165.84 159.69 159.69 174.16 173.59 172.00 173.86
## [1091] 176.07 174.02 176.61 177.97 178.92 182.66 185.53 186.99 186.64 184.32
## [1101] 183.20 183.76 182.68 184.49 183.80 186.90 185.93 184.92 185.74 187.67
## [1111] 191.78 193.99 193.28 192.94 191.34 188.18 189.10 191.54 192.40 192.41
## [1121] 196.81 195.85 198.31 197.49 202.00 201.50 201.74 196.35 199.00 195.84
## [1131] 196.23 194.32 197.36 192.73 198.45 203.23 204.74 203.54 202.54 206.92
## [1141] 207.32 207.23 209.99 209.36 208.09 209.94 210.91 214.67 217.50 176.26
## [1151] 174.89 171.06 172.58 171.65 176.37 177.78 185.69 183.81 185.18 183.09
## [1161] 180.26 180.05 181.11 179.53 174.70 173.80 172.50 172.62 173.64 172.90
## [1171] 174.65 177.46 176.26 175.90 177.64 175.73 171.16 167.18 162.53 163.04
## [1181] 164.18 165.94 162.00 161.36 162.32 160.58 160.30 163.06 166.02 162.93
## [1191] 165.41 164.91 166.95 168.84 164.46 162.44 159.33 162.43 158.85 157.33
## [1201] 157.25 157.90 151.38 153.35 153.74 153.52 158.78 159.42 154.92 154.05
## [1211] 154.78 154.39 146.04 150.95 145.37 142.09 146.22 151.79 151.75 150.35
## [1221] 148.68 149.94 151.53 147.87 144.96 141.55 142.16 144.22 143.85 139.53
## [1231] 131.55 132.43 134.82 131.73 136.38 135.00 136.76 138.68 140.61 141.09
## [1241] 137.93 139.63 137.42 141.85 142.08 144.50 145.01 144.06 140.19 143.66
## [1251] 133.24 133.40 124.95 124.06 134.18 134.52 133.20 131.09
Sum3 <- sum(mean3)

# And then used mean2 from before to find the number of rows

Nrow <- nrow(mean2)

# I then plugged it into the mean formula which is

meann <- Sum3/Nrow
meann
## [1] 120.4625
# For Standard deviation:

Std <- sqrt((sum((mean3 - meann)^2))/(Nrow - 1))
Std
## [1] 41.32364
# For Kurtosis:

K <- ((mean(mean3 - meann))^4)/(Std)^4
K
## [1] 7.809593e-67
# For Skewness:

S <- (mean(mean3 - meann))^3/(Std)^3
S
## [1] -2.627068e-50

Exercise 7

TSLA_2_ <- read_excel("C:/Users/14047/Downloads/TSLA (2).xls", 
                      col_types = c("date", "skip", "skip", 
                                    "skip", "skip", "numeric", "skip"))

# 1. 
# Loaded into R with the Import Dataset tab (had to convert
# the data into excel first). 

#2.
# I did this through the Import Dataset tab also (I just skipped
# over the columns). The code for this is at the top of this sheet.

View(TSLA_2_)

# 3.

# The index is Daily (which is already transformed into my data)
stocks <- TSLA_2_ %>% 
  mutate(Date = as_date(Date)) %>% 
  as_tsibble(index = Date)

stocks
## # A tsibble: 169 x 2 [1D]
##    Date       Close
##    <date>     <dbl>
##  1 2022-01-03  400.
##  2 2022-01-04  383.
##  3 2022-01-05  363.
##  4 2022-01-06  355.
##  5 2022-01-07  342.
##  6 2022-01-10  353.
##  7 2022-01-11  355.
##  8 2022-01-12  369.
##  9 2022-01-13  344.
## 10 2022-01-14  350.
## # … with 159 more rows
## # ℹ Use `print(n = ...)` to see more rows
# 4. 

# I first added another column to represent the Months through 
# out the year and then filtered it. 
stocks1 <- stocks %>% 
  mutate(Month = month(Date)) %>% 
  filter(Month == "6" ) 

stocks1  
## # A tsibble: 21 x 3 [1D]
##    Date       Close Month
##    <date>     <dbl> <dbl>
##  1 2022-06-01  247.     6
##  2 2022-06-02  258.     6
##  3 2022-06-03  235.     6
##  4 2022-06-06  238.     6
##  5 2022-06-07  239.     6
##  6 2022-06-08  242.     6
##  7 2022-06-09  240.     6
##  8 2022-06-10  232.     6
##  9 2022-06-13  216.     6
## 10 2022-06-14  221.     6
## # … with 11 more rows
## # ℹ Use `print(n = ...)` to see more rows
# To plot it, I had to change the column name of "Adj. Close" to 
# Close. 

ggplot(data = stocks1, mapping = aes(x = Date, y = Close)) +
  geom_line() +
  labs(y = "TSLA Close", x = "June 2022", title = "TSLA Close for June 2022")

# 5. 

# I calculated the mean and standard deviation by each month
# by grouping the months and then calculating them. 

stocks2 <- stocks %>% 
  mutate(Month = month(Date)) %>% 
  group_by(Month) %>% 
  mutate(Mean = mean(Close), Std = sd(Close)) %>% 
  ungroup()
  
stocks2
## # A tsibble: 169 x 5 [1D]
##    Date       Close Month  Mean   Std
##    <date>     <dbl> <dbl> <dbl> <dbl>
##  1 2022-01-03  400.     1  337.  31.7
##  2 2022-01-04  383.     1  337.  31.7
##  3 2022-01-05  363.     1  337.  31.7
##  4 2022-01-06  355.     1  337.  31.7
##  5 2022-01-07  342.     1  337.  31.7
##  6 2022-01-10  353.     1  337.  31.7
##  7 2022-01-11  355.     1  337.  31.7
##  8 2022-01-12  369.     1  337.  31.7
##  9 2022-01-13  344.     1  337.  31.7
## 10 2022-01-14  350.     1  337.  31.7
## # … with 159 more rows
## # ℹ Use `print(n = ...)` to see more rows