library(matlib)
library(pracma)##
## Attaching package: 'pracma'
## The following objects are masked from 'package:matlib':
##
## angle, inv
Problem set 1
(1) What is the rank of the matrix A?
\(A = \begin{bmatrix} 1&2&3&4 \\ -1&0&1&3 \\ 0&1&-2&1 \\5&4&-2&-3 \end{bmatrix}\)
A = matrix(c(1,-1,0,5, 2,0,1,4, 3,1,-2,-2, 4,3,1,-3),4)
A## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
print('- RREF')## [1] "- RREF"
rref(A)## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
print('- matrix rank')## [1] "- matrix rank"
Rank(A)## [1] 4
(2) Given an mxn matrix where m > n, what can
be the maximum rank? The minimum rank, assuming that the matrix is
non-zero?
(3) What is the rank of matrix B?
\[B = \begin{bmatrix} 1&2&1 \\ 3&6&3 \\ 2&4&2 \end{bmatrix} \] | The 3 rows in the matrix are scaled equivalent there for the rank is 1
B = matrix(c(1,3,2, 2,6,4, 1,3,2),3)
B## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
#- RREF
rref(B)## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
#- matrix rank
Rank(B)## [1] 1
Problem Set 2
(4)Compute the eigenvalues and eigenvectors of the matrix A.
You’ll need to show your work. You’ll need to write out the
characteristic polynomial and show your solution.
\(A = \begin{bmatrix} 1&2&3 \\ 0&4&5 \\ 0&0&6 \end{bmatrix}\)
A <- matrix(c(1,0,0, 2,4,0, 3,5,6), 3)
A## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
#eigen values / vectors'
e <- eigen(A)
print(e$values)## [1] 6 4 1
lambda 1
\[ 1\lambda \to (I - A) = \begin{bmatrix} 1-1&-2&-3 \\ 0&1-4&-5 \\ 0&0&1-6 \end{bmatrix} = \begin{bmatrix} 0&-2&-3 \\ 0&-3&-5 \\ 0&0&-5 \end{bmatrix} RREF \begin{bmatrix} 0&0&0 \\ 0&1 &0 \\ 0&0&1 \end{bmatrix} \]
- R3*(-1/5)
- R2 + (5)*R3
- R2*(-1/3)
- R1 + (-3)R3 and R1 + (-2)R2
\[ null space \to 1\lambda \to (I - A) = \begin{bmatrix} 0&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix} * \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
- x1=1, x2=0, x3=0
\[ N(I-A) \to span ( s * \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}) \]
#lambda 1
A1 <- 1*diag(3) - A
A1## [,1] [,2] [,3]
## [1,] 0 -2 -3
## [2,] 0 -3 -5
## [3,] 0 0 -5
rref(A1)## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
lambda 4
\[ 4\lambda \to (4I - A) = \begin{bmatrix} 4-1&-2&-3 \\ 0&4-4&-5 \\ 0&0&4-6 \end{bmatrix} = \begin{bmatrix} 3&-2&-3 \\ 0&0&-5 \\ 0&0&-2 \end{bmatrix} RREF \begin{bmatrix} 1&-2/3&0 \\ 0&0&0 \\ 0&0&1 \end{bmatrix} \]
- R3*(-1/2)
- R2 + (5)R3 and R1 + (3)R3
- R2*(1/3)
\[ null space \to 1\lambda \to (I - A) = \begin{bmatrix} 1&-2/3&0 \\ 0&0&0 \\ 0&0&1 \end{bmatrix} * \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
- x1=2/3, x2=1, x3=0
\[ N(I-A) \to span ( s * \begin{bmatrix} 2/3 \\ 1 \\ 0 \end{bmatrix}) \]
#lambda 4
A2 <- 4*diag(3) - A
A2## [,1] [,2] [,3]
## [1,] 3 -2 -3
## [2,] 0 0 -5
## [3,] 0 0 -2
rref(A2)## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
lambda 6
\[ 4\lambda \to (4I - A) = \begin{bmatrix} 6-1&-2&-3 \\ 0&6-4&-5 \\ 0&0&6-6 \end{bmatrix} = \begin{bmatrix} 5&-2&-3 \\ 0&2&-5 \\ 0&0&0 \end{bmatrix} RREF \begin{bmatrix} 1&0&-8/5 \\ 0&1&-5/2 \\ 0&0&0 \end{bmatrix} \]
- R2*(1/2)
- R1 + (-2)*R2
- R1*(1/5)
\[ null space \to 1\lambda \to (I - A) = \begin{bmatrix} 1&0&-8/5 \\ 0&1&-5/2 \\ 0&0&0 \end{bmatrix} * \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
- x1=8/5, x2=5/2, x3=1
\[ N(I-A) \to span ( s * \begin{bmatrix} 8/5 \\ 5/2 \\ 1 \end{bmatrix}) \]
#lambda 6
A3 <- 6*diag(3) - A
A3## [,1] [,2] [,3]
## [1,] 5 -2 -3
## [2,] 0 2 -5
## [3,] 0 0 0
rref(A3)## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
Please show your work using an R-markdown document.
Please name your assignment submission with your first initial and last
name.