library(tidyverse)
library(quantmod)
library(plotly)
library(tidyquant)
Analzing Apple and Walmart
# Import stock prices
stocks <- tq_get(c("AAPL", "WMT"),
get = "stock.prices",
from = "2016-01-01",
to = "2017-01-01")
stocks
## # A tibble: 504 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2016-01-04 25.7 26.3 25.5 26.3 270597600 24.2
## 2 AAPL 2016-01-05 26.4 26.5 25.6 25.7 223164000 23.5
## 3 AAPL 2016-01-06 25.1 25.6 25.0 25.2 273829600 23.1
## 4 AAPL 2016-01-07 24.7 25.0 24.1 24.1 324377600 22.1
## 5 AAPL 2016-01-08 24.6 24.8 24.2 24.2 283192000 22.2
## 6 AAPL 2016-01-11 24.7 24.8 24.3 24.6 198957600 22.6
## 7 AAPL 2016-01-12 25.1 25.2 24.7 25.0 196616800 22.9
## 8 AAPL 2016-01-13 25.1 25.3 24.3 24.3 249758400 22.3
## 9 AAPL 2016-01-14 24.5 25.1 23.9 24.9 252680400 22.8
## 10 AAPL 2016-01-15 24.0 24.4 23.8 24.3 319335600 22.3
## # … with 494 more rows
g <- ggplot(data = stocks) +
geom_point(mapping = aes(x = volume, y = adjusted, color = symbol))
g
Revenue by Category
ggplotly(g)
g <- ggplot(data = stocks) +
geom_point(mapping = aes(x = volume, y = adjusted, color = symbol))
g
Revenue by Category