From Julie Butler and Peggy Kerns PERMA & EPOCH

Items

  1. How much of the time do you feel you are making progress towards accomplishing your goals? (Acomplishment)

  2. How often do you become absorbed in what you are doing? (Engagement)

  3. In general, how often do you feel joyful? (Positive Emotion)

  4. To what extent do you receive help and support from others when you need it? (Relationship)

  5. In general, how often do you feel anxious? (Negative Emotion)

  6. How often do you achieve the important goals you have set for yourself? (Acomplishment)

  7. In general, how often do you feel positive? (Positive Emotion)

  8. In general, to what extent do you feel excited and interested in things? (Enagagement)

  9. How lonely do you feel in your daily life? (Lonely -single item)

  10. In general, how often do you feel angry? (Negative Emotion)

  11. To what extent have you been feeling loved? (Relationship)

  12. How often are you able to handle your responsibilities? (Acomplishment)

  13. How satisfied are you with your personal relationships? (Relationship)

  14. In general, how often do you feel sad? (Nagative Emotion)

  15. How often do you lose track of time while doing something you enjoy? (Engagement)

  16. In general, to what extent do you feel contented? (Positive Emotion)

  17. Taking all things together, how happy would you say you are? (Happiness -single item)

library(lavaan)
## This is lavaan 0.5-18
## lavaan is BETA software! Please report any bugs.
library(semPlot)
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GPArotation)
library(psych)

loadthedata

data <- read.csv("~/Psychometric_study_data/allsurveysT1.csv")
View(data)

create the models

seven.model= 'Acomplishment =~ PERMA_1  + PERMA_6 + PERMA_12
              Engagement =~ PERMA_2 +  PERMA_8 + PERMA_15 
              Positive Emotion =~ PERMA_3 + PERMA_7 + PERMA_16
              Relationship =~ PERMA_4 + PERMA_11 + PERMA_13 
              Negative Emotion =~ PERMA_5 + PERMA_10 + PERMA_14
              Lonely =~ PERMA_9  
              Happy =~ PERMA_17'

one.model= 'One =~ PERMA_1  + PERMA_2 + PERMA_3 + PERMA_4 +  PERMA_5 + PERMA_6 + PERMA_7 + PERMA_8 + PERMA_9 + 
PERMA_10 + PERMA_11 + PERMA_12 + PERMA_13 + PERMA_14 + PERMA_15 + PERMA_16  + PERMA_17'

run the models

seven.fit=cfa(seven.model, data=data)
one.fit=cfa(one.model, data=data)

create pictures

semPaths(seven.fit, whatLabels = "std", layout = "tree")

semPaths(one.fit, whatLabels = "std", layout = "tree")

#summaries

summary(seven.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after 190 iterations
## 
##                                                   Used       Total
##   Number of observations                           324         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              156.407
##   Degrees of freedom                               100
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   Acomplishment =~
##     PERMA_1           1.000                               1.925    0.783
##     PERMA_6           0.800    0.075   10.728    0.000    1.539    0.631
##     PERMA_12          0.739    0.072   10.324    0.000    1.423    0.609
##   Engagement =~
##     PERMA_2           1.000                               1.576    0.675
##     PERMA_8           1.007    0.096   10.463    0.000    1.588    0.696
##     PERMA_15          0.813    0.110    7.364    0.000    1.281    0.466
##   PositiveEmotion =~
##     PERMA_3           1.000                               1.733    0.743
##     PERMA_7           1.073    0.076   14.158    0.000    1.859    0.775
##     PERMA_16          0.966    0.076   12.664    0.000    1.675    0.700
##   Relationship =~
##     PERMA_4           1.000                               1.482    0.540
##     PERMA_11          1.226    0.155    7.911    0.000    1.817    0.656
##     PERMA_13          1.214    0.155    7.817    0.000    1.800    0.642
##   NegativeEmotion =~
##     PERMA_5           1.000                               1.768    0.559
##     PERMA_10          0.829    0.178    4.652    0.000    1.466    0.446
##     PERMA_14          0.928    0.190    4.883    0.000    1.640    0.510
##   Lonely =~
##     PERMA_9           1.000                               3.564    1.000
##   Happy =~
##     PERMA_17          1.000                               2.423    1.000
## 
## Covariances:
##   Acomplishment ~~
##     Engagement        2.528    0.320    7.905    0.000    0.833    0.833
##     PositiveEmotn     2.926    0.333    8.787    0.000    0.877    0.877
##     Relationship      2.275    0.340    6.697    0.000    0.798    0.798
##     NegativeEmotn    -0.341    0.309   -1.102    0.270   -0.100   -0.100
##     Lonely           -1.393    0.452   -3.079    0.002   -0.203   -0.203
##     Happy             2.773    0.351    7.896    0.000    0.595    0.595
##   Engagement ~~
##     PositiveEmotn     2.422    0.298    8.122    0.000    0.887    0.887
##     Relationship      1.778    0.287    6.194    0.000    0.761    0.761
##     NegativeEmotn     0.036    0.263    0.138    0.890    0.013    0.013
##     Lonely           -0.164    0.381   -0.431    0.666   -0.029   -0.029
##     Happy             2.360    0.316    7.468    0.000    0.618    0.618
##   PositiveEmotion ~~
##     Relationship      2.026    0.304    6.656    0.000    0.789    0.789
##     NegativeEmotn    -0.965    0.293   -3.291    0.001   -0.315   -0.315
##     Lonely           -1.710    0.405   -4.222    0.000   -0.277   -0.277
##     Happy             3.526    0.361    9.770    0.000    0.840    0.840
##   Relationship ~~
##     NegativeEmotn    -0.375    0.258   -1.456    0.145   -0.143   -0.143
##     Lonely           -1.152    0.383   -3.006    0.003   -0.218   -0.218
##     Happy             2.451    0.357    6.860    0.000    0.683    0.683
##   NegativeEmotion ~~
##     Lonely            2.567    0.572    4.485    0.000    0.407    0.407
##     Happy            -1.173    0.359   -3.267    0.001   -0.274   -0.274
##   Lonely ~~
##     Happy            -1.998    0.493   -4.056    0.000   -0.231   -0.231
## 
## Variances:
##     PERMA_1           2.331    0.282                      2.331    0.386
##     PERMA_6           3.570    0.323                      3.570    0.601
##     PERMA_12          3.442    0.306                      3.442    0.630
##     PERMA_2           2.961    0.292                      2.961    0.544
##     PERMA_8           2.690    0.276                      2.690    0.516
##     PERMA_15          5.920    0.494                      5.920    0.783
##     PERMA_3           2.440    0.220                      2.440    0.448
##     PERMA_7           2.298    0.217                      2.298    0.399
##     PERMA_16          2.921    0.253                      2.921    0.510
##     PERMA_4           5.348    0.475                      5.348    0.709
##     PERMA_11          4.359    0.444                      4.359    0.569
##     PERMA_13          4.626    0.459                      4.626    0.588
##     PERMA_5           6.870    0.824                      6.870    0.687
##     PERMA_10          8.641    0.833                      8.641    0.801
##     PERMA_14          7.639    0.818                      7.639    0.740
##     PERMA_9           0.000                               0.000    0.000
##     PERMA_17          0.000                               0.000    0.000
##     Acomplishment     3.704    0.487                      1.000    1.000
##     Engagement        2.484    0.400                      1.000    1.000
##     PositiveEmotn     3.003    0.397                      1.000    1.000
##     Relationship      2.196    0.474                      1.000    1.000
##     NegativeEmotn     3.125    0.844                      1.000    1.000
##     Lonely           12.705    0.998                      1.000    1.000
##     Happy             5.873    0.461                      1.000    1.000
## 
## R-Square:
## 
##     PERMA_1           0.614
##     PERMA_6           0.399
##     PERMA_12          0.370
##     PERMA_2           0.456
##     PERMA_8           0.484
##     PERMA_15          0.217
##     PERMA_3           0.552
##     PERMA_7           0.601
##     PERMA_16          0.490
##     PERMA_4           0.291
##     PERMA_11          0.431
##     PERMA_13          0.412
##     PERMA_5           0.313
##     PERMA_10          0.199
##     PERMA_14          0.260
##     PERMA_9           1.000
##     PERMA_17          1.000
summary(one.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-18) converged normally after  39 iterations
## 
##                                                   Used       Total
##   Number of observations                           324         757
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              354.086
##   Degrees of freedom                               119
##   P-value (Chi-square)                           0.000
## 
## Parameter estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
##                    Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
## Latent variables:
##   One =~
##     PERMA_1           1.000                               1.744    0.710
##     PERMA_2           0.772    0.078    9.839    0.000    1.345    0.577
##     PERMA_3           0.986    0.079   12.525    0.000    1.720    0.737
##     PERMA_4           0.759    0.092    8.231    0.000    1.323    0.482
##     PERMA_5          -0.243    0.106   -2.294    0.022   -0.423   -0.134
##     PERMA_6           0.769    0.082    9.391    0.000    1.341    0.550
##     PERMA_7           1.058    0.081   13.052    0.000    1.845    0.769
##     PERMA_8           0.887    0.077   11.530    0.000    1.546    0.677
##     PERMA_9          -0.493    0.119   -4.130    0.000   -0.859   -0.241
##     PERMA_10         -0.166    0.110   -1.512    0.130   -0.290   -0.088
##     PERMA_11          0.887    0.093    9.538    0.000    1.547    0.559
##     PERMA_12          0.763    0.079    9.708    0.000    1.330    0.569
##     PERMA_13          0.887    0.094    9.411    0.000    1.546    0.551
##     PERMA_14         -0.253    0.108   -2.354    0.019   -0.441   -0.137
##     PERMA_15          0.550    0.092    5.971    0.000    0.959    0.349
##     PERMA_16          0.975    0.081   12.083    0.000    1.700    0.710
##     PERMA_17          1.068    0.082   13.041    0.000    1.862    0.768
## 
## Variances:
##     PERMA_1           2.995    0.263                      2.995    0.496
##     PERMA_2           3.635    0.301                      3.635    0.668
##     PERMA_3           2.486    0.222                      2.486    0.457
##     PERMA_4           5.794    0.470                      5.794    0.768
##     PERMA_5           9.816    0.773                      9.816    0.982
##     PERMA_6           4.141    0.340                      4.141    0.697
##     PERMA_7           2.351    0.217                      2.351    0.408
##     PERMA_8           2.820    0.243                      2.820    0.541
##     PERMA_9          11.967    0.946                     11.967    0.942
##     PERMA_10         10.706    0.842                     10.706    0.992
##     PERMA_11          5.267    0.434                      5.267    0.688
##     PERMA_12          3.698    0.305                      3.698    0.676
##     PERMA_13          5.475    0.450                      5.475    0.696
##     PERMA_14         10.135    0.798                     10.135    0.981
##     PERMA_15          6.641    0.529                      6.641    0.878
##     PERMA_16          2.836    0.249                      2.836    0.495
##     PERMA_17          2.405    0.222                      2.405    0.410
##     One               3.041    0.428                      1.000    1.000
## 
## R-Square:
## 
##     PERMA_1           0.504
##     PERMA_2           0.332
##     PERMA_3           0.543
##     PERMA_4           0.232
##     PERMA_5           0.018
##     PERMA_6           0.303
##     PERMA_7           0.592
##     PERMA_8           0.459
##     PERMA_9           0.058
##     PERMA_10          0.008
##     PERMA_11          0.312
##     PERMA_12          0.324
##     PERMA_13          0.304
##     PERMA_14          0.019
##     PERMA_15          0.122
##     PERMA_16          0.505
##     PERMA_17          0.590

Residual correlations

correl = residuals(seven.fit, type="cor")
correl
## $type
## [1] "cor.bollen"
## 
## $cor
##          PERMA_1 PERMA_6 PERMA_12 PERMA_2 PERMA_8 PERMA_15 PERMA_3 PERMA_7
## PERMA_1   0.000                                                           
## PERMA_6   0.013   0.000                                                   
## PERMA_12 -0.017   0.006   0.000                                           
## PERMA_2  -0.003  -0.028   0.031    0.000                                  
## PERMA_8   0.038   0.009   0.030   -0.050   0.000                          
## PERMA_15 -0.074  -0.053  -0.044    0.143  -0.028   0.000                  
## PERMA_3  -0.028  -0.046  -0.014   -0.047   0.058  -0.057    0.000         
## PERMA_7  -0.008  -0.011   0.020   -0.036   0.070  -0.055    0.049   0.000 
## PERMA_16  0.058   0.034   0.004    0.000   0.018  -0.051   -0.011  -0.051 
## PERMA_4   0.053  -0.002   0.041    0.026   0.023  -0.011   -0.068   0.041 
## PERMA_11 -0.021  -0.055  -0.022   -0.041   0.016  -0.112   -0.014  -0.039 
## PERMA_13 -0.002   0.014   0.016    0.046   0.001   0.006    0.019  -0.061 
## PERMA_5   0.007   0.037  -0.048    0.004  -0.103   0.140    0.027   0.000 
## PERMA_10 -0.015   0.068  -0.063    0.026  -0.029   0.155   -0.012   0.046 
## PERMA_14 -0.010   0.079  -0.057    0.057  -0.113   0.120   -0.035  -0.011 
## PERMA_9   0.034  -0.009  -0.061    0.068  -0.096   0.076    0.032   0.006 
## PERMA_17  0.016  -0.052   0.022   -0.039   0.071  -0.079    0.015   0.001 
##          PERMA_16 PERMA_4 PERMA_11 PERMA_13 PERMA_5 PERMA_10 PERMA_14
## PERMA_1                                                              
## PERMA_6                                                              
## PERMA_12                                                             
## PERMA_2                                                              
## PERMA_8                                                              
## PERMA_15                                                             
## PERMA_3                                                              
## PERMA_7                                                              
## PERMA_16  0.000                                                      
## PERMA_4   0.047    0.000                                             
## PERMA_11  0.065   -0.031   0.000                                     
## PERMA_13  0.055   -0.020   0.035    0.000                            
## PERMA_5  -0.033    0.036  -0.041    0.014    0.000                   
## PERMA_10 -0.018    0.001   0.015   -0.028    0.043   0.000           
## PERMA_14  0.032    0.078  -0.033   -0.006   -0.010  -0.036    0.000  
## PERMA_9  -0.047    0.027  -0.028    0.011   -0.019  -0.009    0.030  
## PERMA_17 -0.020    0.004   0.041   -0.046    0.016   0.056   -0.065  
##          PERMA_9 PERMA_17
## PERMA_1                  
## PERMA_6                  
## PERMA_12                 
## PERMA_2                  
## PERMA_8                  
## PERMA_15                 
## PERMA_3                  
## PERMA_7                  
## PERMA_16                 
## PERMA_4                  
## PERMA_11                 
## PERMA_13                 
## PERMA_5                  
## PERMA_10                 
## PERMA_14                 
## PERMA_9   0.000          
## PERMA_17  0.000   0.000  
## 
## $mean
##  PERMA_1  PERMA_6 PERMA_12  PERMA_2  PERMA_8 PERMA_15  PERMA_3  PERMA_7 
##        0        0        0        0        0        0        0        0 
## PERMA_16  PERMA_4 PERMA_11 PERMA_13  PERMA_5 PERMA_10 PERMA_14  PERMA_9 
##        0        0        0        0        0        0        0        0 
## PERMA_17 
##        0
View(correl$cor)
correl1 = residuals(one.fit, type="cor")
correl1
## $type
## [1] "cor.bollen"
## 
## $cor
##          PERMA_1 PERMA_2 PERMA_3 PERMA_4 PERMA_5 PERMA_6 PERMA_7 PERMA_8
## PERMA_1   0.000                                                         
## PERMA_2   0.028   0.000                                                 
## PERMA_3  -0.041  -0.027   0.000                                         
## PERMA_4   0.049   0.026  -0.107   0.000                                 
## PERMA_5   0.059   0.086  -0.005   0.058   0.000                         
## PERMA_6   0.117   0.011  -0.040   0.004   0.075   0.000                 
## PERMA_7  -0.021  -0.016   0.058   0.001  -0.034  -0.005   0.000         
## PERMA_8   0.011   0.029   0.017  -0.017  -0.007   0.003   0.027   0.000 
## PERMA_9   0.046   0.187   0.004   0.025   0.176  -0.004  -0.023   0.047 
## PERMA_10  0.012   0.080  -0.051   0.009   0.281   0.088   0.005   0.035 
## PERMA_11 -0.007  -0.026  -0.041   0.054  -0.019  -0.032  -0.067  -0.015 
## PERMA_12  0.056   0.046  -0.037   0.029  -0.006   0.077  -0.004  -0.003 
## PERMA_13  0.008   0.058  -0.012   0.060   0.037   0.034  -0.092  -0.033 
## PERMA_14  0.047   0.141  -0.053   0.104   0.257   0.122  -0.030  -0.015 
## PERMA_15 -0.018   0.257  -0.007   0.012   0.190   0.000  -0.003   0.060 
## PERMA_16  0.034   0.009  -0.014   0.003  -0.061   0.031  -0.055  -0.032 
## PERMA_17 -0.063  -0.064   0.072   0.002  -0.034  -0.099   0.061  -0.020 
##          PERMA_9 PERMA_10 PERMA_11 PERMA_12 PERMA_13 PERMA_14 PERMA_15
## PERMA_1                                                               
## PERMA_2                                                               
## PERMA_3                                                               
## PERMA_4                                                               
## PERMA_5                                                               
## PERMA_6                                                               
## PERMA_7                                                               
## PERMA_8                                                               
## PERMA_9   0.000                                                       
## PERMA_10  0.151   0.000                                               
## PERMA_11 -0.036   0.022    0.000                                      
## PERMA_12 -0.048  -0.040   -0.022    0.000                             
## PERMA_13  0.004  -0.021    0.148    0.014    0.000                    
## PERMA_14  0.205   0.180   -0.004   -0.010    0.023    0.000           
## PERMA_15  0.146   0.188   -0.075   -0.007    0.042    0.171    0.000  
## PERMA_16 -0.069  -0.054    0.030   -0.027    0.018    0.017   -0.009  
## PERMA_17 -0.046   0.002    0.059   -0.053   -0.032   -0.099   -0.059  
##          PERMA_16 PERMA_17
## PERMA_1                   
## PERMA_2                   
## PERMA_3                   
## PERMA_4                   
## PERMA_5                   
## PERMA_6                   
## PERMA_7                   
## PERMA_8                   
## PERMA_9                   
## PERMA_10                  
## PERMA_11                  
## PERMA_12                  
## PERMA_13                  
## PERMA_14                  
## PERMA_15                  
## PERMA_16  0.000           
## PERMA_17  0.022    0.000  
## 
## $mean
##  PERMA_1  PERMA_2  PERMA_3  PERMA_4  PERMA_5  PERMA_6  PERMA_7  PERMA_8 
##        0        0        0        0        0        0        0        0 
##  PERMA_9 PERMA_10 PERMA_11 PERMA_12 PERMA_13 PERMA_14 PERMA_15 PERMA_16 
##        0        0        0        0        0        0        0        0 
## PERMA_17 
##        0
View(correl1$cor)

zscore correlation anything over 1.96 is going to be statistically significant at the .05 level

zcorrels = residuals(seven.fit, type = "standardized")
View(zcorrels$cov)
zcorrels1 = residuals(one.fit, type = "standardized")
View(zcorrels1$cov)

Modification indicies

modindices(seven.fit, sort. = TRUE, minimum.value = 3.84)
##                lhs op      rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1  PositiveEmotion =~  PERMA_8 27.491  0.992   1.719    0.753    0.753
## 2  NegativeEmotion =~  PERMA_8 24.289 -0.455  -0.805   -0.353   -0.353
## 3          PERMA_2 ~~ PERMA_15 22.586  1.331   1.331    0.207    0.207
## 4  NegativeEmotion =~ PERMA_15 18.917  0.470   0.832    0.302    0.302
## 5  PositiveEmotion =~ PERMA_15 15.865 -0.858  -1.487   -0.541   -0.541
## 6    Acomplishment =~ PERMA_15 12.532 -0.829  -1.596   -0.580   -0.580
## 7    Acomplishment =~  PERMA_8 12.434  0.766   1.474    0.646    0.646
## 8            Happy =~  PERMA_8 11.485  0.244   0.591    0.259    0.259
## 9          PERMA_2 ~~  PERMA_8 10.698 -0.988  -0.988   -0.185   -0.185
## 10          Lonely =~  PERMA_8 10.586 -0.113  -0.402   -0.176   -0.176
## 11    Relationship =~ PERMA_16 10.548  0.654   0.969    0.405    0.405
## 12         PERMA_3 ~~  PERMA_7  8.711  0.546   0.546    0.098    0.098
## 13    Relationship =~ PERMA_15  8.653 -0.692  -1.026   -0.373   -0.373
## 14    Relationship =~  PERMA_8  6.913  0.549   0.814    0.356    0.356
## 15         PERMA_7 ~~ PERMA_16  6.801 -0.485  -0.485   -0.084   -0.084
## 16         PERMA_3 ~~  PERMA_4  6.095 -0.553  -0.553   -0.086   -0.086
## 17 PositiveEmotion =~  PERMA_2  5.994 -0.465  -0.806   -0.345   -0.345
## 18   Acomplishment =~ PERMA_11  5.861 -0.573  -1.103   -0.399   -0.399
## 19        PERMA_14 ~~ PERMA_17  5.852 -0.716  -0.716   -0.092   -0.092
## 20           Happy =~ PERMA_15  5.702 -0.197  -0.478   -0.174   -0.174
## 21           Happy =~ PERMA_13  5.475 -0.251  -0.607   -0.217   -0.217
## 22   Acomplishment =~ PERMA_16  5.280  0.360   0.692    0.289    0.289
## 23 PositiveEmotion =~  PERMA_6  5.092 -0.437  -0.757   -0.311   -0.311
## 24        PERMA_13 ~~ PERMA_17  4.989 -0.550  -0.550   -0.081   -0.081
## 25           Happy =~ PERMA_11  4.764  0.234   0.566    0.205    0.205
## 26      Engagement =~ PERMA_11  4.657 -0.536  -0.844   -0.305   -0.305
## 27          Lonely =~  PERMA_2  4.596  0.075   0.267    0.114    0.114
## 28 NegativeEmotion =~ PERMA_12  4.021 -0.175  -0.310   -0.133   -0.133
## 29        PERMA_15 ~~ PERMA_10  3.867  0.853   0.853    0.094    0.094
## 30         PERMA_8 ~~ PERMA_14  3.859 -0.613  -0.613   -0.084   -0.084
modindices(one.fit, sort. = TRUE, minimum.value = 3.84)
##         lhs op      rhs     mi    epc sepc.lv sepc.all sepc.nox
## 1   PERMA_2 ~~ PERMA_15 38.971  1.764   1.764    0.275    0.275
## 2   PERMA_5 ~~ PERMA_10 26.289  2.924   2.924    0.282    0.282
## 3   PERMA_5 ~~ PERMA_14 22.248  2.619   2.619    0.258    0.258
## 4   PERMA_2 ~~  PERMA_9 19.072  1.648   1.648    0.198    0.198
## 5  PERMA_11 ~~ PERMA_13 16.480  1.273   1.273    0.164    0.164
## 6   PERMA_1 ~~  PERMA_6 15.210  0.832   0.832    0.139    0.139
## 7   PERMA_9 ~~ PERMA_14 14.848  2.367   2.367    0.207    0.207
## 8   PERMA_6 ~~ PERMA_17 14.060 -0.738  -0.738   -0.125   -0.125
## 9   PERMA_5 ~~ PERMA_15 13.821  1.681   1.681    0.193    0.193
## 10 PERMA_10 ~~ PERMA_15 13.379  1.726   1.726    0.191    0.191
## 11  PERMA_3 ~~ PERMA_17 13.073  0.590   0.590    0.104    0.104
## 12  PERMA_3 ~~  PERMA_4 12.641 -0.818  -0.818   -0.128   -0.128
## 13  PERMA_7 ~~ PERMA_13 12.245 -0.783  -0.783   -0.116   -0.116
## 14 PERMA_14 ~~ PERMA_15 11.160  1.535   1.535    0.174    0.174
## 15  PERMA_5 ~~  PERMA_9 10.957  2.001   2.001    0.178    0.178
## 16  PERMA_7 ~~ PERMA_17 10.947  0.538   0.538    0.093    0.093
## 17 PERMA_10 ~~ PERMA_14 10.807  1.905   1.905    0.180    0.180
## 18  PERMA_2 ~~ PERMA_14 10.380  1.116   1.116    0.149    0.149
## 19 PERMA_14 ~~ PERMA_17  9.278 -0.906  -0.906   -0.116   -0.116
## 20  PERMA_1 ~~ PERMA_17  8.920 -0.526  -0.526   -0.088   -0.088
## 21  PERMA_9 ~~ PERMA_15  8.552  1.463   1.463    0.149    0.149
## 22  PERMA_3 ~~  PERMA_7  8.472  0.470   0.470    0.084    0.084
## 23  PERMA_9 ~~ PERMA_10  8.010  1.786   1.786    0.153    0.153
## 24  PERMA_6 ~~ PERMA_14  7.401  1.003   1.003    0.128    0.128
## 25  PERMA_7 ~~ PERMA_16  6.653 -0.438  -0.438   -0.076   -0.076
## 26  PERMA_7 ~~ PERMA_11  6.584 -0.564  -0.564   -0.085   -0.085
## 27  PERMA_2 ~~ PERMA_17  6.250 -0.463  -0.463   -0.082   -0.082
## 28 PERMA_11 ~~ PERMA_17  5.141  0.504   0.504    0.075    0.075
## 29  PERMA_4 ~~ PERMA_14  4.834  0.952   0.952    0.108    0.108
## 30  PERMA_6 ~~ PERMA_12  4.513  0.486   0.486    0.085    0.085
## 31 PERMA_12 ~~ PERMA_17  4.158 -0.381  -0.381   -0.067   -0.067
## 32  PERMA_2 ~~  PERMA_5  3.865  0.670   0.670    0.091    0.091

Fit Measures

fitmeasures(seven.fit)
##                npar                fmin               chisq 
##              53.000               0.241             156.407 
##                  df              pvalue      baseline.chisq 
##             100.000               0.000            1844.188 
##         baseline.df     baseline.pvalue                 cfi 
##             136.000               0.000               0.967 
##                 tli                nnfi                 rfi 
##               0.955               0.955               0.885 
##                 nfi                pnfi                 ifi 
##               0.915               0.673               0.968 
##                 rni                logl   unrestricted.logl 
##               0.967          -12363.383          -12285.179 
##                 aic                 bic              ntotal 
##           24832.765           25033.145             324.000 
##                bic2               rmsea      rmsea.ci.lower 
##           24865.034               0.042               0.029 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.054               0.861               0.342 
##          rmr_nomean                srmr        srmr_bentler 
##               0.342               0.045               0.045 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.045               0.045               0.045 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.045               0.045             258.577 
##               cn_01                 gfi                agfi 
##             282.326               0.946               0.917 
##                pgfi                 mfi                ecvi 
##               0.618               0.917               0.810
fitmeasures(one.fit)
##                npar                fmin               chisq 
##              34.000               0.546             354.086 
##                  df              pvalue      baseline.chisq 
##             119.000               0.000            1844.188 
##         baseline.df     baseline.pvalue                 cfi 
##             136.000               0.000               0.862 
##                 tli                nnfi                 rfi 
##               0.843               0.843               0.781 
##                 nfi                pnfi                 ifi 
##               0.808               0.707               0.864 
##                 rni                logl   unrestricted.logl 
##               0.862          -12462.222          -12285.179 
##                 aic                 bic              ntotal 
##           24992.444           25120.990             324.000 
##                bic2               rmsea      rmsea.ci.lower 
##           25013.145               0.078               0.069 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.088               0.000               0.635 
##          rmr_nomean                srmr        srmr_bentler 
##               0.635               0.072               0.072 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.072               0.072               0.072 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.072               0.072             134.101 
##               cn_01                 gfi                agfi 
##             145.392               0.865               0.827 
##                pgfi                 mfi                ecvi 
##               0.673               0.696               1.303

Create dataset for Target rotation

PermaTR<-select(data, PERMA_1  , PERMA_6 , PERMA_12, PERMA_2 ,  PERMA_8 , PERMA_15 ,PERMA_3 , PERMA_7 , PERMA_16 , PERMA_4 , PERMA_11 , PERMA_13 , PERMA_5 , PERMA_10 , PERMA_14, PERMA_9  , PERMA_17)
colnames(PermaTR) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17")

#Target Roration
Targ_key <- make.keys(17,list(f1=1:3,f2=4:6, f3=7:9, f4=10:12, f5=13:15, f6=16, f7=17))
Targ_key <- scrub(Targ_key,isvalue=1)  #fix the 0s, allow the NAs to be estimated
Targ_key <- list(Targ_key)
out_targetQ <- fa(PermaTR,7,rotate="TargetQ",Target=Targ_key) #TargetT for orthogonal rotation
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA","uniquenesses")]
## $loadings
## 
## Loadings:
##    MR1    MR4    MR2    MR5    MR3    MR7    MR6   
## 1   0.511  0.134                0.158              
## 2   0.712                0.153  0.148 -0.129       
## 3   0.432  0.141  0.157 -0.155                     
## 4          0.103  0.731                            
## 5   0.248         0.255         0.114  0.155       
## 6                 0.588  0.157  0.107              
## 7   0.124         0.151         0.352  0.208  0.337
## 8   0.313         0.207 -0.113  0.124  0.404       
## 9                               0.751        -0.182
## 10  0.180  0.368               -0.108  0.195 -0.242
## 11         0.669                       0.130       
## 12         0.690                      -0.164  0.134
## 13                       0.600                     
## 14                       0.522         0.153       
## 15                       0.440        -0.125       
## 16 -0.140         0.261  0.252 -0.154              
## 17         0.254                0.321  0.517       
## 
##                  MR1   MR4   MR2   MR5   MR3   MR7   MR6
## SS loadings    1.213 1.193 1.156 0.995 0.927 0.646 0.259
## Proportion Var 0.071 0.070 0.068 0.059 0.055 0.038 0.015
## Cumulative Var 0.071 0.142 0.210 0.268 0.323 0.361 0.376
## 
## $score.cor
##            [,1]       [,2]      [,3]       [,4]       [,5]       [,6]
## [1,]  1.0000000  0.5774848 0.4763781 -0.1397813  0.6699912  0.6553088
## [2,]  0.5774848  1.0000000 0.3873415 -0.1269681  0.5535138  0.5587356
## [3,]  0.4763781  0.3873415 1.0000000  0.1428735  0.4400615  0.4125253
## [4,] -0.1397813 -0.1269681 0.1428735  1.0000000 -0.2527211 -0.2502201
## [5,]  0.6699912  0.5535138 0.4400615 -0.2527211  1.0000000  0.7356230
## [6,]  0.6553088  0.5587356 0.4125253 -0.2502201  0.7356230  1.0000000
## 
## $TLI
## [1] 0.9760554
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.03146148 0.01755932 0.04328689 0.10000000 
## 
## $uniquenesses
##         1         2         3         4         5         6         7 
## 0.4259841 0.4853750 0.6108533 0.3735635 0.5353151 0.6088251 0.3153644 
##         8         9        10        11        12        13        14 
## 0.3045924 0.2643278 0.6368634 0.5233771 0.4764847 0.6572774 0.7395460 
##        15        16        17 
## 0.7362427 0.7751917 0.2439653
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = PermaTR, nfactors = 7, rotate = "TargetQ", Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR1   MR4   MR2   MR5   MR3   MR7   MR6   h2   u2 com
## 1   0.51  0.13  0.08  0.02  0.16  0.00 -0.04 0.57 0.43 1.4
## 2   0.71  0.03 -0.08  0.15  0.15 -0.13  0.03 0.51 0.49 1.3
## 3   0.43  0.14  0.16 -0.16 -0.06 -0.01 -0.01 0.39 0.61 1.8
## 4   0.01  0.10  0.73 -0.06  0.06 -0.08 -0.05 0.63 0.37 1.1
## 5   0.25  0.07  0.26 -0.08  0.11  0.15  0.07 0.46 0.54 3.6
## 6  -0.07 -0.02  0.59  0.16  0.11 -0.02  0.03 0.39 0.61 1.3
## 7   0.12  0.03  0.15 -0.08  0.35  0.21  0.34 0.68 0.32 3.4
## 8   0.31 -0.04  0.21 -0.11  0.12  0.40  0.07 0.70 0.30 3.0
## 9   0.08  0.04  0.08 -0.03  0.75 -0.03 -0.18 0.74 0.26 1.2
## 10  0.18  0.37  0.09  0.04 -0.11  0.19 -0.24 0.36 0.64 3.4
## 11 -0.04  0.67 -0.07  0.03  0.05  0.13 -0.02 0.48 0.52 1.1
## 12  0.06  0.69  0.08 -0.01 -0.03 -0.16  0.13 0.52 0.48 1.2
## 13  0.05  0.05 -0.03  0.60 -0.05  0.03  0.10 0.34 0.66 1.1
## 14  0.01  0.00  0.01  0.52 -0.03  0.15  0.00 0.26 0.74 1.2
## 15  0.08 -0.04  0.09  0.44  0.01 -0.12 -0.09 0.26 0.74 1.5
## 16 -0.14 -0.07  0.26  0.25 -0.15 -0.06  0.04 0.22 0.78 3.6
## 17 -0.08  0.25  0.05 -0.03  0.32  0.52  0.04 0.76 0.24 2.3
## 
##                        MR1  MR4  MR2  MR5  MR3  MR7  MR6
## SS loadings           1.64 1.54 1.44 1.06 1.42 0.90 0.28
## Proportion Var        0.10 0.09 0.08 0.06 0.08 0.05 0.02
## Cumulative Var        0.10 0.19 0.27 0.33 0.42 0.47 0.49
## Proportion Explained  0.20 0.19 0.17 0.13 0.17 0.11 0.03
## Cumulative Proportion 0.20 0.38 0.56 0.69 0.86 0.97 1.00
## 
##  With factor correlations of 
##       MR1   MR4  MR2   MR5   MR3   MR7   MR6
## MR1  1.00  0.59 0.53 -0.20  0.59  0.44  0.07
## MR4  0.59  1.00 0.47 -0.24  0.67  0.35  0.05
## MR2  0.53  0.47 1.00  0.11  0.42  0.30  0.12
## MR5 -0.20 -0.24 0.11  1.00 -0.33 -0.28 -0.10
## MR3  0.59  0.67 0.42 -0.33  1.00  0.40  0.12
## MR7  0.44  0.35 0.30 -0.28  0.40  1.00  0.20
## MR6  0.07  0.05 0.12 -0.10  0.12  0.20  1.00
## 
## Mean item complexity =  2
## Test of the hypothesis that 7 factors are sufficient.
## 
## The degrees of freedom for the null model are  136  and the objective function was  5.69 with Chi Square of  4266.11
## The degrees of freedom for the model are 38  and the objective function was  0.09 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  324 with the empirical chi square  19.64  with prob <  0.99 
## The total number of observations was  757  with MLE Chi Square =  65.45  with prob <  0.0037 
## 
## Tucker Lewis Index of factoring reliability =  0.976
## RMSEA index =  0.031  and the 90 % confidence intervals are  0.018 0.043
## BIC =  -186.46
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 MR1  MR4  MR2  MR5 MR3
## Correlation of scores with factors             0.88 0.88 0.87 0.79 0.9
## Multiple R square of scores with factors       0.78 0.77 0.76 0.63 0.8
## Minimum correlation of possible factor scores  0.56 0.55 0.51 0.26 0.6
##                                                 MR7   MR6
## Correlation of scores with factors             0.83  0.65
## Multiple R square of scores with factors       0.69  0.42
## Minimum correlation of possible factor scores  0.38 -0.16