Initial data reading:
a <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv") ###Males###
male <- a[a$Sex==1, ]
female <- a[a$Sex==2, ]
male
## ï..Temp Sex Beats
## 1 96.3 1 70
## 2 96.7 1 71
## 3 96.9 1 74
## 4 97.0 1 80
## 5 97.1 1 73
## 6 97.1 1 75
## 7 97.1 1 82
## 8 97.2 1 64
## 9 97.3 1 69
## 10 97.4 1 70
## 11 97.4 1 68
## 12 97.4 1 72
## 13 97.4 1 78
## 14 97.5 1 70
## 15 97.5 1 75
## 16 97.6 1 74
## 17 97.6 1 69
## 18 97.6 1 73
## 19 97.7 1 77
## 20 97.8 1 58
## 21 97.8 1 73
## 22 97.8 1 65
## 23 97.8 1 74
## 24 97.9 1 76
## 25 97.9 1 72
## 26 98.0 1 78
## 27 98.0 1 71
## 28 98.0 1 74
## 29 98.0 1 67
## 30 98.0 1 64
## 31 98.0 1 78
## 32 98.1 1 73
## 33 98.1 1 67
## 34 98.2 1 66
## 35 98.2 1 64
## 36 98.2 1 71
## 37 98.2 1 72
## 38 98.3 1 86
## 39 98.3 1 72
## 40 98.4 1 68
## 41 98.4 1 70
## 42 98.4 1 82
## 43 98.4 1 84
## 44 98.5 1 68
## 45 98.5 1 71
## 46 98.6 1 77
## 47 98.6 1 78
## 48 98.6 1 83
## 49 98.6 1 66
## 50 98.6 1 70
## 51 98.6 1 82
## 52 98.7 1 73
## 53 98.7 1 78
## 54 98.8 1 78
## 55 98.8 1 81
## 56 98.8 1 78
## 57 98.9 1 80
## 58 99.0 1 75
## 59 99.0 1 79
## 60 99.0 1 81
## 61 99.1 1 71
## 62 99.2 1 83
## 63 99.3 1 63
## 64 99.4 1 70
## 65 99.5 1 75
female
## ï..Temp Sex Beats
## 66 96.4 2 69
## 67 96.7 2 62
## 68 96.8 2 75
## 69 97.2 2 66
## 70 97.2 2 68
## 71 97.4 2 57
## 72 97.6 2 61
## 73 97.7 2 84
## 74 97.7 2 61
## 75 97.8 2 77
## 76 97.8 2 62
## 77 97.8 2 71
## 78 97.9 2 68
## 79 97.9 2 69
## 80 97.9 2 79
## 81 98.0 2 76
## 82 98.0 2 87
## 83 98.0 2 78
## 84 98.0 2 73
## 85 98.0 2 89
## 86 98.1 2 81
## 87 98.2 2 73
## 88 98.2 2 64
## 89 98.2 2 65
## 90 98.2 2 73
## 91 98.2 2 69
## 92 98.2 2 57
## 93 98.3 2 79
## 94 98.3 2 78
## 95 98.3 2 80
## 96 98.4 2 79
## 97 98.4 2 81
## 98 98.4 2 73
## 99 98.4 2 74
## 100 98.4 2 84
## 101 98.5 2 83
## 102 98.6 2 82
## 103 98.6 2 85
## 104 98.6 2 86
## 105 98.6 2 77
## 106 98.7 2 72
## 107 98.7 2 79
## 108 98.7 2 59
## 109 98.7 2 64
## 110 98.7 2 65
## 111 98.7 2 82
## 112 98.8 2 64
## 113 98.8 2 70
## 114 98.8 2 83
## 115 98.8 2 89
## 116 98.8 2 69
## 117 98.8 2 73
## 118 98.8 2 84
## 119 98.9 2 76
## 120 99.0 2 79
## 121 99.0 2 81
## 122 99.1 2 80
## 123 99.1 2 74
## 124 99.2 2 77
## 125 99.2 2 66
## 126 99.3 2 68
## 127 99.4 2 77
## 128 99.9 2 79
## 129 100.0 2 78
## 130 100.8 2 77
Male statistics and plots:
summary(male$Beats)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 58.00 70.00 73.00 73.37 78.00 86.00
sd(male$Beats)
## [1] 5.875184
hist(male$Beats, col = "blue")
qqnorm(male$Beats, col = "blue")
qqline(male$Beats, col = "black")
From the analysis above, we see that the minimum heart-rate for the males is 58, while the maximum is 86. The mean value of the heart beat for the male sample is 73, and the median is almost the same. This indicates that the data does normally distributed with almost no skewness. The stadard deviation is small (appx 5 beats). The normal probability plot shows almost linear tendency, which signifies that the distribution is normal.
Female Statistics and Plots:
summary(female$Beats)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 57.00 68.00 76.00 74.15 80.00 89.00
sd(summary(female$Beats))
## [1] 10.86296
hist(female$Beats, col = "pink")
qqnorm(female$Beats, col = "pink")
qqline(female$Beats, col ="black")
From the analysis above, we can see that the female beats have a wider distribution than males with beats ranging from 57 to 89. The mean of the female beats are slightly higher than the male beats with an average of 74 approximately. The standard deviation of the female population is larger than the male population at 10 beats. The median and the mean are different, which means the overall distribution is slightly skewed, which is also evident from the histogram distribution. The probability distribution of the female beats shows normality as seen from the normal probability plots.
boxplot(male$Beats, female$Beats, names = c("male", "female"), ylab = "resting heart rate", main = "Gender-based Heart Rate Comparison")
From the box plot comparison between male and female population we can see that the median of the female population (indicated by the thick black line in the center of the boxes) are higher than that of the male. The distribution of the female beats have a wider spread than the male sample as seen in the comparison of both the interquartile and minimum/maximum observation range.
a <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv") ###Males###
male <- a[a$Sex==1, ]
str(male)
summary(male)
max(male$Beats)
min(male$Beats)
mean(male$Beats)
sd(male$Beats)
hist(male$Beats, col = "blue")
qqnorm(male$Beats, col = "blue")
qqline(male$Beats, col = "black")
####Females
female <- a[a$Sex==2, ]
str(female)
summary(female)
summary(female$Beats)
sd(summary(female$Beats))
hist(female$Beats, col = "pink")
qqnorm(female$Beats, col = "pink")
qqline(female$Beats, col ="black")
###Box plot####
?boxplot
boxplot(male$Beats, female$Beats, names = c("male", "female"), ylab = "resting heart rate", main = "Gender-based Heart Rate Comparison")