Male & Female Statistics

Initial data reading:

a <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")                           ###Males###

male <- a[a$Sex==1, ]
female <- a[a$Sex==2, ]
male
##    ï..Temp Sex Beats
## 1     96.3   1    70
## 2     96.7   1    71
## 3     96.9   1    74
## 4     97.0   1    80
## 5     97.1   1    73
## 6     97.1   1    75
## 7     97.1   1    82
## 8     97.2   1    64
## 9     97.3   1    69
## 10    97.4   1    70
## 11    97.4   1    68
## 12    97.4   1    72
## 13    97.4   1    78
## 14    97.5   1    70
## 15    97.5   1    75
## 16    97.6   1    74
## 17    97.6   1    69
## 18    97.6   1    73
## 19    97.7   1    77
## 20    97.8   1    58
## 21    97.8   1    73
## 22    97.8   1    65
## 23    97.8   1    74
## 24    97.9   1    76
## 25    97.9   1    72
## 26    98.0   1    78
## 27    98.0   1    71
## 28    98.0   1    74
## 29    98.0   1    67
## 30    98.0   1    64
## 31    98.0   1    78
## 32    98.1   1    73
## 33    98.1   1    67
## 34    98.2   1    66
## 35    98.2   1    64
## 36    98.2   1    71
## 37    98.2   1    72
## 38    98.3   1    86
## 39    98.3   1    72
## 40    98.4   1    68
## 41    98.4   1    70
## 42    98.4   1    82
## 43    98.4   1    84
## 44    98.5   1    68
## 45    98.5   1    71
## 46    98.6   1    77
## 47    98.6   1    78
## 48    98.6   1    83
## 49    98.6   1    66
## 50    98.6   1    70
## 51    98.6   1    82
## 52    98.7   1    73
## 53    98.7   1    78
## 54    98.8   1    78
## 55    98.8   1    81
## 56    98.8   1    78
## 57    98.9   1    80
## 58    99.0   1    75
## 59    99.0   1    79
## 60    99.0   1    81
## 61    99.1   1    71
## 62    99.2   1    83
## 63    99.3   1    63
## 64    99.4   1    70
## 65    99.5   1    75
female
##     ï..Temp Sex Beats
## 66     96.4   2    69
## 67     96.7   2    62
## 68     96.8   2    75
## 69     97.2   2    66
## 70     97.2   2    68
## 71     97.4   2    57
## 72     97.6   2    61
## 73     97.7   2    84
## 74     97.7   2    61
## 75     97.8   2    77
## 76     97.8   2    62
## 77     97.8   2    71
## 78     97.9   2    68
## 79     97.9   2    69
## 80     97.9   2    79
## 81     98.0   2    76
## 82     98.0   2    87
## 83     98.0   2    78
## 84     98.0   2    73
## 85     98.0   2    89
## 86     98.1   2    81
## 87     98.2   2    73
## 88     98.2   2    64
## 89     98.2   2    65
## 90     98.2   2    73
## 91     98.2   2    69
## 92     98.2   2    57
## 93     98.3   2    79
## 94     98.3   2    78
## 95     98.3   2    80
## 96     98.4   2    79
## 97     98.4   2    81
## 98     98.4   2    73
## 99     98.4   2    74
## 100    98.4   2    84
## 101    98.5   2    83
## 102    98.6   2    82
## 103    98.6   2    85
## 104    98.6   2    86
## 105    98.6   2    77
## 106    98.7   2    72
## 107    98.7   2    79
## 108    98.7   2    59
## 109    98.7   2    64
## 110    98.7   2    65
## 111    98.7   2    82
## 112    98.8   2    64
## 113    98.8   2    70
## 114    98.8   2    83
## 115    98.8   2    89
## 116    98.8   2    69
## 117    98.8   2    73
## 118    98.8   2    84
## 119    98.9   2    76
## 120    99.0   2    79
## 121    99.0   2    81
## 122    99.1   2    80
## 123    99.1   2    74
## 124    99.2   2    77
## 125    99.2   2    66
## 126    99.3   2    68
## 127    99.4   2    77
## 128    99.9   2    79
## 129   100.0   2    78
## 130   100.8   2    77

Male statistics and plots:

summary(male$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   58.00   70.00   73.00   73.37   78.00   86.00
sd(male$Beats)
## [1] 5.875184
hist(male$Beats, col = "blue")

qqnorm(male$Beats, col = "blue")
qqline(male$Beats, col = "black")

From the analysis above, we see that the minimum heart-rate for the males is 58, while the maximum is 86. The mean value of the heart beat for the male sample is 73, and the median is almost the same. This indicates that the data does normally distributed with almost no skewness. The stadard deviation is small (appx 5 beats). The normal probability plot shows almost linear tendency, which signifies that the distribution is normal.

Female Statistics and Plots:

summary(female$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   57.00   68.00   76.00   74.15   80.00   89.00
sd(summary(female$Beats))
## [1] 10.86296
hist(female$Beats, col = "pink")

qqnorm(female$Beats, col = "pink")
qqline(female$Beats, col ="black")

From the analysis above, we can see that the female beats have a wider distribution than males with beats ranging from 57 to 89. The mean of the female beats are slightly higher than the male beats with an average of 74 approximately. The standard deviation of the female population is larger than the male population at 10 beats. The median and the mean are different, which means the overall distribution is slightly skewed, which is also evident from the histogram distribution. The probability distribution of the female beats shows normality as seen from the normal probability plots.

Male vs Female Comparison:

boxplot(male$Beats, female$Beats, names = c("male", "female"), ylab = "resting heart rate", main = "Gender-based Heart Rate Comparison")

From the box plot comparison between male and female population we can see that the median of the female population (indicated by the thick black line in the center of the boxes) are higher than that of the male. The distribution of the female beats have a wider spread than the male sample as seen in the comparison of both the interquartile and minimum/maximum observation range.

Complete code chunk:

a <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")                           ###Males###

male <- a[a$Sex==1, ]
str(male)
summary(male)
max(male$Beats)
min(male$Beats)
mean(male$Beats)
sd(male$Beats)
hist(male$Beats, col = "blue")
qqnorm(male$Beats, col = "blue")
qqline(male$Beats, col = "black")
                                ####Females

female <- a[a$Sex==2, ]
str(female)
summary(female)
summary(female$Beats)
sd(summary(female$Beats))
hist(female$Beats, col = "pink")
qqnorm(female$Beats, col = "pink")
qqline(female$Beats, col ="black")

                          ###Box plot####

?boxplot
boxplot(male$Beats, female$Beats, names = c("male", "female"), ylab = "resting heart rate", main = "Gender-based Heart Rate Comparison")