This notebook processes Replica weekday network edge volumes and simplifies the dataset into a wide format shapefile, with columns that indicate volumes by mode and work/non-work purpose. These represent 24-hour volumes on typical weekday conditions during the modeled period of 2Q2021.
setwd("C:/Users/z_rpg/EPR, PC/Richmond Connects - General")
edges <- readRDS("2.2_Data/RAW/replica_trips_and_pop/network/replica_21_richmond_city_network_edges.rds") %>%
dplyr::select(stableEdgeId, highway)
volumes <- readRDS("2.2_Data/RAW/replica_trips_and_pop/edge_volume_thur_21_long.Rds") %>%
mutate(mode = case_when(mode == "CARPOOL" ~ "AUTO",
mode == "ON_DEMAND_AUTO" ~ "AUTO",
mode == "PRIVATE_AUTO" ~ "AUTO",
TRUE ~ mode),
travel_purpose = case_when(travel_purpose == "WORK" ~ "WORK",
TRUE ~ "NON-WORK")) %>%
group_by(segment, mode, travel_purpose) %>%
summarise(trips = sum(trips)) %>%
pivot_wider(names_from = c(mode, travel_purpose),
values_from = trips) %>%
clean_names() %>%
rename(autoNwrk = auto_non_work,
autoWrk = auto_work,
bikeNwrk = biking_non_work,
bikeWrk = biking_work,
tranNwrk = public_transit_non_work,
tranWrk = public_transit_work,
wlkNwrk = walking_non_work,
wlkWrk = walking_work) %>%
mutate(wlkAll = wlkNwrk + wlkWrk,
bikeAll = bikeNwrk + bikeWrk,
autoAll = autoNwrk + autoWrk,
tranAll = tranNwrk + tranWrk) %>%
mutate_all(~replace(., is.na(.), 0)) %>%
rename(stableEdgeId = segment)
volumes_sf <- left_join(edges,
volumes)
st_write(volumes_sf,
"2.2_Data/PROCESSED/Network_Volumes_Replica/network_vol_simp_replica.shp")
## Writing layer `network_vol_simp_replica' to data source
## `2.2_Data/PROCESSED/Network_Volumes_Replica/network_vol_simp_replica.shp' using driver `ESRI Shapefile'
## Writing 69589 features with 14 fields and geometry type Line String.
The following table identifies the values in each column present in the shapefile
Shapefile Column Name | Mode | Purpose |
---|---|---|
autoNwrk | Auto | Non-Work |
autoWrk | Auto | Work |
autoAll | Auto | All |
bikeNwork | Bicycle | Non-Work |
bikeWrk | Bicycle | Work |
bikeAll | Bicycle | All |
tranNwrk | Transit | Non-Work |
tranWrk | Transit | Work |
tranAll | Transit | All |
wlkNwrk | Walk | Non-Work |
wlkWrk | Walk | Work |
wlkAll | Walk | All |
A faceted map is produced illustrating volumes for tertiary and higher grade links.
volumes_sf_long <- volumes_sf %>%
pivot_longer(4:15,
names_to = "theme",
values_to = "volume") %>%
dplyr::filter(highway %in% c("motorway_link", "motorway", "primary", "primary_link", "trunk", "secondary", "secondary_link", "tertiary")) %>%
arrange(volume)
tm_shape(volumes_sf_long) + tm_lines("volume", style = "fisher", n = 7, palette = "viridis") +
tm_facets(by = "theme", free.scales = T)