In this example we are going to use the score and hour of study data that we created for our class. We have to upload it first and it was saved as a csv file.
Data= read.csv("C:/STAT 111/Example Data/Data.csv")
Data
## Student Sc Hr Prediction e
## 1 1 100 6 8.0487 -2.0487
## 2 2 20 1 0.0007 0.9993
## 3 3 90 5 7.0427 -2.0427
## 4 4 40 2 2.0127 -0.0127
## 5 5 100 8 8.0487 -0.0487
## 6 6 100 10 8.0487 1.9513
## 7 7 60 3 4.0247 -1.0247
## 8 8 90 6 7.0427 -1.0427
## 9 9 30 3 1.0067 1.9933
## 10 10 50 2 3.0187 -1.0187
## 11 11 65 4 4.5277 -0.5277
## 12 12 77 3 5.7349 -2.7349
## 13 13 100 8 8.0487 -0.0487
## 14 14 100 8 8.0487 -0.0487
## 15 15 90 6 7.0427 -1.0427
## 16 16 88 6 6.8415 -0.8415
## 17 17 78 5 5.8355 -0.8355
## 18 18 90 8 7.0427 0.9573
## 19 19 56 2 3.6223 -1.6223
## 20 20 100 8 8.0487 -0.0487
## 21 21 100 8 8.0487 -0.0487
## 22 22 80 5 6.0367 -1.0367
## 23 23 66 2 4.6283 -2.6283
## 24 24 88 8 6.8415 1.1585
## 25 25 99 8 7.9481 0.0519
## 26 26 67 3 4.7289 -1.7289
## 27 27 100 8 8.0487 -0.0487
## 28 28 77 7 5.7349 1.2651
## 29 29 88 7 6.8415 0.1585
## 30 30 85 8 6.5397 1.4603
## 31 31 88 8 6.8415 1.1585
## 32 32 90 9 7.0427 1.9573
## 33 33 92 6 7.2439 -1.2439
## 34 34 100 10 8.0487 1.9513
## 35 35 100 8 8.0487 -0.0487
## 36 36 55 2 3.5217 -1.5217
## 37 37 20 1 0.0007 0.9993
## 38 38 0 0 -2.0113 2.0113
## 39 39 88 8 6.8415 1.1585
## 40 40 45 3 2.5157 0.4843
## 41 41 94 10 7.4451 2.5549
## 42 42 95 8 7.5457 0.4543
## 43 43 93 8 7.3445 0.6555
## 44 44 100 9 8.0487 0.9513
## 45 45 45 1 2.5157 -1.5157
## 46 46 100 9 8.0487 0.9513
## 47 47 87 6 6.7409 -0.7409
## 48 48 56 3 3.6223 -0.6223
## 49 49 90 8 7.0427 0.9573
## 50 50 99 8 7.9481 0.0519
In the data s=the coloumn Sc means the score of the student and Hr means the hour of study they have done in a week.
Here in first excercise our response variable is Hr or hour of study and score is our explanatory varible.
plot (x= Data$Sc, y= Data$Hr, xlab= "Score", ylab= "Hours of Study")
m1= lm(Hr~Sc, data= Data)
m1$coefficients
## (Intercept) Sc
## -2.0112678 0.1006299
Now lets consider score as our response variable and hours of study as our explanatory variable.
plot (x= Data$Hr, y= Data$Sc, xlab= "Hours of Study", ylab= "Score")
m2= lm(Sc~Hr, data= Data)
m2$coefficients
## (Intercept) Hr
## 32.163022 7.859553