knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(openintro)
library(dplyr)
library(ggplot2)
data('arbuthnot', package='openintro')
arbuthnot$boys #will only show the number of boys baptized each year
## [1] 5218 4858 4422 4994 5158 5035 5106 4917 4703 5359 5366 5518 5470 5460 4793
## [16] 4107 4047 3768 3796 3363 3079 2890 3231 3220 3196 3441 3655 3668 3396 3157
## [31] 3209 3724 4748 5216 5411 6041 5114 4678 5616 6073 6506 6278 6449 6443 6073
## [46] 6113 6058 6552 6423 6568 6247 6548 6822 6909 7577 7575 7484 7575 7737 7487
## [61] 7604 7909 7662 7602 7676 6985 7263 7632 8062 8426 7911 7578 8102 8031 7765
## [76] 6113 8366 7952 8379 8239 7840 7640
#dollar sign basically says “go to the data frame that comes before me, and find the variable that comes after me”.
arbuthnot$girls
## [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
# Insert code for Exercise 2 here
ggplot(data = arbuthnot, aes(x = year, y = girls)) +
geom_line()
The overall trend from the late 1620s has been upward in the amount of girls baptized. There are many drops (especially around 1703-1704), however, if we look at the big picture, it has only been increasing.
# Insert code for Exercise 3 here
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
ggplot(data = arbuthnot, aes(x = year, y = boys/total)) + geom_line()
#ggplot(data = arbuthnot, aes(x = year, y = boys)) + geom_line()
#in case a proportion to total is not needed, then the code should be the above
# Insert code for Exercise 4 here
data('present', package='openintro')
range(present$year)
## [1] 1940 2002
#The years used in this dataset is from 1940 to 2002.
dim(present)
## [1] 63 3
#There are 63 rows and 3 columns in the arbuthnot dataset.
colnames(present)
## [1] "year" "boys" "girls"
#The column names are "year", "boys", and "girls".
# Insert code for Exercise 5 here
range(arbuthnot$year)
## [1] 1629 1710
#The range is from 1629 to 1710; a total of 81 years compared to the
#data in the present which looked at only 62 years. '''
dim(arbuthnot)
## [1] 82 4
#There is a total of 82 rows and 4 columns in the arbuthnot dataset,compared to 63 rows and 3 columns in the present dataset.
colnames(arbuthnot)
## [1] "year" "boys" "girls" "total"
#The column names are the same except the arbuthnot has a total column too.
Insert any text here.
# Insert code for Exercise 6 here
present <- present %>%
mutate(total = boys + girls)
ggplot(data = present, aes(x = year, y = boys/total)) + geom_line()
# Insert code for Exercise 7 here
present <- present %>%
mutate(total = boys + girls)
present <- present %>%
arrange(desc(total))
head(present)
## # A tibble: 6 × 4
## year boys girls total
## <dbl> <dbl> <dbl> <dbl>
## 1 1961 2186274 2082052 4268326
## 2 1960 2179708 2078142 4257850
## 3 1957 2179960 2074824 4254784
## 4 1959 2173638 2071158 4244796
## 5 1958 2152546 2051266 4203812
## 6 1962 2132466 2034896 4167362
#1961 had the most total number of births.