id | group |
---|---|
20163304 | Red |
20173426 | Red |
20175257 | Red |
20182202 | Red |
20182716 | Red |
20182998 | Red |
20192329 | Black |
20192429 | Black |
20192535 | Red |
20192737 | Black |
20192918 | Red |
20193606 | Red |
20193611 | Black |
20193624 | Red |
20193632 | Red |
20193645 | Red |
20193966 | Red |
20195170 | Red |
20196218 | Red |
20196506 | Black |
20202725 | Red |
20203604 | Black |
20203924 | Black |
20205120 | Red |
20212426 | Red |
20212603 | Red |
20216272 | Black |
20216277 | Red |
20216733 | Red |
20221084 | Black |
20222422 | Black |
20222583 | Black |
20222627 | Red |
20222975 | Red |
20223849 | Red |
20226104 | Black |
20226175 | Black |
20226238 | Black |
20226707 | Black |
Red | Black |
---|---|
24 | 15 |
## 'data.frame': 974 obs. of 7 variables:
## $ dept : chr "์ค๋งํธIoT์ ๊ณต" "์ฒ ํ์ ๊ณต" "์ฌํํ๊ณผ" "๋์งํธ๋ฏธ๋์ด์ฝํ
์ธ ์ ๊ณต" ...
## $ id : chr "20095324" "20141321" "20142239" "20152552" ...
## $ name : chr "๊นํ์ธ" "์ค์ฌ์" "์ต์ข
์" "์์ฑ์ผ" ...
## $ status : chr "ํ์" "ํ์" "ํ์" "ํ์" ...
## $ email : chr "youngble@kakao.com" "mintohjs@gmail.com" "cjw950712@hanmail.net" "kerect@naver.com" ...
## $ cell_no: chr "01020556431" "01071709869" "01025038265" "01041712254" ...
## $ group : Factor w/ 2 levels "Red","Black": 1 2 2 2 2 2 1 2 1 1 ...
## tibble [39 ร 7] (S3: tbl_df/tbl/data.frame)
## $ dept : chr [1:39] "๋ฐ๋์ฒด์ ๊ณต" "ํํ๊ณผ" "๋น
๋ฐ์ดํฐ์ ๊ณต" "์ฌํํ๊ณผ" ...
## $ id : chr [1:39] "20163304" "20173426" "20175257" "20182202" ...
## $ name : chr [1:39] "๊ฐ์ค๊ตฌ" "์ด์ค์" "์กฐ์ฐํ" "๊ณฝ๋ฏผ์" ...
## $ status : chr [1:39] "ํดํ" "ํ์" "ํ์" "ํ์" ...
## $ email : chr [1:39] "jnh04136@daum.net" "ak5566@naver.com" "uh9222959@gmail.com" "kmen000@gmail.com" ...
## $ cell_no: chr [1:39] "01027037496" "01085076590" "01027202959" "01056581614" ...
## $ group : Factor w/ 2 levels "Red","Black": 1 1 1 1 1 1 2 2 1 2 ...
## 'data.frame': 108 obs. of 7 variables:
## $ dept : chr "์ฌํ๋ณต์งํ์ ๊ณต" "๊ด๊ณ ํ๋ณดํ๊ณผ" "๋ฒํ๊ณผ" "๊ฒฝ์ํ๊ณผ" ...
## $ id : chr "20172304" "20172627" "20172741" "20172877" ...
## $ name : chr "๊น๋์" "์ด์ข
๋ช
" "์ด์คํ" "์ด์ํ" ...
## $ status : chr "ํ์" "ํ์" "ํ์" "ํ์" ...
## $ email : chr "na09320932@naver.com" "mlele@naver.com" "jhl012248@gmail.com" "dkrlenf1001@naver.com" ...
## $ cell_no: chr "01072230932" "01055797134" "01048511088" "01055917376" ...
## $ group : Factor w/ 2 levels "Red","Black": NA NA NA NA NA NA NA NA NA NA ...
## 'data.frame': 1082 obs. of 7 variables:
## $ dept : chr "์ค๋งํธIoT์ ๊ณต" "์ฒ ํ์ ๊ณต" "์ฌํํ๊ณผ" "๋์งํธ๋ฏธ๋์ด์ฝํ
์ธ ์ ๊ณต" ...
## $ id : chr "20095324" "20141321" "20142239" "20152552" ...
## $ name : chr "๊นํ์ธ" "์ค์ฌ์" "์ต์ข
์" "์์ฑ์ผ" ...
## $ status : chr "ํ์" "ํ์" "ํ์" "ํ์" ...
## $ email : chr "youngble@kakao.com" "mintohjs@gmail.com" "cjw950712@hanmail.net" "kerect@naver.com" ...
## $ cell_no: chr "01020556431" "01071709869" "01025038265" "01041712254" ...
## $ group : Factor w/ 2 levels "Red","Black": 1 2 2 2 2 2 1 2 1 1 ...
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.79 3.63 4.40 4.49 5.26 11.81
## [1] 1.2
## 4010368 4071302 4347866 4384724 4616274 4634838 4640294 4737156 4860036 4936595
## 0.97 0.90 0.79 0.91 0.99 0.90 0.79 0.99 0.89 0.98
## [1] "4347866"
# set.seed(Xmin)
set.seed(Xmin)
id_red <- sample(1:N_new, size = red_new)
class_roll[class_roll$id %in% id_new, "group"] <-
factor(ifelse(1:N_new %in% id_red, "Red", "Black"), levels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 0.7872892
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 ์ด์ ", 2017:2022))
tbl1 %>%
pander
ย | 2016 ์ด์ | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
Red | 14 | 33 | 64 | 63 | 50 | 73 | 244 |
Black | 15 | 31 | 62 | 64 | 51 | 73 | 245 |
class_roll <- class_roll[, names(class_roll0823)]
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.1485488
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("ํ", "์ง")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
ย | ํ | ์ง |
---|---|---|
Red | 286 | 255 |
Black | 284 | 257 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.01483004
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
ย | ํ์ | ํดํ |
---|---|---|
Red | 532 | 9 |
Black | 533 | 8 |
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.0597625
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("๋ค์ด๋ฒ", "๊ธฐํ์๋น์ค") %>%
factor(levels = c("๋ค์ด๋ฒ", "๊ธฐํ์๋น์ค")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
ย | ๋ค์ด๋ฒ | ๊ธฐํ์๋น์ค |
---|---|---|
Red | 430 | 111 |
Black | 433 | 108 |
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.05152463
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
ย | 0000~0999 | 1000~1999 | 2000~2999 | 3000~3999 | 4000~4999 | 5000~5999 | 6000~6999 | 7000~7999 | 8000~8999 | 9000~9999 |
---|---|---|---|---|---|---|---|---|---|---|
Red | 50 | 50 | 47 | 57 | 62 | 53 | 61 | 59 | 48 | 54 |
Black | 47 | 49 | 50 | 58 | 62 | 56 | 59 | 59 | 47 | 54 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 0.3307921
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("๊น", "์ด", "๋ฐ")) %>%
ifelse(f_name, "๊ธฐํ") %>%
factor(levels = c("๊น", "์ด", "๋ฐ", "๊ธฐํ")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
ย | ๊น | ์ด | ๋ฐ | ๊ธฐํ |
---|---|---|---|---|
Red | 127 | 78 | 38 | 298 |
Black | 124 | 80 | 41 | 296 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.1818311
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 0.7872892