Ajustar el mejor modelo ARIMA(p,d,q) según n BIC. Recuerde que además de ajustar el mejor modelo debe probar que los residuales sean ruido blanco gaussiano preferiblemente. Escribir la ecuación que describe el proceso generador de datos basado en esta familia de modelos.
Proyectar h = 4 pasos adelante cada serie sobre un fan chart y realizar una descripción del fenómeno.
Observamos la serie en el siguiente grafico
H0: z1 no es estacionaria
Ha: z1 es estacionaria
adf.test(SeriesA)
##
## Augmented Dickey-Fuller Test
##
## data: SeriesA
## Dickey-Fuller = -2.6562, Lag order = 5, p-value = 0.3014
## alternative hypothesis: stationary
ya que p-value = 0.3014 se confirma que la serie no es estacionaria.
a continuación se procedera a realizar la diferencia para convertir la serie en estacionaria.
adf.test(diff(SeriesA))
## Warning in adf.test(diff(SeriesA)): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff(SeriesA)
## Dickey-Fuller = -9.9271, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
dado que el p-values=0.01 se confirma que la serie es estacionaria con la primera diferencia.
ts_cor(diff(SeriesA))
De acuerdo al grafico identificamos los siguientes coeficiente p y q
Se realizará la primera estimación con p, d, q de (1,1,0) modelo AR
modeloAR1=stats::arima(SeriesA, order = c(1,1,0),
fixed =c(NA))
modeloAR1
##
## Call:
## stats::arima(x = SeriesA, order = c(1, 1, 0), fixed = c(NA))
##
## Coefficients:
## ar1
## -0.4139
## s.e. 0.0650
##
## sigma^2 estimated as 0.113: log likelihood = -64.53, aic = 133.06
BIC(modeloAR1)
## [1] 139.6137
tt1=modeloAR1$coef[which(modeloAR1$coef!=0)]/sqrt(diag(modeloAR1$var.coef))
tt1
## ar1
## -6.362761
residuals(modeloAR1)
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] 0.016999990 -0.364130283 -0.465540134 -0.324155100 0.917229933
## [6] 0.213850334 -0.182770067 0.558614967 -0.051689800 -0.224155100
## [11] -0.341385033 0.575844900 0.089695234 0.117229933 0.082770067
## [16] -0.400000000 0.134459866 0.024155100 0.158614967 -0.517229933
## [21] 0.051689800 0.424155100 0.124155100 0.100000000 -0.058614967
## [26] 0.158614967 -0.117229933 -0.182770067 -0.341385033 0.675844900
## [31] 0.031080267 0.475844900 -0.351689800 -0.348310200 -0.041385033
## [36] -0.300000000 0.375844900 0.306925167 -0.258614967 0.275844900
## [41] -0.034459866 -0.182770067 -1.041385033 0.886149666 0.038005434
## [46] -0.206925167 -0.200000000 0.217229933 -0.375844900 0.193074833
## [51] 0.465540134 -0.575844900 -0.489695234 0.017229933 0.041385033
## [56] 0.400000000 -0.234459866 0.634459866 -0.068919733 -0.765540134
## [61] 0.251689800 0.006925167 -0.382770067 1.275844900 -0.220609533
## [66] -0.231080267 -0.258614967 -0.224155100 0.358614967 -0.334459866
## [71] 0.293074833 0.306925167 0.341385033 -0.775844900 -0.272465300
## [76] 0.141385033 -0.058614967 0.058614967 -0.358614967 -0.065540134
## [81] 0.141385033 -0.058614967 -0.341385033 -0.024155100 -0.058614967
## [86] 0.158614967 -0.017229933 0.158614967 -0.217229933 -0.124155100
## [91] -0.200000000 0.117229933 -0.017229933 0.058614967 0.641385033
## [96] 0.148310200 0.158614967 0.082770067 -0.400000000 0.034459866
## [101] -0.317229933 0.534459866 -0.510304766 0.268919733 0.248310200
## [106] -0.300000000 -0.624155100 0.193074833 0.465540134 -0.275844900
## [111] -0.065540134 0.041385033 0.400000000 0.265540134 0.041385033
## [116] -0.400000000 -0.065540134 -0.458614967 0.093074833 0.324155100
## [121] 0.182770067 0.241385033 -0.217229933 0.075844900 0.282770067
## [126] 0.182770067 -0.058614967 0.058614967 -0.058614967 -0.041385033
## [131] 0.300000000 -0.475844900 -0.248310200 0.000000000 0.100000000
## [136] -0.458614967 -0.006925167 0.182770067 -0.058614967 -0.041385033
## [141] -0.100000000 -0.141385033 0.458614967 -0.093074833 -0.124155100
## [146] 0.200000000 0.582770067 -0.093074833 -0.224155100 -0.241385033
## [151] 0.317229933 0.165540134 0.200000000 -0.117229933 -0.382770067
## [156] -0.224155100 0.158614967 0.482770067 -0.034459866 -0.082770067
## [161] -0.100000000 -0.041385033 0.000000000 0.300000000 -0.075844900
## [166] -0.382770067 -0.124155100 0.100000000 -0.258614967 0.075844900
## [171] 0.482770067 0.665540134 0.206925167 -0.200000000 -0.182770067
## [176] -0.541385033 -0.306925167 0.158614967 0.182770067 0.241385033
## [181] 0.182770067 0.441385033 -0.734459866 -0.372465300 0.000000000
## [186] 0.200000000 0.182770067 0.141385033 0.041385033 -0.400000000
## [191] 0.834459866 0.613850334 -0.517229933 -0.048310200 -0.017229933
## [196] -0.541385033 -0.006925167
yfit=fitted(modeloAR1)
par(mfrow=c(3,2))
plot(yfit, col="red")
lines(SeriesA)
et1=residuals(modeloAR1)
plot(et1)
acf(et1)
pacf(et1)
qqPlot(et1)
## [1] 64 43
acf(abs(et1))
H0 No hay autocorrelación serial Ha hay autocorrelación serial
#H0: r1 =r2 =r3………rlag = 0 no son significativos #Ha: al menos uno es diferente de 0
Box.test(et1, lag = 7, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: et1
## X-squared = 20.82, df = 7, p-value = 0.004047
tsdiag(modeloAR1, gof.lag = 20)
prueba de jarque-bera
H0: los residuales tienen distribución normal Ha: los residuales no tienen distribución normal
jarque.bera.test(et1)
##
## Jarque Bera Test
##
## data: et1
## X-squared = 10.024, df = 2, p-value = 0.006659
H0: los residuales son aleatorios es decir que no tienen comportamiento predecible Ha: Los residuales exhiben comportamiento (no son aleatorios)
forecast(modeloAR1, h=5)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 198 17.31723 16.88643 17.74803 16.65838 17.97608
## 199 17.35148 16.85214 17.85083 16.58780 18.11517
## 200 17.33731 16.74080 17.93381 16.42503 18.24958
## 201 17.34317 16.67737 18.00898 16.32492 18.36143
## 202 17.34075 16.60699 18.07450 16.21856 18.46293
plot(forecast(modeloAR1, h=5))
lines(yfit, col="red")
Se realizara la segunda estimación con p, d, q de (6,1,0) Modelo AR
modeloAR2=stats::arima(SeriesA, order = c(6,1,0),
fixed =c(NA,NA,NA,NA,NA,NA))
modeloAR2
##
## Call:
## stats::arima(x = SeriesA, order = c(6, 1, 0), fixed = c(NA, NA, NA, NA, NA,
## NA))
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 ar6
## -0.6208 -0.4183 -0.3796 -0.3321 -0.3367 -0.2299
## s.e. 0.0698 0.0802 0.0825 0.0832 0.0818 0.0715
##
## sigma^2 estimated as 0.09451: log likelihood = -47.41, aic = 108.82
BIC(modeloAR2)
## [1] 131.7659
tt2=modeloAR2$coef[which(modeloAR2$coef!=0)]/sqrt(diag(modeloAR2$var.coef))
tt2
## ar1 ar2 ar3 ar4 ar5 ar6
## -8.893551 -5.214314 -4.599885 -3.992128 -4.117175 -3.216052
residuals(modeloAR2)
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] 0.016999988 -0.332692352 -0.423992919 -0.392303658 0.702310317
## [6] 0.147648362 -0.070127193 0.574421040 0.150484074 0.151105586
## [11] -0.130430207 0.477641566 0.150524936 0.258528930 0.103920100
## [16] -0.283809504 0.227900464 0.078952376 0.132937222 -0.490639981
## [21] -0.061841365 0.286998556 0.185716065 0.184467631 0.019532658
## [26] 0.242421896 0.090288661 -0.076262811 -0.369362443 0.551752278
## [31] 0.011123604 0.579972254 -0.228638122 -0.193715498 0.015449473
## [36] -0.287385883 0.209603571 0.187635245 -0.314280088 0.322759930
## [41] 0.025807630 -0.038124281 -0.944888253 0.616263213 -0.149938311
## [46] -0.154746111 -0.327448105 0.058037098 -0.355671126 0.269750667
## [51] 0.271647222 -0.503944700 -0.468249787 -0.169649035 -0.167946754
## [56] 0.326457031 -0.346859528 0.523902120 0.068829175 -0.509675906
## [61] 0.265714045 -0.069461720 -0.398183851 1.169908659 -0.260261634
## [66] 0.039096384 -0.093155126 -0.230165430 0.387148664 -0.321624483
## [71] 0.069054667 0.241845726 0.411621523 -0.536486382 -0.205611819
## [76] -0.013931275 -0.089436151 -0.057151118 -0.542651432 -0.284521369
## [81] 0.056173089 -0.125388728 -0.404445964 -0.168599913 -0.226470124
## [86] 0.089337523 -0.090014521 0.092820290 -0.210276288 -0.084797203
## [91] -0.238436026 0.040700695 -0.114776057 -0.009360302 0.560763375
## [96] 0.275424905 0.415010143 0.355600248 -0.144370537 0.219416030
## [101] -0.272450321 0.427861097 -0.543690276 0.176072700 0.146068477
## [106] -0.208918514 -0.580431868 0.054940824 0.243366646 -0.197877871
## [111] -0.138053684 -0.095885883 0.409338901 0.446442878 0.196907531
## [116] -0.264646272 0.045464230 -0.437346568 0.005252669 0.105205993
## [121] 0.058383693 0.235267367 -0.103836562 0.187837400 0.444119922
## [126] 0.340027495 0.112372955 0.167054998 0.022982286 0.088335939
## [131] 0.342580959 -0.429186845 -0.269517949 -0.147790439 -0.051116649
## [136] -0.536150705 -0.201618294 -0.085007116 -0.110837993 -0.076701347
## [141] -0.182824153 -0.214459936 0.442543325 -0.080065691 -0.071245785
## [146] 0.197414727 0.619659793 0.139804986 0.012787854 -0.200354065
## [151] 0.353520624 0.241428401 0.272158694 -0.093082758 -0.298005955
## [156] -0.205287544 0.094907704 0.369385094 -0.026954030 -0.061135934
## [161] -0.068072967 0.039186292 0.072432413 0.286677684 -0.092957795
## [166] -0.332339494 -0.179024304 -0.001784234 -0.317191640 -0.042392745
## [171] 0.289617777 0.682332365 0.487687769 0.149379143 0.096819405
## [176] -0.299022899 -0.267804770 -0.060633508 -0.108011462 0.062082311
## [181] 0.117341633 0.501468244 -0.456376024 -0.207360686 -0.101100819
## [186] 0.070875830 0.082972784 0.034670935 -0.027128668 -0.253795516
## [191] 0.890190037 0.766346805 -0.152693184 0.180920734 0.046479660
## [196] -0.395004317 0.021730750
yfit=fitted(modeloAR2)
par(mfrow=c(3,2))
plot(yfit, col="red")
lines(SeriesA)
et2=residuals(modeloAR2)
plot(et2)
acf(et2)
pacf(et2)
qqPlot(et2)
## [1] 64 43
acf(abs(et2))
H0 No hay autocorrelacion serial Ha hay autocorrelacion serial
H0: r1 =r2 =r3………rlag = 0 no son significativos Ha: al menos uno es diferente de 0
Box.test(et2, lag = 7, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: et2
## X-squared = 0.42246, df = 7, p-value = 0.9997
tsdiag(modeloAR2,gof.lag=20)
prueba de jarque-bera
H0: los residuales tienen distribución normal Ha: los residuales no tienen distribución normal
jarque.bera.test(et2)
##
## Jarque Bera Test
##
## data: et2
## X-squared = 9.6203, df = 2, p-value = 0.008147
H0: los residuales son aleatorios… no tienen comportamiento predecible Ha: Los residuales exhiben comportamiento (no son aleatorios)
runs.test(as.factor(sign(et2)))
##
## Runs Test
##
## data: as.factor(sign(et2))
## Standard Normal = -1.7829, p-value = 0.0746
## alternative hypothesis: two.sided
sign(et2)==0
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE
forecast(modeloAR2, h=5)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 198 17.61258 17.21860 18.00656 17.01003 18.21513
## 199 17.69057 17.26921 18.11193 17.04616 18.33498
## 200 17.63104 17.18814 18.07393 16.95369 18.30839
## 201 17.67962 17.22618 18.13307 16.98614 18.37311
## 202 17.62180 17.15970 18.08389 16.91508 18.32851
plot(forecast(modeloAR2, h=5))
lines(yfit, col="red")
### Estimaciom MODELO 3
Se realizara la tercera estimación con p, d, q de (5,1,0) Modelo AR
modeloAR3=stats::arima(SeriesA, order = c(5,1,0),
fixed =c(NA,NA,NA,NA,NA))
modeloAR3
##
## Call:
## stats::arima(x = SeriesA, order = c(5, 1, 0), fixed = c(NA, NA, NA, NA, NA))
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.5754 -0.3612 -0.3101 -0.2510 -0.2013
## s.e. 0.0702 0.0804 0.0816 0.0815 0.0721
##
## sigma^2 estimated as 0.09965: log likelihood = -52.43, aic = 116.86
BIC(modeloAR3)
## [1] 136.5288
tt3=modeloAR3$coef[which(modeloAR3$coef!=0)]/sqrt(diag(modeloAR3$var.coef))
tt3
## ar1 ar2 ar3 ar4 ar5
## -8.192799 -4.494747 -3.800834 -3.081088 -2.790361
residuals(modeloAR3)
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] 0.016999988 -0.341797061 -0.436149592 -0.403120891 0.721590841
## [6] 0.151021258 -0.071663584 0.669718471 0.157853213 0.064168498
## [11] -0.345212812 0.528706212 0.108855780 0.159283082 0.164465368
## [16] -0.274444186 0.222534103 -0.061924493 0.167048569 -0.528419046
## [21] -0.009204647 0.353172052 0.125016936 0.191045795 0.005112586
## [26] 0.314261064 -0.029657802 -0.148741349 -0.372745710 0.559313453
## [31] 0.010993939 0.557992068 -0.210488591 -0.181099493 -0.002528347
## [36] -0.431949080 0.266522609 0.133476605 -0.174991791 0.343243662
## [41] 0.017923163 -0.037882563 -1.060929539 0.666480348 -0.113919098
## [46] -0.193528614 -0.248638243 0.154924953 -0.263494768 0.058024589
## [51] 0.392367349 -0.502876318 -0.435502373 -0.175148568 -0.075962336
## [56] 0.258781867 -0.329910128 0.699182519 0.059987001 -0.564804006
## [61] 0.238431329 -0.132774243 -0.359908500 1.079069202 -0.160075313
## [66] 0.102811666 -0.212884326 -0.193537175 0.346053267 -0.534892083
## [71] 0.270609533 0.245639492 0.463392601 -0.581212345 -0.253610296
## [76] 0.051180374 -0.189984774 -0.055933943 -0.503605278 -0.079820142
## [81] 0.039079187 -0.125394739 -0.370683772 -0.133138581 -0.136613268
## [86] 0.080583605 -0.085461115 0.148422146 -0.164000951 -0.101307033
## [91] -0.231203461 0.021969150 -0.092216345 -0.007686501 0.633232802
## [96] 0.260306762 0.405361267 0.269981842 -0.188033631 0.127508766
## [101] -0.399339223 0.458303810 -0.580096822 0.238207856 0.213161035
## [106] -0.236125139 -0.546493771 -0.006476138 0.377271417 -0.313226770
## [111] -0.083635035 0.005843621 0.467893563 0.321145484 0.146633022
## [116] -0.219717201 0.001248101 -0.481351765 -0.055485871 0.122609706
## [121] 0.113007821 0.317437090 -0.112106100 0.241212170 0.334077797
## [126] 0.264629207 0.056754904 0.130423811 0.042876796 0.012926518
## [131] 0.289909987 -0.453412660 -0.241845602 -0.143842812 -0.010749356
## [136] -0.532684487 -0.172331727 0.065470483 -0.100153772 -0.064775687
## [141] -0.155542874 -0.123197198 0.401361273 -0.099555962 -0.048111112
## [146] 0.201444787 0.627431384 0.085276413 -0.090362583 -0.160669100
## [151] 0.321523130 0.152232836 0.197000997 -0.031212019 -0.282683374
## [156] -0.202349271 0.022272334 0.375982552 -0.044151623 0.005953767
## [161] -0.018139021 0.021095279 -0.005821808 0.228740399 -0.052479238
## [166] -0.326835165 -0.151843375 0.004912963 -0.325308462 -0.052049405
## [171] 0.377341062 0.734484003 0.439038108 0.094475755 0.080613497
## [176] -0.423783903 -0.385214099 -0.119367855 -0.041436369 0.153152389
## [181] 0.187492775 0.590871090 -0.506346645 -0.272033719 -0.135728460
## [186] 0.041451444 0.069680634 0.048657222 0.155680796 -0.282667355
## [191] 0.866198492 0.676134511 -0.227589996 0.136687887 0.030855475
## [196] -0.419886378 -0.172159173
yfit=fitted(modeloAR3)
par(mfrow=c(3,2))
plot(yfit, col="red")
lines(SeriesA)
et3=residuals(modeloAR3)
plot(et3)
acf(et3)
pacf(et3)
qqPlot(et3)
## [1] 43 64
acf(abs(et3))
H0 No hay autocorrelacion serial Ha hay autocorrelacion serial
H0: r1 =r2 =r3………rlag = 0 no son significativos Ha: al menos uno es diferente de 0
Box.test(et3, lag = 7, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: et3
## X-squared = 8.8566, df = 7, p-value = 0.2631
tsdiag(modeloAR3, gof.lag=20)
prueba de jarque-bera
H0: los residuales tienen distribución normal Ha: los residuales no tienen distribución normal
jarque.bera.test(et3)
##
## Jarque Bera Test
##
## data: et3
## X-squared = 6.2439, df = 2, p-value = 0.04407
H0: los residuales son aleatorios… no tienen comportamiento predecible Ha: Los residuales exhiben comportamiento (no son aleatorios)
runs.test(as.factor(sign(et3)))
##
## Runs Test
##
## data: as.factor(sign(et3))
## Standard Normal = -0.49966, p-value = 0.6173
## alternative hypothesis: two.sided
sign(et3)==0
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE
forecast(modeloAR3, h=5)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 198 17.56710 17.16255 17.97164 16.94840 18.18580
## 199 17.53859 17.09909 17.97809 16.86643 18.21075
## 200 17.57824 17.11067 18.04582 16.86315 18.29333
## 201 17.56434 17.08029 18.04839 16.82404 18.30464
## 202 17.48466 16.98595 17.98338 16.72194 18.24738
plot(forecast(modeloAR3, h=5))
lines(yfit, col="red")
Se realizara la cuarta estimación con p, d, q de (0,1,1) Modelo MA
modeloAR4=stats::arima(SeriesA, order = c(0,1,1),
fixed =c(NA))
modeloAR4
##
## Call:
## stats::arima(x = SeriesA, order = c(0, 1, 1), fixed = c(NA))
##
## Coefficients:
## ma1
## -0.6994
## s.e. 0.0645
##
## sigma^2 estimated as 0.1007: log likelihood = -53.51, aic = 111.02
BIC(modeloAR4)
## [1] 117.5735
tt4=modeloAR4$coef[which(modeloAR4$coef!=0)]/sqrt(diag(modeloAR4$var.coef))
tt4
## ma1
## -10.84158
residuals(modeloAR4)
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] 0.016999987 -0.327777824 -0.452833823 -0.478049299 0.666181275
## [6] 0.256970669 0.078136671 0.653330233 0.156012989 0.009017867
## [11] -0.293636784 0.494627643 0.145894056 0.302024083 0.211223611
## [16] -0.252273745 0.123564286 -0.013581264 0.190501361 -0.466766225
## [21] -0.026448986 0.281501968 0.196878110 0.237693503 0.066239164
## [26] 0.246326648 -0.027722944 -0.119388999 -0.383498823 0.531786841
## [31] 0.071923510 0.650302193 -0.145188681 -0.201542723 -0.140955870
## [36] -0.398582361 0.221237647 0.254730197 -0.121845631 0.314783046
## [41] 0.020154405 -0.085904320 -1.060080156 0.558596297 -0.109326370
## [46] -0.076461176 -0.253475767 0.122722960 -0.414169455 0.110336274
## [51] 0.377167487 -0.436214879 -0.505081955 -0.253246526 -0.177116712
## [56] 0.276127304 -0.206880824 0.655310744 0.058314222 -0.559215933
## [61] 0.108893006 -0.123841912 -0.386613122 1.129608748 -0.009969072
## [66] 0.093027785 -0.234937803 -0.264311874 0.215144354 -0.349531359
## [71] 0.255543161 0.278722944 0.494934526 -0.553850430 -0.287354444
## [76] -0.100971264 -0.170617744 -0.019327417 -0.413517298 -0.189207617
## [81] -0.032328888 -0.122610325 -0.385751769 -0.169788835 -0.218747691
## [86] 0.047011240 -0.067121064 0.153056564 -0.192954601 -0.134949471
## [91] -0.294381577 -0.005885933 -0.104116530 0.027182505 0.619011025
## [96] 0.332926759 0.432843838 0.302724301 -0.188279295 0.068320366
## [101] -0.352217790 0.453664313 -0.482714180 0.262397151 0.183516518
## [106] -0.171651379 -0.620050326 -0.033653630 0.276463171 -0.206645925
## [111] -0.044524971 -0.031140078 0.378221110 0.364522008 0.254941068
## [116] -0.221698151 -0.055052266 -0.538502705 -0.076620483 0.146412817
## [121] 0.202398865 0.341554643 -0.061121953 0.157252249 0.309979796
## [126] 0.316795086 0.121561595 0.185018304 0.029398947 0.020561170
## [131] 0.314380165 -0.380127364 -0.265855213 -0.185935033 -0.030040093
## [136] -0.521009578 -0.164386059 -0.014969073 -0.110469139 -0.077260411
## [141] -0.154034739 -0.207729520 0.354717179 -0.051916278 -0.036309444
## [146] 0.174605735 0.622116557 0.135098720 -0.005514040 -0.203856434
## [151] 0.257425955 0.180039741 0.325917017 0.027941332 -0.280458263
## [156] -0.296148182 -0.007121468 0.395019355 0.076270441 0.053342370
## [161] -0.062693170 -0.043846636 -0.030665660 0.278552910 -0.005184393
## [166] -0.303625884 -0.212351258 -0.048515193 -0.333930778 -0.033546033
## [171] 0.376538422 0.763345162 0.533871827 0.173381718 0.021260498
## [176] -0.485130736 -0.439292951 -0.107234711 0.025001698 0.217485802
## [181] 0.252106214 0.576319196 -0.496931248 -0.347546047 -0.243068342
## [186] 0.030001752 0.120982763 0.184613477 0.129115817 -0.309698390
## [191] 0.783401725 0.747899078 -0.076930926 0.146195698 0.002247015
## [196] -0.498428472 -0.148593182
yfit=fitted(modeloAR4)
plot(residuals(modeloAR4))
summary(residuals(modeloAR4))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.060080 -0.201543 -0.009969 0.011549 0.215144 1.129609
Realizando la grafica de los residuales del modelo escojido podemos concluir que contiotuyen un ruido blanco de media cercana a 0.
par(mfrow=c(3,2))
plot(yfit, col="red")
lines(SeriesA)
et4=residuals(modeloAR4)
plot(et4)
acf(et4)
pacf(et4)
qqPlot(et4)
## [1] 64 43
acf(abs(et4))
H0 No hay autocorrelacion serial Ha hay autocorrelacion serial
H0: r1 =r2 =r3………rlag = 0 no son significativos Ha: al menos uno es diferente de 0
Box.test(et4, lag = 7, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: et4
## X-squared = 14.472, df = 7, p-value = 0.04339
tsdiag(modeloAR4,gof.lag=20)
prueba de jarque-bera
H0: los residuales tienen distribución normal Ha: los residuales no tienen distribución normal
jarque.bera.test(et4)
##
## Jarque Bera Test
##
## data: et4
## X-squared = 5.0015, df = 2, p-value = 0.08202
H0: los residuales son aleatorios… no tienen comportamiento predecible Ha: Los residuales exhiben comportamiento (no son aleatorios)
runs.test(as.factor(sign(et4)))
##
## Runs Test
##
## data: as.factor(sign(et4))
## Standard Normal = -3.0485, p-value = 0.0023
## alternative hypothesis: two.sided
sign(et4)==0
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE
forecast(modeloAR4, h=5)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 198 17.50392 17.09718 17.91067 16.88187 18.12598
## 199 17.50392 17.07920 17.92865 16.85437 18.15348
## 200 17.50392 17.06195 17.94590 16.82798 18.17986
## 201 17.50392 17.04535 17.96250 16.80259 18.20525
## 202 17.50392 17.02933 17.97852 16.77809 18.22976
plot(forecast(modeloAR4, h=5))
lines(yfit, col="red")
### Estimaciom MODELO 5
Se realizara la quinta estimación con p, d, q de (1,1,1) Modelo ARMA
modeloAR5=stats::arima(SeriesA, order = c(1,1,1),
fixed =c(NA,NA))
modeloAR5
##
## Call:
## stats::arima(x = SeriesA, order = c(1, 1, 1), fixed = c(NA, NA))
##
## Coefficients:
## ar1 ma1
## 0.2155 -0.8193
## s.e. 0.1011 0.0631
##
## sigma^2 estimated as 0.09851: log likelihood = -51.37, aic = 108.74
BIC(modeloAR5)
## [1] 118.5766
tt5=modeloAR5$coef[which(modeloAR5$coef!=0)]/sqrt(diag(modeloAR5$var.coef))
tt5
## ar1 ma1
## 2.130938 -12.993605
tt5 <- modeloAR5$coef[which(modeloAR5$coef!=0)]/sqrt(diag(modeloAR5$var.coef))
tt2
## ar1 ar2 ar3 ar4 ar5 ar6
## -8.893551 -5.214314 -4.599885 -3.992128 -4.117175 -3.216052
residuals(modeloAR5)
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] 0.0169999883 -0.3402074378 -0.4140621401 -0.4251136220 0.6900836271
## [6] 0.1300453162 0.0469681135 0.6540056002 0.1014584755 0.0471522325
## [11] -0.2393618190 0.5680871316 0.1136810922 0.3358981560 0.2317862161
## [16] -0.2101131553 0.2140716366 0.0106942235 0.2302915482 -0.4544095635
## [21] 0.0570313604 0.2820553803 0.1664263398 0.2363533452 0.0720959593
## [26] 0.2806226027 -0.0131845468 -0.0676944774 -0.3339099207 0.5910765728
## [31] 0.0118592237 0.6743781487 -0.1767803851 -0.1155191114 -0.0730951967
## [36] -0.3598896070 0.2697906776 0.2132799611 -0.1468056095 0.3443784379
## [41] -0.0040535016 -0.0602133003 -1.0277810831 0.6734395253 -0.2284267919
## [46] -0.0793889927 -0.2650464034 0.1259453450 -0.4614700451 0.1296698565
## [51] 0.3200276446 -0.5024510777 -0.4607995671 -0.2344426248 -0.2136416513
## [56] 0.2249553159 -0.3019013750 0.6388565590 -0.0489922067 -0.5539253953
## [61] 0.1754716347 -0.1639991694 -0.3912628352 1.1440853923 -0.1643627762
## [66] 0.1377629065 -0.2086795841 -0.2063172455 0.2525104217 -0.3793244348
## [71] 0.2969748613 0.2355530190 0.4714435531 -0.5783902979 -0.1799115560
## [76] -0.0689622845 -0.1780573506 -0.0243351778 -0.4414926745 -0.1755158715
## [81] -0.0653607340 -0.1751064641 -0.4219174049 -0.1810310559 -0.2698795331
## [86] 0.0004314357 -0.1427543946 0.1045898692 -0.2574134511 -0.1462467457
## [91] -0.3198254893 -0.0189372318 -0.1586238763 -0.0084125974 0.5715532978
## [96] 0.2389715724 0.4173523894 0.2988447092 -0.1551452285 0.1590994196
## [101] -0.3127517152 0.5299664650 -0.5166560354 0.3491157168 0.1567200505
## [106] -0.1715933360 -0.5759310800 0.0358876020 0.2431882971 -0.2654084609
## [111] -0.0312434165 -0.0471528557 0.3613658822 0.3098649605 0.2323301370
## [116] -0.2096431329 0.0144472256 -0.5097167848 -0.0098605220 0.1272590722
## [121] 0.1611602842 0.3104907722 -0.0887110549 0.1919775073 0.3141865454
## [126] 0.3143170319 0.1359778875 0.2329657685 0.0693237209 0.0783534892
## [131] 0.3641979767 -0.3662606543 -0.1707675462 -0.1399163084 -0.0146387226
## [136] -0.5335480021 -0.1293863395 -0.0491190070 -0.1617990031 -0.1110140988
## [141] -0.1909580493 -0.2349052080 0.3290872229 -0.1381361088 -0.0485183085
## [146] 0.1602471151 0.5881886352 0.0741554765 0.0254202154 -0.1576183131
## [151] 0.3139652417 0.1710278232 0.3401295632 0.0355731274 -0.2277457053
## [156] -0.2219388396 0.0397110589 0.3894288861 0.0328580408 0.0700297216
## [161] -0.0426220008 -0.0133678740 -0.0109528047 0.2910259529 -0.0262132605
## [166] -0.2783696294 -0.1634169351 -0.0338936747 -0.3493243125 -0.0215527902
## [171] 0.3392330978 0.6917307333 0.4589914331 0.1760690385 0.0873679077
## [176] -0.4068622262 -0.3255878926 -0.0452125298 0.0198477784 0.1947080923
## [181] 0.2164238170 0.5557702745 -0.5308521692 -0.2409617694 -0.1974290899
## [186] 0.0382388806 0.0882226747 0.1507302306 0.1019450349 -0.3164725777
## [191] 0.8269178216 0.6619856114 -0.1007180409 0.2468015588 0.0591059641
## [196] -0.4300183054 -0.0445605439
yfit=fitted(modeloAR5)
par(mfrow=c(3,2))
plot(yfit, col="red")
lines(SeriesA)
et5=residuals(modeloAR5)
plot(et5)
acf(et5)
pacf(et5)
qqPlot(et5)
## [1] 64 43
acf(abs(et5))
H0 No hay autocorrelacion serial Ha hay autocorrelacion serial
H0: r1 =r2 =r3………rlag = 0 no son significativos Ha: al menos uno es diferente de 0
Box.test(et5, lag = 7, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: et5
## X-squared = 7.3015, df = 7, p-value = 0.3982
tsdiag(modeloAR5,gof.lag=20)
prueba de jarque-bera
H0: los residuales tienen distribución normal Ha: los residuales no tienen distribución normal
jarque.bera.test(et5)
##
## Jarque Bera Test
##
## data: et5
## X-squared = 6.0729, df = 2, p-value = 0.048
H0: los residuales son aleatorios… no tienen comportamiento predecible Ha: Los residuales exhiben comportamiento (no son aleatorios)
runs.test(as.factor(sign(et5)))
##
## Runs Test
##
## data: as.factor(sign(et5))
## Standard Normal = -3.0689, p-value = 0.002148
## alternative hypothesis: two.sided
sign(et5)==0
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE
forecast(modeloAR5, h=5)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 198 17.47962 17.07739 17.88185 16.86446 18.09477
## 199 17.49678 17.06413 17.92943 16.83510 18.15846
## 200 17.50048 17.05479 17.94616 16.81886 18.18210
## 201 17.50127 17.04542 17.95713 16.80411 18.19844
## 202 17.50145 17.03614 17.96675 16.78983 18.21306
plot(forecast(modeloAR5, h=5))
lines(yfit, col="red")
Se realizara la sexto estimación con p, d, q de (1,1,6) Modelo ARMA
modeloAR6=stats::arima(SeriesA, order = c(1,1,6),
fixed =c(NA,NA,NA,NA,NA,NA,NA))
modeloAR6
##
## Call:
## stats::arima(x = SeriesA, order = c(1, 1, 6), fixed = c(NA, NA, NA, NA, NA,
## NA, NA))
##
## Coefficients:
## ar1 ma1 ma2 ma3 ma4 ma5 ma6
## 0.1851 -0.8053 0.0933 -0.1130 0.0112 -0.0799 0.0973
## s.e. 0.4009 0.3956 0.2601 0.0976 0.1133 0.1066 0.0710
##
## sigma^2 estimated as 0.09677: log likelihood = -49.64, aic = 115.28
modeloAR6=stats::arima(SeriesA, order = c(1,1,6),
fixed =c(NA,NA,NA,NA,0,NA,NA))
modeloAR6
##
## Call:
## stats::arima(x = SeriesA, order = c(1, 1, 6), fixed = c(NA, NA, NA, NA, 0, NA,
## NA))
##
## Coefficients:
## ar1 ma1 ma2 ma3 ma4 ma5 ma6
## 0.1719 -0.792 0.0839 -0.1081 0 -0.0737 0.0953
## s.e. 0.3898 0.384 0.2482 0.0842 0 0.0863 0.0679
##
## sigma^2 estimated as 0.09677: log likelihood = -49.65, aic = 113.29
BIC(modeloAR6)
## [1] 136.2404
tt6=modeloAR6$coef[which(modeloAR6$coef!=0)]/sqrt(diag(modeloAR6$var.coef))
tt6
## ar1 ma1 ma2 ma3 ma5 ma6
## 0.4410030 -2.0626866 0.3381733 -1.2837468 -0.8538197 1.4044787
residuals(modeloAR6)
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] 0.0169999880 -0.3367530086 -0.4394406559 -0.4009382942 0.7165251926
## [6] 0.1763198726 -0.0739880602 0.6046605240 0.1050392802 0.0678785443
## [11] -0.2243876658 0.5581702149 0.1999542398 0.2721120081 0.2196562829
## [16] -0.2502428040 0.2441566418 0.0481480986 0.2088021114 -0.4564019987
## [21] -0.0100387846 0.3432035988 0.1520432158 0.2013271099 0.0130489573
## [26] 0.2698258827 0.0262367521 -0.0875911652 -0.3248815724 0.5862171363
## [31] 0.0632157259 0.5935335707 -0.1839653765 -0.2011448012 0.0116403995
## [36] -0.3450049937 0.2933259212 0.2064444497 -0.2128753983 0.3173753862
## [41] -0.0037543798 -0.0637314721 -1.0114203429 0.6404195829 -0.0945588328
## [46] -0.1825323410 -0.2717574336 0.0557810888 -0.3606887476 0.0982089325
## [51] 0.3408888176 -0.5314331958 -0.4885519576 -0.2030119886 -0.1527794632
## [56] 0.2590015743 -0.3444061159 0.5723928776 0.0043308306 -0.6049826383
## [61] 0.2191355131 -0.1112185337 -0.3624621413 1.1432672425 -0.1617760168
## [66] 0.0480817137 -0.1710648412 -0.2215466533 0.3800897905 -0.3885274251
## [71] 0.2413540113 0.2617020891 0.4278132239 -0.5594883918 -0.2609068519
## [76] 0.0241907241 -0.1403166979 -0.0175858848 -0.4987427573 -0.2058287937
## [81] -0.0135909995 -0.1772240765 -0.4321948995 -0.2124060123 -0.2359170527
## [86] 0.0200829139 -0.1333917407 0.0694039528 -0.2404972968 -0.1562862350
## [91] -0.2721230969 -0.0057621769 -0.1151604436 -0.0272833831 0.5816538697
## [96] 0.2422234108 0.3827791607 0.3033737824 -0.1567112662 0.2060133504
## [101] -0.2628743966 0.5314527043 -0.4692168316 0.2524083903 0.2237118016
## [106] -0.2337266458 -0.5608150994 0.0003284434 0.3166479496 -0.2689910246
## [111] -0.1093772726 -0.0660697724 0.3812692556 0.3502394826 0.1710496566
## [116] -0.2351392182 0.0115767852 -0.4354019829 0.0041899189 0.1687648268
## [121] 0.1182428073 0.2860168230 -0.1327314110 0.1770318024 0.3599192588
## [126] 0.3141011602 0.1303098371 0.1958796306 0.0866556024 0.0931116286
## [131] 0.3764781223 -0.3721858383 -0.2111586916 -0.1076004097 -0.0091173379
## [136] -0.5193283268 -0.1995451445 -0.0298969290 -0.1680435007 -0.1253710529
## [141] -0.2258258110 -0.2345019186 0.3536875607 -0.1200822252 -0.0917861454
## [146] 0.1709152226 0.5999580541 0.1133787235 -0.0330884661 -0.1490130796
## [151] 0.3527354489 0.2474646327 0.3014450568 0.0084698653 -0.2652991632
## [156] -0.1864820668 0.0772891185 0.4124417600 0.0031457410 -0.0097542131
## [161] -0.0518698437 0.0007397008 0.0269139646 0.2765622309 -0.0357272823
## [166] -0.3171144716 -0.1617017491 -0.0034001971 -0.3227636747 -0.0502487152
## [171] 0.3325824006 0.6822986559 0.4362553410 0.1007264810 0.0783389166
## [176] -0.3527741110 -0.2705616854 0.0080878198 0.0224478426 0.1668433414
## [181] 0.1632848132 0.5142446115 -0.5307600915 -0.2902927240 -0.1196340883
## [186] 0.0683840162 0.1207856621 0.0716656739 0.0660257434 -0.3218132111
## [191] 0.8325275517 0.7239997066 -0.1718563734 0.1942631101 0.0821323675
## [196] -0.3606045591 -0.0115591263
yfit=fitted(modeloAR6)
par(mfrow=c(3,2))
plot(yfit, col="red")
lines(SeriesA)
et6=residuals(modeloAR6)
plot(et6)
acf(et6)
pacf(et6)
qqPlot(et6)
## [1] 64 43
acf(abs(et6))
H0 No hay autocorrelacion serial Ha hay autocorrelacion serial
H0: r1 =r2 =r3………rlag = 0 no son significativos Ha: al menos uno es diferente de 0
Box.test(et6, lag = 7, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: et6
## X-squared = 2.748, df = 7, p-value = 0.9073
tsdiag(modeloAR6,gof.lag=20)
prueba de jarque-bera
H0: los residuales tienen distribución normal Ha: los residuales no tienen distribución normal
jarque.bera.test(et6)
##
## Jarque Bera Test
##
## data: et6
## X-squared = 6.3182, df = 2, p-value = 0.04246
H0: los residuales son aleatorios… no tienen comportamiento predecible Ha: Los residuales exhiben comportamiento (no son aleatorios)
runs.test(as.factor(sign(et6)))
##
## Runs Test
##
## data: as.factor(sign(et6))
## Standard Normal = -2.2067, p-value = 0.02734
## alternative hypothesis: two.sided
sign(et6)==0
## Time Series:
## Start = 1
## End = 197
## Frequency = 1
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE
forecast(modeloAR6, h=5)
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 198 17.48607 17.08741 17.88474 16.87637 18.09578
## 199 17.50817 17.08171 17.93463 16.85595 18.16039
## 200 17.52568 17.07607 17.97530 16.83805 18.21331
## 201 17.56310 17.10297 18.02322 16.85940 18.26680
## 202 17.53601 17.06714 18.00487 16.81894 18.25307
plot(forecast(modeloAR6, h=5))
lines(yfit, col="red")
Dado que se escogio el modelo 4 se gera la ecuacion para el mismo.
\[xt=μ+△1wt+(−10.84)∗△1wt−1\]
plot(forecast(modeloAR4,h=4, fan=T))
lines(fitted(modeloAR4), col="red")
podemos observar en el grafico cómo la linea roja correspondiente al pronostico del modelo se ajusta bastante al comportamiento de data incialmente analizada.
hchart(forecast(modeloAR4,h=4, fan=T))
En el anterior grafico observamos como los cuatro pasos proyectados corresponden al comportamiento de la curva pronosticada.