1. INTRODUCTION AND DATA PREPARATION.

This project was conducted as a quantitative research analysis using basic statistic concepts. The main idea behind the project was to analyze the speeds of 7 machine models (6 cars 1 motorcycle) and 7 animals from different perspective.

1.1. Necessary packages

install.packages("tidyverse")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.8     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.1
## ✔ readr   2.1.2     ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(readr)
library(dplyr)
library(ggplot2)

1.2 Dataset

df <- read_csv("machine_nature.csv") %>% as_tibble()
## Rows: 14 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): name, sex, physical_category, speed_locomotion_type
## dbl (3): top_speed_mph, top_speed_km_h, weight_kg
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
df
## # A tibble: 14 × 7
##    name                            sex   top_s…¹ top_s…² physi…³ speed…⁴ weigh…⁵
##    <chr>                           <chr>   <dbl>   <dbl> <chr>   <chr>     <dbl>
##  1 Bugatti Chiron Super Sport 300… <NA>      304     489 Machine moving  1.98e+3
##  2 Peregrine Falcon                Male      242     389 Nature  flying  1   e+0
##  3 Peregrine Falcon                Fema…     242     389 Nature  flying  1.5 e+0
##  4 Porsche 911 Turbo S (2021)      <NA>      205     330 Machine moving  1.65e+3
##  5 Golden Eagle                    Male      200     322 Nature  flying  4.6 e+0
##  6 Golden Eagle                    Fema…     200     322 Nature  flying  6.7 e+0
##  7 Chevrolet Corvette Stingray (2… <NA>      194     312 Machine moving  1.65e+3
##  8 Honda Civic (2021)              <NA>      137     220 Machine moving  1.31e+3
##  9 Toyota RAV4 (2021)              <NA>      120     193 Machine moving  1.58e+3
## 10 Ford F-150 Raptor (2020)        <NA>      107     172 Machine moving  2.58e+3
## 11 Mexican free-tailed bat         <NA>      101     163 Nature  running 1.3 e-2
## 12 Cheetah                         <NA>       75     121 Nature  running 7.2 e+1
## 13 Sailfish                        <NA>       68     109 Nature  swimmi… 9   e+1
## 14 Honda Ruckus (2020)             <NA>       40      64 Machine moving  8.8 e+1
## # … with abbreviated variable names ¹​top_speed_mph, ²​top_speed_km_h,
## #   ³​physical_category, ⁴​speed_locomotion_type, ⁵​weight_kg
glimpse(df)
## Rows: 14
## Columns: 7
## $ name                  <chr> "Bugatti Chiron Super Sport 300+ (2019)", "Pereg…
## $ sex                   <chr> NA, "Male", "Female", NA, "Male", "Female", NA, …
## $ top_speed_mph         <dbl> 304, 242, 242, 205, 200, 200, 194, 137, 120, 107…
## $ top_speed_km_h        <dbl> 489, 389, 389, 330, 322, 322, 312, 220, 193, 172…
## $ physical_category     <chr> "Machine", "Nature", "Nature", "Machine", "Natur…
## $ speed_locomotion_type <chr> "moving", "flying", "flying", "moving", "flying"…
## $ weight_kg             <dbl> 1978.000, 1.000, 1.500, 1646.000, 4.600, 6.700, …

This is quite small data set with 7 variables and 14 row. Variables are: * name - this includes both name of car brand and animal name, * sex - this variable is only for animals specifically for birds as the weight of male and female birds differ, * top_speed_mph - speed of a car and animal in mile per hour unit, * top_speed_km_h - speed of a car and animal in kilometer per hour unit, * physical_category - whether the object is car or animal, * speed_locomotion_type - what is the movement type that the objects achieve their highest, * weight_kg - weights of machine models and animals expressed in kilogram.

2. DATA CLEANING

glimpse() function identified that some variable types should have been changed. These variables are: * sex - should be converted to factor, * physical_category - should be converted to factor, * speed_locomotion_type - should be converted to factor.

These conversions have been applied to the variables in order to get valid results in the analyze phase.

df$sex <- df$sex %>% as_factor()
df$physical_category <- df$physical_category %>% as_factor()
df$speed_locomotion_type <- df$speed_locomotion_type %>% as_factor()

Additionally, in some stages of analyses it would be necessary to have separate data frames for cars and animals. So, two subsets of the base data frame were created.

df_machines <- df %>% dplyr::filter(df$physical_category=="Machine")
df_machines
## # A tibble: 7 × 7
##   name                             sex   top_s…¹ top_s…² physi…³ speed…⁴ weigh…⁵
##   <chr>                            <fct>   <dbl>   <dbl> <fct>   <fct>     <dbl>
## 1 Bugatti Chiron Super Sport 300+… <NA>      304     489 Machine moving     1978
## 2 Porsche 911 Turbo S (2021)       <NA>      205     330 Machine moving     1646
## 3 Chevrolet Corvette Stingray (20… <NA>      194     312 Machine moving     1654
## 4 Honda Civic (2021)               <NA>      137     220 Machine moving     1309
## 5 Toyota RAV4 (2021)               <NA>      120     193 Machine moving     1583
## 6 Ford F-150 Raptor (2020)         <NA>      107     172 Machine moving     2584
## 7 Honda Ruckus (2020)              <NA>       40      64 Machine moving       88
## # … with abbreviated variable names ¹​top_speed_mph, ²​top_speed_km_h,
## #   ³​physical_category, ⁴​speed_locomotion_type, ⁵​weight_kg
df_animals <- df %>% dplyr::filter(df$physical_category=="Nature")
df_animals
## # A tibble: 7 × 7
##   name                    sex    top_speed_mph top_spe…¹ physi…² speed…³ weigh…⁴
##   <chr>                   <fct>          <dbl>     <dbl> <fct>   <fct>     <dbl>
## 1 Peregrine Falcon        Male             242       389 Nature  flying    1    
## 2 Peregrine Falcon        Female           242       389 Nature  flying    1.5  
## 3 Golden Eagle            Male             200       322 Nature  flying    4.6  
## 4 Golden Eagle            Female           200       322 Nature  flying    6.7  
## 5 Mexican free-tailed bat <NA>             101       163 Nature  running   0.013
## 6 Cheetah                 <NA>              75       121 Nature  running  72    
## 7 Sailfish                <NA>              68       109 Nature  swimmi…  90    
## # … with abbreviated variable names ¹​top_speed_km_h, ²​physical_category,
## #   ³​speed_locomotion_type, ⁴​weight_kg

After separate data frames were created individual calculations were applied to them first starting with summary() function. Initially, sex variable were dropped from the machines data frame.

df_machines <- df_machines %>% select(-sex)
df_machines
## # A tibble: 7 × 6
##   name                                   top_s…¹ top_s…² physi…³ speed…⁴ weigh…⁵
##   <chr>                                    <dbl>   <dbl> <fct>   <fct>     <dbl>
## 1 Bugatti Chiron Super Sport 300+ (2019)     304     489 Machine moving     1978
## 2 Porsche 911 Turbo S (2021)                 205     330 Machine moving     1646
## 3 Chevrolet Corvette Stingray (2020)         194     312 Machine moving     1654
## 4 Honda Civic (2021)                         137     220 Machine moving     1309
## 5 Toyota RAV4 (2021)                         120     193 Machine moving     1583
## 6 Ford F-150 Raptor (2020)                   107     172 Machine moving     2584
## 7 Honda Ruckus (2020)                         40      64 Machine moving       88
## # … with abbreviated variable names ¹​top_speed_mph, ²​top_speed_km_h,
## #   ³​physical_category, ⁴​speed_locomotion_type, ⁵​weight_kg

After creating subsets and applying necessary conversions results were checked via glimpse() function again.

glimpse(df)
## Rows: 14
## Columns: 7
## $ name                  <chr> "Bugatti Chiron Super Sport 300+ (2019)", "Pereg…
## $ sex                   <fct> NA, Male, Female, NA, Male, Female, NA, NA, NA, …
## $ top_speed_mph         <dbl> 304, 242, 242, 205, 200, 200, 194, 137, 120, 107…
## $ top_speed_km_h        <dbl> 489, 389, 389, 330, 322, 322, 312, 220, 193, 172…
## $ physical_category     <fct> Machine, Nature, Nature, Machine, Nature, Nature…
## $ speed_locomotion_type <fct> moving, flying, flying, moving, flying, flying, …
## $ weight_kg             <dbl> 1978.000, 1.000, 1.500, 1646.000, 4.600, 6.700, …
glimpse(df_machines)
## Rows: 7
## Columns: 6
## $ name                  <chr> "Bugatti Chiron Super Sport 300+ (2019)", "Porsc…
## $ top_speed_mph         <dbl> 304, 205, 194, 137, 120, 107, 40
## $ top_speed_km_h        <dbl> 489, 330, 312, 220, 193, 172, 64
## $ physical_category     <fct> Machine, Machine, Machine, Machine, Machine, Mac…
## $ speed_locomotion_type <fct> moving, moving, moving, moving, moving, moving, …
## $ weight_kg             <dbl> 1978, 1646, 1654, 1309, 1583, 2584, 88
glimpse(df_animals)
## Rows: 7
## Columns: 7
## $ name                  <chr> "Peregrine Falcon", "Peregrine Falcon", "Golden …
## $ sex                   <fct> Male, Female, Male, Female, NA, NA, NA
## $ top_speed_mph         <dbl> 242, 242, 200, 200, 101, 75, 68
## $ top_speed_km_h        <dbl> 389, 389, 322, 322, 163, 121, 109
## $ physical_category     <fct> Nature, Nature, Nature, Nature, Nature, Nature, …
## $ speed_locomotion_type <fct> flying, flying, flying, flying, running, running…
## $ weight_kg             <dbl> 1.000, 1.500, 4.600, 6.700, 0.013, 72.000, 90.000

3. ANALYZE

3.1 Basic descriptive statistics for cars and animals.

max(df_machines$top_speed_km_h)
## [1] 489
min(df_machines$top_speed_km_h)
## [1] 64
mean(df_machines$top_speed_km_h)
## [1] 254.2857
median(df_machines$top_speed_km_h)
## [1] 220
range(df_machines$top_speed_km_h)
## [1]  64 489
mode(df_machines$top_speed_km_h)
## [1] "numeric"

Functions revealed that there were no mode value in speed variable of machines.

df_machines$top_speed_km_h %>% boxplot(xlab="Speed: minimum, median, IQR and maximum", horizontal=T)

df_machines$top_speed_km_h %>% hist(main="Histogram of speeds of machines", xlab="Speed range", ylab="Frequency")

max(df_animals$top_speed_km_h)
## [1] 389
min(df_animals$top_speed_km_h)
## [1] 109
mean(df_animals$top_speed_km_h)
## [1] 259.2857
median(df_animals$top_speed_km_h)
## [1] 322
range(df_animals$top_speed_km_h)
## [1] 109 389
mode(df_animals$top_speed_km_h)
## [1] "numeric"

There were no mode value in speed variable of animals data frame either.

df_animals$top_speed_km_h %>% boxplot(xlab="Speed: minimum, median, IQR and maximum", horizontal=T)

df_animals$top_speed_km_h %>% hist(main="Histogram of speeds of animals", xlab="Speed range", ylab="Frequency")

3.2 One numerical variable. t-test

Do speeds of cars differ from the speeds of animals?

Null hypothesis. The speeds of cars are the same as the speeds of animals.

Alternative hypothesis. The speeds of cars differ from the speeds of animals.

t.test(df_machines$top_speed_km_h, df_animals$top_speed_km_h)
## 
##  Welch Two Sample t-test
## 
## data:  df_machines$top_speed_km_h and df_animals$top_speed_km_h
## t = -0.071644, df = 11.891, p-value = 0.9441
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -157.2122  147.2122
## sample estimates:
## mean of x mean of y 
##  254.2857  259.2857

3.3 The relationships between the speeds and weights. Correlation test.

Is there a relationships between speeds and weights of cars and animals?

Alternative hypothesis. There is a relationship between speeds and weights of cars and animals. Null hypothesis. There is no relationship between speeds and weights of cars and animals.

cor.test(df_machines$top_speed_km_h, df_machines$weight_kg)
## 
##  Pearson's product-moment correlation
## 
## data:  df_machines$top_speed_km_h and df_machines$weight_kg
## t = 1.2984, df = 5, p-value = 0.2508
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4034984  0.9107907
## sample estimates:
##       cor 
## 0.5021383
ggplot(df_machines, 
  aes(top_speed_km_h, weight_kg,
    color = name)) +
  geom_point(size = 3) + 
  labs(
  title="Weight v. Speed",
  x="Speed",
  y="Weight"
)

cor.test(df_animals$top_speed_km_h, df_animals$weight_kg)
## 
##  Pearson's product-moment correlation
## 
## data:  df_animals$top_speed_km_h and df_animals$weight_kg
## t = -2.7947, df = 5, p-value = 0.03823
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.96591723 -0.06739484
## sample estimates:
##        cor 
## -0.7808244
ggplot(df_animals, 
  aes(top_speed_km_h, weight_kg, color=name)) +
  geom_point(size = 3) +
  labs(
    title="Weight v. Speed",
    x="Speed",
    y="Weight"
)

4. CONCLUSION

According to the statistics the average speeds of machines and animals are quite close even though maximum speed of car model (Bugatti Chiron Super Sport 300+ (2019) is much higher. And median speed of animals are higher than median speed of machines. Negative correlation between weights and speeds of animals and positive relationship between weights and speeds of machines are the other major findings of the analysis. One of the major limitation to the is the sample size and participation. There are no insect species in sample and movement categories are limited. Also, there is only one motorcycle model (Honda Ruckus) in the sapmle data.

REFERENCES.

  1. What’s Faster, Nature or Machine? (Accessed: 31/08/2022)

  2. Bugatti Chiron Super Sport 300+ (2019) (Accessed: 31/08/2022)

  3. Porsche 911 Turbo S (2021) (Accessed: 31/08/2022)

  4. Chevrolet Corvette Stingray (2020) (Accessed: 31/08/2022)

  5. Honda Civic (2021) (Accessed: 31/08/2022)

  6. Toyota RAV4 (2021) (Accessed: 31/08/2022)

  7. Ford F-150 Raptor (2020) (Accessed: 31/08/2022)

  8. Honda Ruckus (2020) (Accessed: 31/08/2022) 9.Pelegrine falcon (Accessed: 31/08/2022)

  9. Golden eagle (Accessed: 31/08/2022)

  10. Mexican_free-tailed_bat (Accessed: 31/08/2022)

  11. Cheetah (Accessed: 31/08/2022)

  12. Sailfish (Accessed: 31/08/2022)