Reading the data
dat<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
head(dat)
## ï..Temp Sex Beats
## 1 96.3 1 70
## 2 96.7 1 71
## 3 96.9 1 74
## 4 97.0 1 80
## 5 97.1 1 73
## 6 97.1 1 75
colnames(dat)<-c("Temp","Sex","Beats")
head(dat)
## Temp Sex Beats
## 1 96.3 1 70
## 2 96.7 1 71
## 3 96.9 1 74
## 4 97.0 1 80
## 5 97.1 1 73
## 6 97.1 1 75
str(dat)
## 'data.frame': 130 obs. of 3 variables:
## $ Temp : num 96.3 96.7 96.9 97 97.1 97.1 97.1 97.2 97.3 97.4 ...
## $ Sex : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Beats: int 70 71 74 80 73 75 82 64 69 70 ...
dat$Sex<-as.factor(dat$Sex)
str(dat)
## 'data.frame': 130 obs. of 3 variables:
## $ Temp : num 96.3 96.7 96.9 97 97.1 97.1 97.1 97.2 97.3 97.4 ...
## $ Sex : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ Beats: int 70 71 74 80 73 75 82 64 69 70 ...
malesdata<-dat[dat$Sex==1,]
summary(malesdata$Beats)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 58.00 70.00 73.00 73.37 78.00 86.00
sd(malesdata$Beats)
## [1] 5.875184
min=58.00
max=86.00
mean=73.37
Standard Deviation=5.875
Sample median=73.00
1st Quartiles= 70.00
3rd Quartiles= 78.00
hist(malesdata$Beats, main ="Males Heartbeats",col="blue", xlab="Males Heartbeats")
qqnorm(malesdata$Beats, main = "Males Heartbeat", col = "blue")
qqline(malesdata$Beats, col = "green")
We have a normal probability histogram
We have a linear relationship between sample quantiles and theoritical sample quantiles
femalesdata<-dat[dat$Sex==2,]
summary(femalesdata$Beats)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 57.00 68.00 76.00 74.15 80.00 89.00
sd(femalesdata$Beats)
## [1] 8.105227
min=57.00
max=89.00
mean=74.15
Standard Deviation=8.11
Sample median=76.00
1st Quartiles= 68.0
3rd Quartiles= 80.0
hist(femalesdata$Beats, main ="Females Heartbeats",col="pink", xlab="Females Heartbeats")
qqnorm(femalesdata$Beats, main = "Females Heartbeat", col = "pink")
qqline(femalesdata$Beats, col = "black")
We have a normal probability histogram
We have a linear relationship between sample quantities and theoretical sample quantities
boxplot(malesdata$Beats,femalesdata$Beats,names=c("Males","Females"))
From Male data we have
min=58.00
max=86.00
1st Quartiles= 70.00
3rd Quartiles= 78.00
And for the females we have
min=57.00
max=89.00
mean=74.15
1st Quartiles= 68.0
3rd Quartiles= 80.0