For this Flip Assigment, we need to download the .csv file into a variable and separate the data in terms of sex
The code below shows how to do it:
dat <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
dat_male <- dat[1:65,]
dat_fem <- dat[66:130,]
The code below prints the descriptive statistics:
print(min(dat_male$Beats))
## [1] 58
print(max(dat_male$Beats))
## [1] 86
print(mean(dat_male$Beats))
## [1] 73.36923
print(sd(dat_male$Beats))
## [1] 5.875184
print(median(dat_male$Beats))
## [1] 73
print(quantile(dat_male$Beats))
## 0% 25% 50% 75% 100%
## 58 70 73 78 86
hist(dat_male$Beats
,main="Male Resting Beats"
,col="green"
,xlab="Resting Beats")
qqnorm(dat_male$Beats,
main="Male Beats Normal Distribution",
xlab="Normal Quantities",
ylab="Heart Beats")
print(min(dat_fem$Beats))
## [1] 57
print(max(dat_fem$Beats))
## [1] 89
print(mean(dat_fem$Beats))
## [1] 74.15385
print(sd(dat_fem$Beats))
## [1] 8.105227
print(median(dat_fem$Beats))
## [1] 76
print(quantile(dat_fem$Beats))
## 0% 25% 50% 75% 100%
## 57 68 76 80 89
hist(dat_fem$Beats
,main="Female Resting Beats"
,col="pink"
,xlab="Resting Beats")
qqnorm(dat_fem$Beats,
main="Female Beats Normal Distribution",
xlab="Normal Quantities",
ylab="Heart Beats")
boxplot(dat_male$Beats, dat_fem$Beats,
names=c("Male","Female"),
main="Side-by-side boxplots")
When comparing the descriptive statistics, Females present higher maximum values and lower minimum values, besides a higher median.
Considering the mean and std values, it is not possible see a huge difference between means, but females present higher STD values.
All these informations are well summarized in the boxplot. Besides that, we have pretty much similar minimum values (difference of 1 beat per minute).
dat <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
dat_male <- dat[1:65,]
dat_fem <- dat[66:130,]
#-------------- Male Data
print(min(dat_male$Beats))
print(max(dat_male$Beats))
print(mean(dat_male$Beats))
print(sd(dat_male$Beats))
print(median(dat_male$Beats))
print(quantile(dat_male$Beats))
hist(dat_male$Beats
,main="Male Resting Beats"
,col="green"
,xlab="Resting Beats")
qqnorm(dat_male$Beats,
main="Male Beats Normal Distribution",
xlab="Normal Quantities",
ylab="Heart Beats")
#-------------- Female Data
print(min(dat_fem$Beats))
print(max(dat_fem$Beats))
print(mean(dat_fem$Beats))
print(sd(dat_fem$Beats))
print(median(dat_fem$Beats))
print(quantile(dat_fem$Beats))
hist(dat_fem$Beats
,main="Female Resting Beats"
,col="pink"
,xlab="Resting Beats")
qqnorm(dat_fem$Beats,
main="Female Beats Normal Distribution",
xlab="Normal Quantities",
ylab="Heart Beats")
#-------------- Box Plots
boxplot(dat_male$Beats, dat_fem$Beats,
names=c("Male","Female"),
main="Side-by-side boxplots")