Individuals in the mindfulness condition were significantly more likely to respond to alcohol prompts mindfully on active weeks, when they were prompted to respond mindfully, vs. on inactive weeks, when they were prompted to respond naturally (B = 18.06, CI95[13.14-22.99], p<.001
active week (M = 59.6; SD = 17.7) vs. inactive week(M = 49.5; SD =21.7).
mindful = read.csv("~/Documents/Box Sync/CurrentProjects_Penn/MURI/Papers/EMA_intervention_effects/Study1/Study1modeling.csv", stringsAsFactors = FALSE) %>%
filter(Condition == 'mindful') #subset to only mindfulness ppt
#set inactve week as reference week
mindful$active_week <-as.factor(mindful$active_week)
mindful$active_week <- relevel(mindful$active_week,"control")mindful %>%
ggplot(aes(active_week, Alc_React_Mindful, color = active_week)) +
#geom_jitter(alpha = .1, size = 1, width = .1) +
stat_summary(fun.data = "mean_cl_boot", size = 1) +
scale_color_manual(values = palette) +
labs(x = "study week", y = "REACT MINDFUL to alcohol \n") +
scale_x_discrete(labels=c("baseline", "mindful attention")) +
plot_aes +
theme(legend.position = "none")descript_mindful = mindful %>%
group_by(SHINEID) %>% #grouping by SHINEID
summarise(mindful_on_week = mean(Alc_React_Mindful[active_week %in% c("active")], na.rm=T),
mindful_off_week = mean(Alc_React_Mindful[active_week %in% c("control")], na.rm=T)) %>%
ungroup()
table1::table1(~mindful_on_week + mindful_off_week, data = descript_mindful)| Overall (N=37) |
|
|---|---|
| mindful_on_week | |
| Mean (SD) | 59.6 (17.7) |
| Median [Min, Max] | 60.6 [1.00, 94.9] |
| Missing | 1 (2.7%) |
| mindful_off_week | |
| Mean (SD) | 49.5 (21.7) |
| Median [Min, Max] | 49.2 [2.05, 91.0] |
| Missing | 3 (8.1%) |
within = lmer(Alc_React_Mindful ~ active_week + (1|SHINEID), data = mindful)
tab_model(within)| Â | Alc React Mindful | ||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 45.59 | 39.80 – 51.38 | <0.001 |
| active week [active] | 18.06 | 13.12 – 23.00 | <0.001 |
| Random Effects | |||
| σ2 | 550.94 | ||
| τ00 SHINEID | 187.18 | ||
| ICC | 0.25 | ||
| N SHINEID | 37 | ||
| Observations | 382 | ||
| Marginal R2 / Conditional R2 | 0.100 / 0.328 | ||
On average, individuals in the mindfulness condition responded to alcohol prompts naturally significantly less frequently relative to individuals in the baseline condition, X2(2,N = 74) = -6.8, p < .01. (DOUBLE CHECK stats please)
baseline condition (M = 89.6; SD = 10.6) vs. mindful condition(M = 58.5; SD =22.2).
#Load end of survey variables
end_vs <- read.csv("~/Documents/Box Sync/CurrentProjects_Penn/MURI/Papers/EMA_intervention_effects/Study1/SHINE_EMA_May19_2020.csv", stringsAsFactors = FALSE)
#remove 1ppt due to technical app difficulties
end_vs <- end_vs[which(end_vs$SHINEID!="muri035"),]
end_vs$shineid <- tolower(end_vs$SHINEID)
cond1 = end_vs %>%
group_by(SHINEID)%>% #subset unique
dplyr::mutate(mean_mindful = mean(EndQMindfu, na.rm =T),
mean_natural = mean(EndQNatura, na.rm = T)) %>%
filter(Condition != 'perspective') %>%
dplyr::select(Condition, SHINEID, mean_mindful,mean_natural) %>% distinct(SHINEID,.keep_all = TRUE) #get condition infocond1 %>%
ggplot(aes(Condition, mean_natural, color = Condition)) +
#geom_jitter(alpha = .1, size = 1, width = .1) +
stat_summary(fun.data = "mean_cl_boot", size = 1) +
scale_color_manual(values = palette) +
labs(x = "Condition", y = "REACT NATURALLY to alcohol \n") +
scale_x_discrete(labels=c("baseline group", "mindful attention \n group")) +
plot_aes +
theme(legend.position = "none")table1::table1(~mean_natural + mean_mindful| Condition, data = cond1)| control (N=37) |
mindful (N=37) |
Overall (N=74) |
|
|---|---|---|---|
| mean_natural | |||
| Mean (SD) | 89.6 (10.6) | 58.5 (22.2) | 74.1 (23.3) |
| Median [Min, Max] | 89.0 [59.0, 100] | 61.0 [10.0, 100] | 80.5 [10.0, 100] |
| Missing | 8 (21.6%) | 8 (21.6%) | 16 (21.6%) |
| mean_mindful | |||
| Mean (SD) | 61.1 (21.8) | 56.6 (22.3) | 58.8 (22.0) |
| Median [Min, Max] | 66.0 [27.0, 100] | 60.0 [11.0, 86.0] | 62.0 [11.0, 100] |
| Missing | 8 (21.6%) | 8 (21.6%) | 16 (21.6%) |
t.test(cond1$mean_natural[cond1$Condition == 'mindful'],
cond1$mean_natural[cond1$Condition == 'control'], paired = FALSE)##
## Welch Two Sample t-test
##
## data: cond1$mean_natural[cond1$Condition == "mindful"] and cond1$mean_natural[cond1$Condition == "control"]
## t = -6.814, df = 40.217, p-value = 3.318e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -40.37202 -21.90384
## sample estimates:
## mean of x mean of y
## 58.48276 89.62069