library(tidyverse)
library(openintro)
What command would you use to extract just the counts of girls
baptized? Try it!
## [1] 82
There are 82 girls baptized in arbuthnot data set.
Exercise 2
Is there an apparent trend in the number of girls baptized over the
years? How would you describe it? (To ensure that your lab report is
comprehensive, be sure to include the code needed to make the plot as
well as your written interpretation.)
arbuthnot$boys + arbuthnot$girls
## [1] 9901 9315 8524 9584 9997 9855 10034 9522 9160 10311 10150 10850
## [13] 10670 10370 9410 8104 7966 7163 7332 6544 5825 5612 6071 6128
## [25] 6155 6620 7004 7050 6685 6170 5990 6971 8855 10019 10292 11722
## [37] 9972 8997 10938 11633 12335 11997 12510 12563 11895 11851 11775 12399
## [49] 12626 12601 12288 12847 13355 13653 14735 14702 14730 14694 14951 14588
## [61] 14771 15211 15054 14918 15159 13632 13976 14861 15829 16052 15363 14639
## [73] 15616 15687 15448 11851 16145 15369 16066 15862 15220 14928
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
ggplot(data = arbuthnot, aes(x = year, y = girls)) +
geom_line()

arbuthnot <- arbuthnot %>%
mutate(boy_to_girl_ratio = boys / girls)
The girls being baptized from 1640s-1660s was a sharp decreased
following by an increased demand of baptized girls from 1665 onward.
Exercise 3
Now, generate a plot of the proportion of boys born over time. What
do you see?
arbuthnot <- arbuthnot %>%
mutate(boy_ratio = boys / total)
ggplot(data = arbuthnot, aes(x= year, y = boy_ratio)) + geom_line()
The boys have consistently been bapitzed throughout the years with only
a small decrease after 1700s.
Exercise 4
What years are included in this data set? What are the dimensions of
the data frame? What are the variable (column) names?
present %>%
summarize(min =min(year), max = max(year))
## # A tibble: 1 × 2
## min max
## <dbl> <dbl>
## 1 1940 2002
## [1] 1940 2002
## [1] 63 3
## [1] "year" "boys" "girls"
The years is from 1940 to 2002. The dimension is 63 column x 3 rows,
with 3 columns: years, boys, girls, with 3 custome made:
boys_to_girls_ratio, totals, boys_ratio
Exercise 5
How do these counts compare to Arbuthnot’s? Are they of a similar
magnitude?
## [1] 63 3
## [1] 82 6
## year boys girls total boy_to_girl_ratio boy_ratio
## [1,] 1629 2890 2722 5612 1.010673 0.5026541
## [2,] 1710 8426 7779 16145 1.156075 0.5361942
## year boys girls
## [1,] 1940 1211684 1148715
## [2,] 2002 2186274 2082052
In Artuthnot data there is 82 years of data presented while present
has only 63 years of data. I believe that Arthunot has more data to work
with.
Exercise 6
Make a plot that displays the proportion of boys born over time. What
do you see? Does Arbuthnot’s observation about boys being born in
greater proportion than girls hold up in the U.S.? Include the plot in
your response. Hint: You should be able to reuse your code from Exercise
3 above, just replace the dataframe name.
present <- present %>%
mutate(totals = boys + girls)
present <- present %>%
mutate(boys_ratio = boys / totals)
ggplot(data = present, aes(x= year, y = boys_ratio)) + geom_line()
From this graph we can see that the boys being born in greater
proportion than the girl.
Exercise 7
In what year did we see the most total number of births in the U.S.?
Hint: First calculate the totals and save it as a new variable. Then,
sort your dataset in descending order based on the total column. You can
do this interactively in the data viewer by clicking on the arrows next
to the variable names. To include the sorted result in your report you
will need to use two new functions: arrange (for sorting). We can
arrange the data in a descending order with another function: desc (for
descending order). The sample code is provided below.
present[present$totals == max(present$totals), "year"]
## # A tibble: 1 × 1
## year
## <dbl>
## 1 1961
LS0tCnRpdGxlOiAiTGFiIDE6IEludHJvIHRvIFIgRmFsbCAyMDIyIERhdGEgNjA2IgphdXRob3I6ICJXaWxzb24gQ2hhdSIKZGF0ZTogIjgvMzEvMjIiCm91dHB1dDogb3BlbmludHJvOjpsYWJfcmVwb3J0Ci0tLQoKYGBge3IgbG9hZC1wYWNrYWdlcywgbWVzc2FnZT1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkob3BlbmludHJvKQpgYGAKCldoYXQgY29tbWFuZCB3b3VsZCB5b3UgdXNlIHRvIGV4dHJhY3QganVzdCB0aGUgY291bnRzIG9mIGdpcmxzIGJhcHRpemVkPyBUcnkgaXQhCgpgYGB7ciB2aWV3LWdpcmxzLWNvdW50c30KbGVuZ3RoKGFyYnV0aG5vdCRnaXJscykKYGBgClRoZXJlIGFyZSA4MiBnaXJscyBiYXB0aXplZCBpbiBhcmJ1dGhub3QgZGF0YSBzZXQuCgojIyMgRXhlcmNpc2UgMgoKSXMgdGhlcmUgYW4gYXBwYXJlbnQgdHJlbmQgaW4gdGhlIG51bWJlciBvZiBnaXJscyBiYXB0aXplZCBvdmVyIHRoZSB5ZWFycz8gSG93IHdvdWxkIHlvdSBkZXNjcmliZSBpdD8gKFRvIGVuc3VyZSB0aGF0IHlvdXIgbGFiIHJlcG9ydCBpcyBjb21wcmVoZW5zaXZlLCBiZSBzdXJlIHRvIGluY2x1ZGUgdGhlIGNvZGUgbmVlZGVkIHRvIG1ha2UgdGhlIHBsb3QgYXMgd2VsbCBhcyB5b3VyIHdyaXR0ZW4gaW50ZXJwcmV0YXRpb24uKQoKYGBge3IgdHJlbmQtZ2lybHN9CmFyYnV0aG5vdCRib3lzICsgYXJidXRobm90JGdpcmxzCgphcmJ1dGhub3QgPC0gYXJidXRobm90ICU+JQogIG11dGF0ZSh0b3RhbCA9IGJveXMgKyBnaXJscykKCmdncGxvdChkYXRhID0gYXJidXRobm90LCBhZXMoeCA9IHllYXIsIHkgPSBnaXJscykpICsgCiAgZ2VvbV9saW5lKCkKCmFyYnV0aG5vdCA8LSBhcmJ1dGhub3QgJT4lCiAgbXV0YXRlKGJveV90b19naXJsX3JhdGlvID0gYm95cyAvIGdpcmxzKQoKCgpgYGAKVGhlIGdpcmxzIGJlaW5nIGJhcHRpemVkIGZyb20gMTY0MHMtMTY2MHMgd2FzIGEgc2hhcnAgZGVjcmVhc2VkIGZvbGxvd2luZyBieSBhbiBpbmNyZWFzZWQgZGVtYW5kIG9mIGJhcHRpemVkIGdpcmxzIGZyb20gMTY2NSBvbndhcmQuCgojIyMgRXhlcmNpc2UgMwoKTm93LCBnZW5lcmF0ZSBhIHBsb3Qgb2YgdGhlIHByb3BvcnRpb24gb2YgYm95cyBib3JuIG92ZXIgdGltZS4gV2hhdCBkbyB5b3Ugc2VlPwoKYGBge3IgcGxvdC1wcm9wLWJveXMtYXJidXRobm90fQphcmJ1dGhub3QgPC0gYXJidXRobm90ICU+JQogIG11dGF0ZShib3lfcmF0aW8gPSBib3lzIC8gdG90YWwpCgpnZ3Bsb3QoZGF0YSA9IGFyYnV0aG5vdCwgYWVzKHg9IHllYXIsIHkgPSBib3lfcmF0aW8pKSArIGdlb21fbGluZSgpCgpgYGAKVGhlIGJveXMgaGF2ZSBjb25zaXN0ZW50bHkgYmVlbiBiYXBpdHplZCB0aHJvdWdob3V0IHRoZSB5ZWFycyB3aXRoIG9ubHkgYSBzbWFsbCBkZWNyZWFzZSBhZnRlciAxNzAwcy4KCiMjIyBFeGVyY2lzZSA0CgpXaGF0IHllYXJzIGFyZSBpbmNsdWRlZCBpbiB0aGlzIGRhdGEgc2V0PyBXaGF0IGFyZSB0aGUgZGltZW5zaW9ucyBvZiB0aGUgZGF0YSBmcmFtZT8gV2hhdCBhcmUgdGhlIHZhcmlhYmxlIChjb2x1bW4pIG5hbWVzPwoKYGBge3IgZGltLXByZXNlbnR9CgpwcmVzZW50ICU+JSAKICBzdW1tYXJpemUobWluID1taW4oeWVhciksIG1heCA9IG1heCh5ZWFyKSkKcmFuZ2UocHJlc2VudCR5ZWFyKQpkaW0ocHJlc2VudCkKY29sbmFtZXMocHJlc2VudCkKYGBgClRoZSB5ZWFycyBpcyBmcm9tIDE5NDAgdG8gMjAwMi4gVGhlIGRpbWVuc2lvbiBpcyA2MyBjb2x1bW4geCAzIHJvd3MsIHdpdGggMyBjb2x1bW5zOiB5ZWFycywgYm95cywgZ2lybHMsIHdpdGggMyBjdXN0b21lIG1hZGU6IGJveXNfdG9fZ2lybHNfcmF0aW8sIHRvdGFscywgYm95c19yYXRpbwoKIyMjIEV4ZXJjaXNlIDUKCkhvdyBkbyB0aGVzZSBjb3VudHMgY29tcGFyZSB0byBBcmJ1dGhub3TigJlzPyBBcmUgdGhleSBvZiBhIHNpbWlsYXIgbWFnbml0dWRlPwoKYGBge3IgY291bnQtY29tcGFyZX0KZGltKHByZXNlbnQpCmRpbShhcmJ1dGhub3QpCnNhcHBseShhcmJ1dGhub3QscmFuZ2UpCnNhcHBseShwcmVzZW50LCByYW5nZSkKYGBgCkluIEFydHV0aG5vdCBkYXRhIHRoZXJlIGlzIDgyIHllYXJzIG9mIGRhdGEgcHJlc2VudGVkIHdoaWxlIHByZXNlbnQgaGFzIG9ubHkgNjMgeWVhcnMgb2YgZGF0YS4gSSBiZWxpZXZlIHRoYXQgQXJ0aHVub3QgaGFzIG1vcmUgZGF0YSB0byB3b3JrIHdpdGguCgojIyMgRXhlcmNpc2UgNgoKTWFrZSBhIHBsb3QgdGhhdCBkaXNwbGF5cyB0aGUgcHJvcG9ydGlvbiBvZiBib3lzIGJvcm4gb3ZlciB0aW1lLiBXaGF0IGRvIHlvdSBzZWU/IERvZXMgQXJidXRobm904oCZcyBvYnNlcnZhdGlvbiBhYm91dCBib3lzIGJlaW5nIGJvcm4gaW4gZ3JlYXRlciBwcm9wb3J0aW9uIHRoYW4gZ2lybHMgaG9sZCB1cCBpbiB0aGUgVS5TLj8gSW5jbHVkZSB0aGUgcGxvdCBpbiB5b3VyIHJlc3BvbnNlLiBIaW50OiBZb3Ugc2hvdWxkIGJlIGFibGUgdG8gcmV1c2UgeW91ciBjb2RlIGZyb20gRXhlcmNpc2UgMyBhYm92ZSwganVzdCByZXBsYWNlIHRoZSBkYXRhZnJhbWUgbmFtZS4KCmBgYHtyIHBsb3QtcHJvcC1ib3lzLXByZXNlbnR9CnByZXNlbnQgPC0gcHJlc2VudCAlPiUKICBtdXRhdGUodG90YWxzID0gYm95cyArIGdpcmxzKQpwcmVzZW50IDwtIHByZXNlbnQgJT4lCiAgbXV0YXRlKGJveXNfcmF0aW8gPSBib3lzIC8gdG90YWxzKQpnZ3Bsb3QoZGF0YSA9IHByZXNlbnQsIGFlcyh4PSB5ZWFyLCB5ID0gYm95c19yYXRpbykpICsgZ2VvbV9saW5lKCkKCmBgYApGcm9tIHRoaXMgZ3JhcGggd2UgY2FuIHNlZSB0aGF0IHRoZSBib3lzIGJlaW5nIGJvcm4gaW4gZ3JlYXRlciBwcm9wb3J0aW9uIHRoYW4gdGhlIGdpcmwuIAoKIyMjIEV4ZXJjaXNlIDcKCkluIHdoYXQgeWVhciBkaWQgd2Ugc2VlIHRoZSBtb3N0IHRvdGFsIG51bWJlciBvZiBiaXJ0aHMgaW4gdGhlIFUuUy4/IEhpbnQ6IEZpcnN0IGNhbGN1bGF0ZSB0aGUgdG90YWxzIGFuZCBzYXZlIGl0IGFzIGEgbmV3IHZhcmlhYmxlLiBUaGVuLCBzb3J0IHlvdXIgZGF0YXNldCBpbiBkZXNjZW5kaW5nIG9yZGVyIGJhc2VkIG9uIHRoZSB0b3RhbCBjb2x1bW4uIFlvdSBjYW4gZG8gdGhpcyBpbnRlcmFjdGl2ZWx5IGluIHRoZSBkYXRhIHZpZXdlciBieSBjbGlja2luZyBvbiB0aGUgYXJyb3dzIG5leHQgdG8gdGhlIHZhcmlhYmxlIG5hbWVzLiBUbyBpbmNsdWRlIHRoZSBzb3J0ZWQgcmVzdWx0IGluIHlvdXIgcmVwb3J0IHlvdSB3aWxsIG5lZWQgdG8gdXNlIHR3byBuZXcgZnVuY3Rpb25zOiBhcnJhbmdlIChmb3Igc29ydGluZykuIFdlIGNhbiBhcnJhbmdlIHRoZSBkYXRhIGluIGEgZGVzY2VuZGluZyBvcmRlciB3aXRoIGFub3RoZXIgZnVuY3Rpb246IGRlc2MgKGZvciBkZXNjZW5kaW5nIG9yZGVyKS4gVGhlIHNhbXBsZSBjb2RlIGlzIHByb3ZpZGVkIGJlbG93LgoKYGBge3IgZmluZC1tYXgtdG90YWx9CnByZXNlbnRbcHJlc2VudCR0b3RhbHMgPT0gbWF4KHByZXNlbnQkdG90YWxzKSwgInllYXIiXQpgYGAKCg==