# Compute the NDI (Messer) values (2016-2020 5-year ACS) for TX census tracts
TX2020messer <- ndi::messer(state = "TX", year = 2020)
## Warning: Missing census data
# Obtain the 2020 census tracts from the "tigris" package
tract2020TX <- tigris::tracts(state = "TX", year = 2020, cb = TRUE)
##
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
# Join the NDI (Messer) values to the census tract geometry
TX2020messer <- merge(tract2020TX, TX2020messer$ndi, by = "GEOID")
TX2020messer
## Simple feature collection with 6884 features and 26 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -106.6456 ymin: 25.83738 xmax: -93.50829 ymax: 36.5007
## Geodetic CRS: NAD83
## First 10 features:
## GEOID STATEFP COUNTYFP TRACTCE AFFGEOID NAME
## 1 48001950100 48 001 950100 1400000US48001950100 9501
## 2 48001950401 48 001 950401 1400000US48001950401 9504.01
## 3 48001950402 48 001 950402 1400000US48001950402 9504.02
## 4 48001950500 48 001 950500 1400000US48001950500 9505
## 5 48001950600 48 001 950600 1400000US48001950600 9506
## 6 48001950700 48 001 950700 1400000US48001950700 9507
## 7 48001950800 48 001 950800 1400000US48001950800 9508
## 8 48001950901 48 001 950901 1400000US48001950901 9509.01
## 9 48001950902 48 001 950902 1400000US48001950902 9509.02
## 10 48001951001 48 001 951001 1400000US48001951001 9510.01
## NAMELSAD STUSPS NAMELSADCO STATE_NAME LSAD ALAND
## 1 Census Tract 9501 TX Anderson County Texas CT 483306613
## 2 Census Tract 9504.01 TX Anderson County Texas CT 16509268
## 3 Census Tract 9504.02 TX Anderson County Texas CT 71134275
## 4 Census Tract 9505 TX Anderson County Texas CT 23132052
## 5 Census Tract 9506 TX Anderson County Texas CT 20653882
## 6 Census Tract 9507 TX Anderson County Texas CT 6720934
## 7 Census Tract 9508 TX Anderson County Texas CT 10429389
## 8 Census Tract 9509.01 TX Anderson County Texas CT 290214322
## 9 Census Tract 9509.02 TX Anderson County Texas CT 441347126
## 10 Census Tract 9510.01 TX Anderson County Texas CT 358736667
## AWATER state county tract NDI NDIQuart OCC CWD
## 1 7864313 Texas Anderson County 9501 -0.0021 3-AboveAvg deprivation 0.1 0.0
## 2 298419 Texas Anderson County 9504.01 -0.0251 2-BelowAvg deprivation 0.0 0.1
## 3 2626492 Texas Anderson County 9504.02 NaN 9-NDI not avail NaN NaN
## 4 99223 Texas Anderson County 9505 0.0074 3-AboveAvg deprivation 0.0 0.1
## 5 329641 Texas Anderson County 9506 0.0203 3-AboveAvg deprivation 0.0 0.0
## 6 6724 Texas Anderson County 9507 0.0347 3-AboveAvg deprivation 0.0 0.1
## 7 92101 Texas Anderson County 9508 0.0145 3-AboveAvg deprivation 0.0 0.1
## 8 4738880 Texas Anderson County 9509.01 -0.0195 2-BelowAvg deprivation 0.1 0.0
## 9 4984901 Texas Anderson County 9509.02 0.0043 3-AboveAvg deprivation 0.0 0.0
## 10 3015204 Texas Anderson County 9510.01 0.0127 3-AboveAvg deprivation 0.0 0.0
## POV FHH PUB U30 EDU EMP geometry
## 1 0.2 0.1 0.1 0.3 0.1 0.1 MULTIPOLYGON (((-95.69483 3...
## 2 0.0 0.1 0.1 0.0 0.3 0.0 MULTIPOLYGON (((-95.84786 3...
## 3 NaN NaN NaN NaN 0.3 NaN MULTIPOLYGON (((-95.98345 3...
## 4 0.1 0.1 0.1 0.2 0.1 0.0 MULTIPOLYGON (((-95.68779 3...
## 5 0.2 0.1 0.2 0.4 0.3 0.0 MULTIPOLYGON (((-95.70758 3...
## 6 0.2 0.1 0.1 0.5 0.2 0.0 MULTIPOLYGON (((-95.64951 3...
## 7 0.1 0.1 0.2 0.3 0.0 0.0 MULTIPOLYGON (((-95.62881 3...
## 8 0.1 0.0 0.1 0.3 0.2 0.0 MULTIPOLYGON (((-95.88093 3...
## 9 0.1 0.0 0.2 0.3 0.2 0.0 MULTIPOLYGON (((-95.70501 3...
## 10 0.2 0.1 0.2 0.3 0.1 0.1 MULTIPOLYGON (((-95.58587 3...
# Visualize the NDI (Messer) values for TX, U.S.A., counties
## Continuous Index
ggplot2::ggplot() +
ggplot2::geom_sf(data = TX2020messer,
ggplot2::aes(fill = NDI),
size = 0.20,
color = "white") +
ggplot2::theme_minimal() +
ggplot2::scale_fill_viridis_c() +
ggplot2::labs(fill = "Index (Continuous)",
caption = "Source: U.S. Census ACS 2020 5 Year estimates") +
ggplot2::ggtitle("Neighborhood Deprivation Index (Messer)",
subtitle = "TX counties as the referent")
## Categorical Index
### Rename "9-NDI not avail" level as NA for plotting
TX2020messer$NDIQuartNA <- factor(replace(as.character(TX2020messer$NDIQuart),
TX2020messer$NDIQuart == "9-NDI not avail", NA),
c(levels(TX2020messer$NDIQuart)[-5], NA))
ggplot2::ggplot() +
ggplot2::geom_sf(data = TX2020messer,
ggplot2::aes(fill = NDIQuartNA),
size = 0.20,
color = "white") +
ggplot2::theme_minimal() +
ggplot2::scale_fill_viridis_d(guide = ggplot2::guide_legend(reverse = TRUE),
na.value = "grey80") +
ggplot2::labs(fill = "Index (Categorical)",
caption = "Source: U.S. Census ACS 2020 5-Year estimates") +
ggplot2::ggtitle("Neighborhood Deprivation Index (Messer) Quartiles",
subtitle = "TX counties as the referent")
# txmesser10 <- ndi::messer(state = "TX", year = 2010)
#
# txmesser10$ndi
```