Krokar results_finali

Žan Kuralt

2022-08-29

source("functions.R")
source("superDuper.R")
library(iNEXT)
library(ggplot2)
library(labdsv)
library(tidyr)
library(mvabund)
library(boral)
library(ggboral)
library(ggalt)

Import and subset data

source("~/tidy_duhturat/forest_comparison/import_comparison_data-Zans-ThinkPad.R")
vse$year <- format(vse$date, format = "%Y")

# pasti2019.araneae <- vse[vse$sampling_method %in% "talne pasti" & vse$year == 2019 & vse$group == "Araneae", ]
# all.araneae <- vse[vse$group == "Araneae", ]
# pasti2019.coleoptera <- vse[vse$sampling_method %in% "talne pasti" & vse$year == 2019 & vse$group == "Coleoptera", ]
# all.coleoptera <- vse[vse$group == "Coleoptera", ]
# pasti2019.chilopoda <- vse[vse$sampling_method %in% "talne pasti" & vse$year == 2019 & vse$group == "Chilopoda", ]
# all.chilopoda <- vse[vse$group == "Chilopoda", ]

# pasti2019 <- vse[vse$sampling_method %in% "talne pasti" & vse$year == 2019, ]
pasti2019 <- vse[vse$sampling_method %in% "talne pasti" & vse$year == 2019, ]
tlasifter <- vse[vse$sampling_method %in% c("sifter", "talni vzorci"), ]
tlasifter.chilo <- tlasifter[tlasifter$group == "Chilopoda", ]

# dataset <- tlasifter
# dataset <- pasti2019
dataset <- rbind(pasti2019, tlasifter)

df.araneae <- dataset[dataset$group == "Araneae", ]
df.coleoptera <- dataset[dataset$group == "Coleoptera", ]
df.chilopoda <- dataset[dataset$group == "Chilopoda", ]


alltogether <- list(all.taxa = dataset,
                araneae = df.araneae,
                coleoptera = df.coleoptera,
                chilopoda = df.chilopoda)


# alltogether <- rbind(all.araneae, all.coleoptera, all.chilopoda)

# dataset <- rbind(pasti2019, tlasifter)
# dataset <- all.pasti
# dataset <- all.araneae
# dataset <- pasti2019.araneae
# dataset <- pasti2019.coleoptera
# dataset <- pasti2019.chilopoda
# dataset <- all.coleoptera
# dataset <- all.chilopoda

# alldata <- list(all.taxa = alltogether,
                # araneae = all.araneae,
                # coleoptera = all.coleoptera,
                # chilopoda = all.chilopoda)


# pasti <- list(all.taxa = all.pasti,
              # araneae = pasti2019.araneae,
              # coleoptera = pasti2019.coleoptera,
              # chilopoda = pasti2019.chilopoda)
# dataset <- alltogether

Data overview

table(dataset$locality)
## 
##  Pragozd Krokar Sekundarni gozd 
##            1124            1129
table(dataset$locality, dataset$succession_stage)
##                  
##                   debeljak drogovnjak mladovje
##   Pragozd Krokar       487        272      365
##   Sekundarni gozd      326        452      351
vegan::specnumber(table(dataset$locality_eng, dataset$full_name))
##  Krokar Managed 
##      68      81
length(unique(dataset$full_name))
## [1] 98
sort(table(dataset$full_name), decreasing = TRUE)
## 
##            Lithobius pygmaeus        Inermocoelotes inermis 
##                           225                           190 
##              Harpactea lepida           Histopona luxurians 
##                           171                           152 
##              Microneta viaria            Cryptops hortensis 
##                           132                           129 
##              Aptinus bombarda           Strigamia acuminata 
##                           125                           113 
##               Comaroma simoni               Cryptops parisi 
##                           104                           102 
##               Pardosa alacris      Tenuiphantes tenebricola 
##                            61                            60 
##      Pterostichus burmeisteri              Schendyla armata 
##                            59                            50 
##            Amaurobius obustus     Eupolybothrus tridentinus 
##                            42                            33 
##      Strigamia transsilvanica               Lithobius latro 
##                            31                            29 
##          Schendyla tyrolensis              Carabus caelatus 
##                            26                            24 
##        Lithobius carinthiacus            Lithobius dentatus 
##                            22                            22 
##            Cychrus attenuatus                Sigibius anici 
##                            20                            20 
##       Clinopodes carinthiacus              Cryptops rucneri 
##                            17                            17 
##         Eurygeophilus pinguis    Dicellophilus carniolensis 
##                            13                            12 
##         Diplocephalus picinus                 Molops piceus 
##                            12                            12 
##             Geophilus alpinus                   Abax ovalis 
##                            11                            10 
##        Schendyla carniolensis         Abax parallelepipedus 
##                            10                             8 
##           Lithobius castaneus          Lithobius tenebrosus 
##                             8                             8 
##             Molops striolatus                  Nebria dahli 
##                             8                             8 
##              Robertus lividus        Centromerus cavernarum 
##                             8                             7 
##             Dysdera adriatica        Stenotaenia sorrentina 
##                             7                             7 
##         Tenuiphantes flavipes            Trochosa terricola 
##                             7                             7 
##         Centromerus silvicola                Zora nemoralis 
##                             6                             5 
##                Abax carinatus            Ceratinella brevis 
##                             4                             4 
##          Geophilus electricus             Histopona torpida 
##                             4                             4 
##        Inermocoelotes anoplus           Lithobius nodulipes 
##                             4                             4 
##            Lithobius pelidnus         Micrargus herbigradus 
##                             4                             4 
##             Carabus croaticus       Eupolybothrus grossipes 
##                             3                             3 
##  Harpolithobius gottscheensis        Licinus hoffmannseggii 
##                             3                             3 
##             Lithobius validus           Mermesus trilobatus 
##                             3                             3 
##          Tegenaria silvestris        Amaurobius fenestralis 
##                             3                             2 
##           Carabus catenulatus             Carabus creutzeri 
##                             2                             2 
##           Clubiona terrestris              Coelotes atropos 
##                             2                             2 
##           Dasumia canestrinii              Dima elateroides 
##                             2                             2 
##               Dysdera crocata              Geophilus flavus 
##                             2                             2 
##                  Ocypus olens        Platynus scrobiculatus 
##                             2                             2 
## Pterostichus oblongopunctatus          Walckenaeria simplex 
##                             2                             2 
##              Aulonia albimana             Carabus coriaceus 
##                             1                             1 
##           Carabus irregularis        Centromerus sylvaticus 
##                             1                             1 
##         Centrophantes roeweri          Ceratinella scabrosa 
##                             1                             1 
##                Dysdera ninnii                Hahnia pusilla 
##                             1                             1 
##        Halyzia sedecimguttata       Haplodrassus silvestris 
##                             1                             1 
##              Lithobius agilis          Lithobius forficatus 
##                             1                             1 
##               Maso sundevalli          Metellina segmentata 
##                             1                             1 
##              Neon reticulatus        Notiophilus biguttatus 
##                             1                             1 
##              Pardosa lugubris             Scotargus pilosus 
##                             1                             1 
##          Segestria senoculata           Stenichnus collaris 
##                             1                             1 
##           Tenuiphantes mengei             Trechus croaticus 
##                             1                             1 
##           Walckenaeria antica          Walckenaeria mitrata 
##                             1                             1
table(dataset$ordo)
## 
##           Araneae        Coleoptera    Geophilomorpha    Lithobiomorpha 
##              1021               302               296               386 
## Scolopendromorpha 
##               248
dataset %>%
  group_by(ordo) %>%
  summarize(n = length(unique(full_name)))
## # A tibble: 5 x 2
##   ordo                  n
##   <chr>             <int>
## 1 Araneae              44
## 2 Coleoptera           24
## 3 Geophilomorpha       12
## 4 Lithobiomorpha       15
## 5 Scolopendromorpha     3
dataset$month <- factor(dataset$month, levels = c("October", "January", "April", "May", "August"), ordered = TRUE)
table(dataset$group, dataset$month, dataset$sampling_method)
## , ,  = sifter
## 
##             
##              October January April May August
##   Araneae         42       0     0   0      0
##   Chilopoda       76       0     0   0      0
##   Coleoptera       5       0     0   0      0
## 
## , ,  = talne pasti
## 
##             
##              October January April May August
##   Araneae          0       6   504 327     15
##   Chilopoda        0       4    36  19     32
##   Coleoptera       0       0    52  41    204
## 
## , ,  = talni vzorci
## 
##             
##              October January April May August
##   Araneae         83      44     0   0      0
##   Chilopoda      422     341     0   0      0
##   Coleoptera       0       0     0   0      0
dataset %>% filter(ordo %in% c("Geophilomorpha", "Lithobiomorpha", "Scolopendromorpha")) %>% 
dplyr::select(full_name) %>% 
unique()
## # A tibble: 30 x 1
##    full_name                
##    <chr>                    
##  1 Strigamia acuminata      
##  2 Eupolybothrus tridentinus
##  3 Lithobius castaneus      
##  4 Lithobius dentatus       
##  5 Lithobius tenebrosus     
##  6 Lithobius nodulipes      
##  7 Lithobius forficatus     
##  8 Eupolybothrus grossipes  
##  9 Lithobius pygmaeus       
## 10 Lithobius latro          
## # ... with 20 more rows
gospodarc <- dataset %>% 
  filter(locality != "Pragozd Krokar") %>% 
  filter(ordo %in% c("Geophilomorpha", "Lithobiomorpha", "Scolopendromorpha")) %>%
  dplyr::select(full_name) %>% 
  unique()

krokar <- dataset %>% 
  filter(locality == "Pragozd Krokar") %>% 
  filter(ordo %in% c("Geophilomorpha", "Lithobiomorpha", "Scolopendromorpha")) %>%
  dplyr::select(full_name) %>% 
  unique()


krokar$full_name[!(krokar$full_name %in% gospodarc$full_name)]
## [1] "Lithobius nodulipes"  "Lithobius forficatus" "Lithobius validus"   
## [4] "Lithobius agilis"
gospodarc$full_name[!(krokar$full_name %in% gospodarc$full_name)]
## [1] "Eupolybothrus grossipes" "Lithobius latro"        
## [3] "Lithobius tenebrosus"    "Schendyla carniolensis"

Analysis

Araneae

## [1] "Araneae"
## [1] "doing inext"
##      site   n S.obs     SC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
## 1  Krokar 465    22 0.9785 10  4  1  0  0  0  0  0  0   0
## 2 Managed 556    37 0.9766 13  4  4  1  1  1  4  0  0   0
##      Site         Diversity Observed Estimator   s.e.    LCL     UCL
## 1  Krokar  Species richness   22.000    34.473 10.658 24.922  75.238
## 2  Krokar Shannon diversity    7.365     7.662  0.360  7.365   8.368
## 3  Krokar Simpson diversity    5.672     5.730  0.261  5.672   6.241
## 4 Managed  Species richness   37.000    58.087 16.403 42.476 118.199
## 5 Managed Shannon diversity   13.097    13.823  0.718 13.097  15.231
## 6 Managed Simpson diversity    9.267     9.407  0.407  9.267  10.204
##      site  T   U S.obs     SC Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
## 1  Krokar 28  98    22 0.8798 12  3  0  0  0  0  0  2  0   0
## 2 Managed 24 154    37 0.9053 15  5  4  2  2  0  1  2  0   0
##      Site         Diversity Observed Estimator   s.e.    LCL     UCL
## 1  Krokar  Species richness   22.000    45.143 19.499 27.508 119.240
## 2  Krokar Shannon diversity   12.621    15.678  2.077 12.621  19.748
## 3  Krokar Simpson diversity    9.820    10.452  1.042  9.820  12.495
## 4 Managed  Species richness   37.000    58.562 15.445 43.108 113.115
## 5 Managed Shannon diversity   23.820    28.627  2.563 23.820  33.651
## 6 Managed Simpson diversity   18.243    19.745  1.693 18.243  23.062
## [1] "iNEXT results"

##       Site         Diversity Observed Estimator   s.e.    LCL     UCL  dataType
## 1   Krokar  Species richness   22.000    34.473 10.658 24.922  75.238 Abundance
## 2   Krokar Shannon diversity    7.365     7.662  0.360  7.365   8.368 Abundance
## 3   Krokar Simpson diversity    5.672     5.730  0.261  5.672   6.241 Abundance
## 7   Krokar  Species richness   22.000    45.143 19.499 27.508 119.240 Incidence
## 8   Krokar Shannon diversity   12.621    15.678  2.077 12.621  19.748 Incidence
## 9   Krokar Simpson diversity    9.820    10.452  1.042  9.820  12.495 Incidence
## 4  Managed  Species richness   37.000    58.087 16.403 42.476 118.199 Abundance
## 5  Managed Shannon diversity   13.097    13.823  0.718 13.097  15.231 Abundance
## 6  Managed Simpson diversity    9.267     9.407  0.407  9.267  10.204 Abundance
## 10 Managed  Species richness   37.000    58.562 15.445 43.108 113.115 Incidence
## 11 Managed Shannon diversity   23.820    28.627  2.563 23.820  33.651 Incidence
## 12 Managed Simpson diversity   18.243    19.745  1.693 18.243  23.062 Incidence
## [1] "doing boral"
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 2288
##    Unobserved stochastic nodes: 2578
##    Total graph size: 16509
## 
## Initializing model
## 
## [1] "Some diagnostic plots"

## NULL

## [1] "Ordination plot"

## 
##  PIPING TO 2nd MVFACTOR

## START SECTION 2 
## Plotting if overlay is TRUE

## FINISHED SECTION 2 
## [1] "doing mvabund"
## [1] "mvabund diagnostic plot"

## Time elapsed: 0 hr 2 min 53 sec
## [1] "ANOVA results"
## Analysis of Deviance Table
## 
## Model: abnd ~ forestType + succession.stage + month + forestType:succession.stage
## 
## Multivariate test:
##                             Res.Df Df.diff    Dev Pr(>Dev)    
## (Intercept)                     33                            
## forestType                      32       1 121.38    0.001 ***
## succession.stage                30       2  82.23    0.134    
## month                           27       3 265.85    0.001 ***
## forestType:succession.stage     25       2  76.28    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
##  P-value calculated using 999 iterations via PIT-trap resampling.

Chilopoda

superDuper(df.chilopoda, composition = FALSE)
## [1] "Geophilomorpha"    "Lithobiomorpha"    "Scolopendromorpha"
## [1] "doing inext"
##      site   n S.obs     SC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
## 1  Krokar 468    27 0.9936  3  1  2  3  0  2  1  3  1   1
## 2 Managed 462    26 0.9957  2  2  3  4  0  0  2  1  0   0
##      Site         Diversity Observed Estimator  s.e.    LCL    UCL
## 1  Krokar  Species richness   27.000    31.490 7.179 27.494 67.834
## 2  Krokar Shannon diversity   12.895    13.339 0.755 12.895 14.818
## 3  Krokar Simpson diversity    8.254     8.384 0.628  8.254  9.615
## 4 Managed  Species richness   26.000    26.998 1.867 26.090 37.045
## 5 Managed Shannon diversity   12.831    13.217 0.698 12.831 14.586
## 6 Managed Simpson diversity    8.272     8.405 0.596  8.272  9.574
##      site  T   U S.obs     SC Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
## 1  Krokar 26 128    27 0.9621  5  2  3  2  4  5  1  3  0   1
## 2 Managed 23 131    26 0.9880  2  6  2  4  2  3  1  1  1   2
##      Site         Diversity Observed Estimator  s.e.    LCL    UCL
## 1  Krokar  Species richness   27.000    33.010 7.277 27.933 65.691
## 2  Krokar Shannon diversity   22.484    25.319 1.525 22.484 28.309
## 3  Krokar Simpson diversity   20.128    22.824 1.665 20.128 26.087
## 4 Managed  Species richness   26.000    26.319 0.734 26.022 30.555
## 5 Managed Shannon diversity   21.340    23.224 1.205 21.340 25.587
## 6 Managed Simpson diversity   18.552    20.559 1.462 18.552 23.425
## [1] "iNEXT results"

##       Site         Diversity Observed Estimator  s.e.    LCL    UCL  dataType
## 1   Krokar  Species richness   27.000    31.490 7.179 27.494 67.834 Abundance
## 2   Krokar Shannon diversity   12.895    13.339 0.755 12.895 14.818 Abundance
## 3   Krokar Simpson diversity    8.254     8.384 0.628  8.254  9.615 Abundance
## 7   Krokar  Species richness   27.000    33.010 7.277 27.933 65.691 Incidence
## 8   Krokar Shannon diversity   22.484    25.319 1.525 22.484 28.309 Incidence
## 9   Krokar Simpson diversity   20.128    22.824 1.665 20.128 26.087 Incidence
## 4  Managed  Species richness   26.000    26.998 1.867 26.090 37.045 Abundance
## 5  Managed Shannon diversity   12.831    13.217 0.698 12.831 14.586 Abundance
## 6  Managed Simpson diversity    8.272     8.405 0.596  8.272  9.574 Abundance
## 10 Managed  Species richness   26.000    26.319 0.734 26.022 30.555 Incidence
## 11 Managed Shannon diversity   21.340    23.224 1.205 21.340 25.587 Incidence
## 12 Managed Simpson diversity   18.552    20.559 1.462 18.552 23.425 Incidence
## [1] "doing boral"
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 1470
##    Unobserved stochastic nodes: 1698
##    Total graph size: 10687
## 
## Initializing model
## 
## [1] "Some diagnostic plots"
## Only the first 6 ``most important'' latent variable coefficients included in biplot.

## NULL

## [1] "Ordination plot"

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

## Only the variables Lithobius.pygmaeus, Cryptops.hortensis, Strigamia.acuminata, Cryptops.parisi, Schendyla.armata, Eupolybothrus.tridentinus, Strigamia.transsilvanica, Lithobius.latro, Schendyla.tyrolensis, Lithobius.carinthiacus, Lithobius.dentatus, Sigibius.anici were included in the plot 
## (the variables with highest total abundance).
## START SECTION 2 
## Plotting if overlay is TRUE
## using grouping variable as.factor(ftype$forestType) 7 mean values were 0 and could 
##                                      not be included in the log-plot
## using grouping variable as.factor(ftype$forestType) 7 variance values were 0 and could not 
##                                      be included in the log-plot

## FINISHED SECTION 2 
## [1] "doing mvabund"
## [1] "mvabund diagnostic plot"

## Time elapsed: 0 hr 1 min 30 sec
## [1] "ANOVA results"
## Analysis of Deviance Table
## 
## Model: abnd ~ forestType + succession.stage + month + forestType:succession.stage
## 
## Multivariate test:
##                             Res.Df Df.diff   Dev Pr(>Dev)    
## (Intercept)                     31                           
## forestType                      30       1 27.25    0.018 *  
## succession.stage                28       2 43.70    0.022 *  
## month                           25       3 43.86    0.168    
## forestType:succession.stage     23       2 39.95    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
##  P-value calculated using 999 iterations via PIT-trap resampling.

Coleoptera

superDuper(df.coleoptera, composition = FALSE)
## [1] "Coleoptera"
## [1] "doing inext"
##      site   n S.obs     SC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
## 1  Krokar 191    19 0.9583  8  3  2  0  0  0  0  2  0   1
## 2 Managed 111    18 0.9466  6  4  0  1  1  1  1  1  0   0
##      Site         Diversity Observed Estimator   s.e.    LCL    UCL
## 1  Krokar  Species richness   19.000    29.611 10.219 21.169 70.917
## 2  Krokar Shannon diversity    5.845     6.342  0.718  5.845  7.749
## 3  Krokar Simpson diversity    3.423     3.467  0.344  3.423  4.142
## 4 Managed  Species richness   18.000    22.459  4.763 18.807 42.657
## 5 Managed Shannon diversity    9.630    10.742  1.121  9.630 12.938
## 6 Managed Simpson diversity    6.649     7.009  0.880  6.649  8.734
##      site  T  U S.obs     SC Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
## 1  Krokar 14 52    19 0.8162 10  3  1  0  2  1  1  0  0   1
## 2 Managed 15 57    18 0.8843  7  3  1  1  2  2  1  1  0   0
##      Site         Diversity Observed Estimator   s.e.    LCL    UCL
## 1  Krokar  Species richness   19.000    34.476 13.825 22.449 88.442
## 2  Krokar Shannon diversity   13.288    18.295  2.991 13.288 24.157
## 3  Krokar Simpson diversity   10.165    11.579  1.604 10.165 14.723
## 4 Managed  Species richness   18.000    25.622  7.758 19.460 57.793
## 5 Managed Shannon diversity   13.799    17.136  2.314 13.799 21.671
## 6 Managed Simpson diversity   11.645    13.486  1.573 11.645 16.569
## [1] "iNEXT results"

##       Site         Diversity Observed Estimator   s.e.    LCL    UCL  dataType
## 1   Krokar  Species richness   19.000    29.611 10.219 21.169 70.917 Abundance
## 2   Krokar Shannon diversity    5.845     6.342  0.718  5.845  7.749 Abundance
## 3   Krokar Simpson diversity    3.423     3.467  0.344  3.423  4.142 Abundance
## 7   Krokar  Species richness   19.000    34.476 13.825 22.449 88.442 Incidence
## 8   Krokar Shannon diversity   13.288    18.295  2.991 13.288 24.157 Incidence
## 9   Krokar Simpson diversity   10.165    11.579  1.604 10.165 14.723 Incidence
## 4  Managed  Species richness   18.000    22.459  4.763 18.807 42.657 Abundance
## 5  Managed Shannon diversity    9.630    10.742  1.121  9.630 12.938 Abundance
## 6  Managed Simpson diversity    6.649     7.009  0.880  6.649  8.734 Abundance
## 10 Managed  Species richness   18.000    25.622  7.758 19.460 57.793 Incidence
## 11 Managed Shannon diversity   13.799    17.136  2.314 13.799 21.671 Incidence
## 12 Managed Simpson diversity   11.645    13.486  1.573 11.645 16.569 Incidence
## [1] "doing boral"
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 696
##    Unobserved stochastic nodes: 857
##    Total graph size: 5150
## 
## Initializing model
## 
## [1] "Some diagnostic plots"
## Only the first 6 ``most important'' latent variable coefficients included in biplot.

## NULL

## [1] "Ordination plot"

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

## Only the variables Aptinus.bombarda, Pterostichus.burmeisteri, Carabus.caelatus, Cychrus.attenuatus, Molops.piceus, Abax.ovalis, Abax.parallelepipedus, Molops.striolatus, Nebria.dahli, Abax.carinatus, Carabus.croaticus, Licinus.hoffmannseggii were included in the plot 
## (the variables with highest total abundance).
## START SECTION 2 
## Plotting if overlay is TRUE
## using grouping variable as.factor(ftype$forestType) 11 mean values were 0 and could 
##                                      not be included in the log-plot
## using grouping variable as.factor(ftype$forestType) 11 variance values were 0 and could not 
##                                      be included in the log-plot

## FINISHED SECTION 2 
## [1] "doing mvabund"
## [1] "mvabund diagnostic plot"

## Time elapsed: 0 hr 1 min 25 sec
## [1] "ANOVA results"
## Analysis of Deviance Table
## 
## Model: abnd ~ forestType + succession.stage + month + forestType:succession.stage
## 
## Multivariate test:
##                             Res.Df Df.diff    Dev Pr(>Dev)    
## (Intercept)                     25                            
## forestType                      24       1  41.31    0.043 *  
## succession.stage                22       2  57.95    0.169    
## month                           20       2 149.19    0.001 ***
## forestType:succession.stage     18       2  49.18    0.005 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
##  P-value calculated using 999 iterations via PIT-trap resampling.

Alltogether

superDuper(dataset, composition = FALSE)
## [1] "Coleoptera"        "Geophilomorpha"    "Lithobiomorpha"   
## [4] "Araneae"           "Scolopendromorpha"
## [1] "doing inext"
##      site    n S.obs     SC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
## 1  Krokar 1124    68 0.9813 21  8  5  3  0  2  1  5  1   2
## 2 Managed 1129    81 0.9814 21 10  7  6  2  2  7  2  0   0
##      Site         Diversity Observed Estimator   s.e.    LCL     UCL
## 1  Krokar  Species richness   68.000    95.538 16.333 77.389 148.773
## 2  Krokar Shannon diversity   25.073    26.233  1.016 25.073  28.224
## 3  Krokar Simpson diversity   16.774    17.013  0.646 16.774  18.280
## 4 Managed  Species richness   81.000   103.030 12.768 88.673 144.253
## 5 Managed Shannon diversity   32.339    33.970  1.159 32.339  36.242
## 6 Managed Simpson diversity   20.891    21.266  0.885 20.891  22.999
##      site  T   U S.obs     SC Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
## 1  Krokar 29 278    68 0.9049 27  8  4  2  6  6  2  5  0   2
## 2 Managed 29 342    81 0.9326 24 14  7  7  6  5  3  4  1   2
##      Site         Diversity Observed Estimator   s.e.    LCL     UCL
## 1  Krokar  Species richness   68.000   111.991 23.929 84.219 187.322
## 2  Krokar Shannon diversity   46.950    57.066  3.586 50.039  64.094
## 3  Krokar Simpson diversity   37.553    41.804  2.486 37.553  46.676
## 4 Managed  Species richness   81.000   100.862 10.667 88.405 134.277
## 5 Managed Shannon diversity   58.141    67.352  3.179 61.122  73.582
## 6 Managed Simpson diversity   46.711    52.116  2.908 46.711  57.817
## [1] "iNEXT results"

##       Site         Diversity Observed Estimator   s.e.    LCL     UCL  dataType
## 1   Krokar  Species richness   68.000    95.538 16.333 77.389 148.773 Abundance
## 2   Krokar Shannon diversity   25.073    26.233  1.016 25.073  28.224 Abundance
## 3   Krokar Simpson diversity   16.774    17.013  0.646 16.774  18.280 Abundance
## 7   Krokar  Species richness   68.000   111.991 23.929 84.219 187.322 Incidence
## 8   Krokar Shannon diversity   46.950    57.066  3.586 50.039  64.094 Incidence
## 9   Krokar Simpson diversity   37.553    41.804  2.486 37.553  46.676 Incidence
## 4  Managed  Species richness   81.000   103.030 12.768 88.673 144.253 Abundance
## 5  Managed Shannon diversity   32.339    33.970  1.159 32.339  36.242 Abundance
## 6  Managed Simpson diversity   20.891    21.266  0.885 20.891  22.999 Abundance
## 10 Managed  Species richness   81.000   100.862 10.667 88.405 134.277 Incidence
## 11 Managed Shannon diversity   58.141    67.352  3.179 61.122  73.582 Incidence
## 12 Managed Simpson diversity   46.711    52.116  2.908 46.711  57.817 Incidence
## [1] "doing boral"
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 5684
##    Unobserved stochastic nodes: 6202
##    Total graph size: 40629
## 
## Initializing model
## 
## [1] "Some diagnostic plots"
## Only the first 6 ``most important'' latent variable coefficients included in biplot.

## NULL

## [1] "Ordination plot"
## Warning: Removed 58 rows containing missing values (geom_point).

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

## Only the variables Lithobius.pygmaeus, Inermocoelotes.inermis, Harpactea.lepida, Histopona.luxurians, Microneta.viaria, Cryptops.hortensis, Aptinus.bombarda, Strigamia.acuminata, Comaroma.simoni, Cryptops.parisi, Pardosa.alacris, Tenuiphantes.tenebricola were included in the plot 
## (the variables with highest total abundance).
## START SECTION 2 
## Plotting if overlay is TRUE
## using grouping variable as.factor(ftype$forestType) 47 mean values were 0 and could 
##                                      not be included in the log-plot
## using grouping variable as.factor(ftype$forestType) 47 variance values were 0 and could not 
##                                      be included in the log-plot

## FINISHED SECTION 2 
## [1] "doing mvabund"
## [1] "mvabund diagnostic plot"

## Time elapsed: 0 hr 7 min 9 sec
## [1] "ANOVA results"
## Analysis of Deviance Table
## 
## Model: abnd ~ forestType + succession.stage + month + forestType:succession.stage
## 
## Multivariate test:
##                             Res.Df Df.diff   Dev Pr(>Dev)    
## (Intercept)                     39                           
## forestType                      38       1 165.0    0.001 ***
## succession.stage                36       2 173.4    0.053 .  
## month                           35       1 225.1    0.001 ***
## forestType:succession.stage     33       2 113.8    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
##  P-value calculated using 999 iterations via PIT-trap resampling.

Per forest type

samokrokar <- dataset[dataset$locality_eng == "Krokar", ]

semiDuper(dataset = samokrokar, composition = FALSE)
## [1] "Coleoptera"        "Geophilomorpha"    "Lithobiomorpha"   
## [4] "Araneae"           "Scolopendromorpha"
## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

## Only the variables Inermocoelotes.inermis, Lithobius.pygmaeus, Harpactea.lepida, Aptinus.bombarda, Cryptops.hortensis, Cryptops.parisi, Comaroma.simoni, Histopona.luxurians, Pterostichus.burmeisteri, Microneta.viaria, Strigamia.acuminata, Amaurobius.obustus were included in the plot 
## (the variables with highest total abundance).
## START SECTION 2 
## Plotting if overlay is TRUE
## using grouping variable as.factor(ftype$succ) 72 mean values were 0 and could 
##                                      not be included in the log-plot
## using grouping variable as.factor(ftype$succ) 72 variance values were 0 and could not 
##                                      be included in the log-plot

## FINISHED SECTION 2 
## [1] "doing mvabund"
## [1] "mvabund diagnostic plot"

## Time elapsed: 0 hr 0 min 34 sec
## [1] "ANOVA results"
## Analysis of Deviance Table
## 
## Model: abnd ~ succession.stage
## 
## Multivariate test:
##                  Res.Df Df.diff   Dev Pr(>Dev)
## (Intercept)          19                       
## succession.stage     17       2 106.9    0.109
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
##  P-value calculated using 999 iterations via PIT-trap resampling.
semiDuper(dataset = dataset[dataset$locality_eng != "Krokar", ], composition = FALSE)
## [1] "Coleoptera"        "Lithobiomorpha"    "Araneae"          
## [4] "Scolopendromorpha" "Geophilomorpha"
## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

## Only the variables Lithobius.pygmaeus, Histopona.luxurians, Microneta.viaria, Strigamia.acuminata, Harpactea.lepida, Inermocoelotes.inermis, Pardosa.alacris, Cryptops.hortensis, Comaroma.simoni, Tenuiphantes.tenebricola, Cryptops.parisi, Aptinus.bombarda were included in the plot 
## (the variables with highest total abundance).
## START SECTION 2 
## Plotting if overlay is TRUE
## using grouping variable as.factor(ftype$succ) 76 mean values were 0 and could 
##                                      not be included in the log-plot
## using grouping variable as.factor(ftype$succ) 76 variance values were 0 and could not 
##                                      be included in the log-plot

## FINISHED SECTION 2 
## [1] "doing mvabund"
## [1] "mvabund diagnostic plot"

## Time elapsed: 0 hr 0 min 45 sec
## [1] "ANOVA results"
## Analysis of Deviance Table
## 
## Model: abnd ~ succession.stage
## 
## Multivariate test:
##                  Res.Df Df.diff   Dev Pr(>Dev)  
## (Intercept)          19                         
## succession.stage     17       2 159.5    0.049 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
##  P-value calculated using 999 iterations via PIT-trap resampling.