Resumen
En este informe se realizó un procesamiento extenso y resumen de los datos de datos de una empresa para sintetizar y presentar los aspectos más importantes de los mismos. Este análisis fue hecho en el programa RStudio Cloud en su totalidad, con el que se hizo la interpretación del nivel de satisfacción de 14999 trabajadores de la compañía. Donde por medio de métodos de gráficos y numéricos se logró construir un informe acerca de la información los trabajadores para que la empresa pueda tomar decisiones administrativas a partir de estos, los resultados de este informe fueron publicados RPubs.
Introducción
En nuestra vida cotidiana muchas veces nos encontramos con la necesidad de analizar de manera eficiente un conjunto de datos, este análisis se facilita cuando la cantidad de datos es baja y el análisis requerido es simple, ejemplo sumar los valores. Sin embargo, al aumentar de numero de dichos datos a nuestro cerebro se le dificulta manejar tanta información y terminamos optando por usar una calculadora o programa, esto mismo sucede cuando el análisis requerido de los datos es bastante profundo y completo, en este caso nos vemos en la necesidad de utilizar herramientas para la recolección, organización y compresión de los mismos. Como respuesta a la problemática anterior surge el análisis estadístico, el cual nos da todos los recursos para optimizar la compresión de grandes cantidades de datos de manera precisa y profunda.
Métodos
Para esta actividad se requirió de la aplicación del software RStudio Cloud. Donde en primer lugar se cargaron los datos proporcionados a dicho software y por medio de la función install.packages(“readr”) se procedió a descargar algunas librerías importantes para este informe, las cuales son: library(readr), library(readxl), library(knitr), library (RColorBrewer), library (“openxlsx”), library(ggplot2), library(questionr) y library(dplyr). Posteriormente se construyó una tabla de frecuencia simple con los datos del nivel de satisfacción del empleado, esta consiste en agrupar a todos los empleados que tuvieron el mismo nivel de satisfacción y contar los resultados, la tabla se muestran en 3.1. Para construir esta tabla se lee nuestro y se guarda la columna “satisfaction_level” como “NivelSat” para poder usar la función (questionr) que nos guardará nuestra información como “table”, para mostrar dicha tabla se utilizó (knitr).
También se desea conocer algunas medidas de tendencia central por lo cual se usaron las funciones simples de mean, median para conocer el promedio y mediana respectivamente. Para las otras medidas de tendencia central como lo son la moda y el rango medio se utilizaron formulas, para la moda se contó cual era el dato más repetido por medio del comando: f <- data.frame(table(NivelSat)) moda <- f[which.max(f$Freq),1], y para el rango medio se sumó el valor inicial con el final entre 2 por medio del comando: Medior= (max(NivelSat)+min(NivelSat))/2.
Respecto a los datos de colocación como lo son los cuartiles estos se obtuvieron simplemente con la función quantile especificando los intervalos requeridos. Por su parte, todas las medidas de dispersión de los datos, fueron calculadas por medio de funciones simples de modo que para la varianza se usó variance <- function (NivelSat) sum((NivelSat-mean(NivelSat))^2)/(length(NivelSat)-1) variance (NivelSat), para la desviación estándar la función sqrt(variance), el rango restando el valor mínimo al máximo y dividiendo entre 2 y el IQR o rango intercuartil por IQR(). Finalmente, el diagrama de caja y extensión se logró gracias a boxplot() especificando el color deseado como azul.
Resultados ## R Markdown
install.packages(“readr”)
Librerías:
library(readr)
library(readxl)
library(knitr)
library (RColorBrewer)
3.1 Tabla de Frecuencia Simple
library ("openxlsx")
df <- read_xlsx("HR_Employee_Data.xlsx")
#tabla de frecuencia simple de nivel de satisfacción
NivelSat=df$satisfaction_level
clases= nclass.Sturges(NivelSat)
library(questionr)
table <- questionr::freq(NivelSat, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 0.1 | 358 | 2.4 | 2.4 | 2.4 | 2.4 |
| 0.11 | 335 | 2.2 | 2.2 | 4.6 | 4.6 |
| 0.74 | 257 | 1.7 | 1.7 | 6.3 | 6.3 |
| 0.77 | 252 | 1.7 | 1.7 | 8.0 | 8.0 |
| 0.84 | 247 | 1.6 | 1.6 | 9.7 | 9.7 |
| 0.73 | 246 | 1.6 | 1.6 | 11.3 | 11.3 |
| 0.37 | 241 | 1.6 | 1.6 | 12.9 | 12.9 |
| 0.78 | 241 | 1.6 | 1.6 | 14.5 | 14.5 |
| 0.82 | 241 | 1.6 | 1.6 | 16.1 | 16.1 |
| 0.89 | 237 | 1.6 | 1.6 | 17.7 | 17.7 |
| 0.76 | 234 | 1.6 | 1.6 | 19.3 | 19.3 |
| 0.83 | 234 | 1.6 | 1.6 | 20.8 | 20.8 |
| 0.72 | 230 | 1.5 | 1.5 | 22.4 | 22.4 |
| 0.5 | 229 | 1.5 | 1.5 | 23.9 | 23.9 |
| 0.66 | 228 | 1.5 | 1.5 | 25.4 | 25.4 |
| 0.75 | 226 | 1.5 | 1.5 | 26.9 | 26.9 |
| 0.87 | 225 | 1.5 | 1.5 | 28.4 | 28.4 |
| 0.43 | 224 | 1.5 | 1.5 | 29.9 | 29.9 |
| 0.91 | 224 | 1.5 | 1.5 | 31.4 | 31.4 |
| 0.8 | 222 | 1.5 | 1.5 | 32.9 | 32.9 |
| 0.81 | 220 | 1.5 | 1.5 | 34.3 | 34.3 |
| 0.9 | 220 | 1.5 | 1.5 | 35.8 | 35.8 |
| 0.59 | 219 | 1.5 | 1.5 | 37.3 | 37.3 |
| 0.79 | 217 | 1.4 | 1.4 | 38.7 | 38.7 |
| 0.44 | 211 | 1.4 | 1.4 | 40.1 | 40.1 |
| 0.57 | 210 | 1.4 | 1.4 | 41.5 | 41.5 |
| 0.4 | 209 | 1.4 | 1.4 | 42.9 | 42.9 |
| 0.49 | 209 | 1.4 | 1.4 | 44.3 | 44.3 |
| 0.63 | 209 | 1.4 | 1.4 | 45.7 | 45.7 |
| 0.69 | 209 | 1.4 | 1.4 | 47.1 | 47.1 |
| 0.61 | 208 | 1.4 | 1.4 | 48.5 | 48.5 |
| 0.85 | 207 | 1.4 | 1.4 | 49.9 | 49.9 |
| 0.7 | 205 | 1.4 | 1.4 | 51.2 | 51.2 |
| 0.45 | 203 | 1.4 | 1.4 | 52.6 | 52.6 |
| 0.96 | 203 | 1.4 | 1.4 | 53.9 | 53.9 |
| 0.86 | 200 | 1.3 | 1.3 | 55.3 | 55.3 |
| 0.65 | 199 | 1.3 | 1.3 | 56.6 | 56.6 |
| 0.92 | 198 | 1.3 | 1.3 | 57.9 | 57.9 |
| 0.52 | 196 | 1.3 | 1.3 | 59.2 | 59.2 |
| 0.09 | 195 | 1.3 | 1.3 | 60.5 | 60.5 |
| 0.6 | 193 | 1.3 | 1.3 | 61.8 | 61.8 |
| 0.38 | 189 | 1.3 | 1.3 | 63.1 | 63.1 |
| 0.62 | 188 | 1.3 | 1.3 | 64.3 | 64.3 |
| 0.51 | 187 | 1.2 | 1.2 | 65.6 | 65.6 |
| 0.56 | 187 | 1.2 | 1.2 | 66.8 | 66.8 |
| 0.64 | 187 | 1.2 | 1.2 | 68.1 | 68.1 |
| 0.88 | 187 | 1.2 | 1.2 | 69.3 | 69.3 |
| 0.54 | 185 | 1.2 | 1.2 | 70.5 | 70.5 |
| 0.98 | 183 | 1.2 | 1.2 | 71.8 | 71.8 |
| 0.58 | 182 | 1.2 | 1.2 | 73.0 | 73.0 |
| 0.95 | 181 | 1.2 | 1.2 | 74.2 | 74.2 |
| 0.53 | 179 | 1.2 | 1.2 | 75.4 | 75.4 |
| 0.55 | 179 | 1.2 | 1.2 | 76.6 | 76.6 |
| 0.67 | 177 | 1.2 | 1.2 | 77.8 | 77.8 |
| 0.97 | 176 | 1.2 | 1.2 | 78.9 | 78.9 |
| 0.39 | 175 | 1.2 | 1.2 | 80.1 | 80.1 |
| 0.99 | 172 | 1.1 | 1.1 | 81.2 | 81.2 |
| 0.41 | 171 | 1.1 | 1.1 | 82.4 | 82.4 |
| 0.71 | 171 | 1.1 | 1.1 | 83.5 | 83.5 |
| 0.93 | 169 | 1.1 | 1.1 | 84.6 | 84.6 |
| 0.94 | 167 | 1.1 | 1.1 | 85.8 | 85.8 |
| 0.68 | 162 | 1.1 | 1.1 | 86.8 | 86.8 |
| 0.42 | 155 | 1.0 | 1.0 | 87.9 | 87.9 |
| 0.48 | 149 | 1.0 | 1.0 | 88.9 | 88.9 |
| 0.36 | 139 | 0.9 | 0.9 | 89.8 | 89.8 |
| 1 | 111 | 0.7 | 0.7 | 90.5 | 90.5 |
| 0.46 | 95 | 0.6 | 0.6 | 91.2 | 91.2 |
| 0.24 | 80 | 0.5 | 0.5 | 91.7 | 91.7 |
| 0.16 | 79 | 0.5 | 0.5 | 92.2 | 92.2 |
| 0.15 | 76 | 0.5 | 0.5 | 92.7 | 92.7 |
| 0.19 | 74 | 0.5 | 0.5 | 93.2 | 93.2 |
| 0.14 | 73 | 0.5 | 0.5 | 93.7 | 93.7 |
| 0.17 | 72 | 0.5 | 0.5 | 94.2 | 94.2 |
| 0.2 | 69 | 0.5 | 0.5 | 94.7 | 94.7 |
| 0.21 | 67 | 0.4 | 0.4 | 95.1 | 95.1 |
| 0.18 | 63 | 0.4 | 0.4 | 95.5 | 95.5 |
| 0.22 | 60 | 0.4 | 0.4 | 95.9 | 95.9 |
| 0.31 | 59 | 0.4 | 0.4 | 96.3 | 96.3 |
| 0.13 | 54 | 0.4 | 0.4 | 96.7 | 96.7 |
| 0.23 | 54 | 0.4 | 0.4 | 97.0 | 97.0 |
| 0.32 | 50 | 0.3 | 0.3 | 97.4 | 97.4 |
| 0.34 | 48 | 0.3 | 0.3 | 97.7 | 97.7 |
| 0.47 | 42 | 0.3 | 0.3 | 98.0 | 98.0 |
| 0.3 | 39 | 0.3 | 0.3 | 98.2 | 98.2 |
| 0.29 | 38 | 0.3 | 0.3 | 98.5 | 98.5 |
| 0.35 | 37 | 0.2 | 0.2 | 98.7 | 98.7 |
| 0.33 | 36 | 0.2 | 0.2 | 99.0 | 99.0 |
| 0.25 | 34 | 0.2 | 0.2 | 99.2 | 99.2 |
| 0.28 | 31 | 0.2 | 0.2 | 99.4 | 99.4 |
| 0.12 | 30 | 0.2 | 0.2 | 99.6 | 99.6 |
| 0.26 | 30 | 0.2 | 0.2 | 99.8 | 99.8 |
| 0.27 | 30 | 0.2 | 0.2 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de última evaluación
LastE=df$last_evaluation
clases= nclass.Sturges(LastE)
library(questionr)
table <- questionr::freq(LastE, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 0.55 | 358 | 2.4 | 2.4 | 2.4 | 2.4 |
| 0.5 | 353 | 2.4 | 2.4 | 4.7 | 4.7 |
| 0.54 | 350 | 2.3 | 2.3 | 7.1 | 7.1 |
| 0.51 | 345 | 2.3 | 2.3 | 9.4 | 9.4 |
| 0.57 | 333 | 2.2 | 2.2 | 11.6 | 11.6 |
| 0.49 | 332 | 2.2 | 2.2 | 13.8 | 13.8 |
| 0.87 | 326 | 2.2 | 2.2 | 16.0 | 16.0 |
| 0.53 | 324 | 2.2 | 2.2 | 18.1 | 18.1 |
| 0.56 | 322 | 2.1 | 2.1 | 20.3 | 20.3 |
| 0.85 | 316 | 2.1 | 2.1 | 22.4 | 22.4 |
| 0.9 | 313 | 2.1 | 2.1 | 24.5 | 24.5 |
| 0.52 | 309 | 2.1 | 2.1 | 26.5 | 26.5 |
| 0.89 | 296 | 2.0 | 2.0 | 28.5 | 28.5 |
| 0.84 | 294 | 2.0 | 2.0 | 30.5 | 30.5 |
| 0.48 | 292 | 1.9 | 1.9 | 32.4 | 32.4 |
| 0.91 | 287 | 1.9 | 1.9 | 34.3 | 34.3 |
| 1 | 283 | 1.9 | 1.9 | 36.2 | 36.2 |
| 0.97 | 276 | 1.8 | 1.8 | 38.1 | 38.1 |
| 0.86 | 273 | 1.8 | 1.8 | 39.9 | 39.9 |
| 0.83 | 269 | 1.8 | 1.8 | 41.7 | 41.7 |
| 0.92 | 269 | 1.8 | 1.8 | 43.5 | 43.5 |
| 0.93 | 269 | 1.8 | 1.8 | 45.3 | 45.3 |
| 0.77 | 263 | 1.8 | 1.8 | 47.0 | 47.0 |
| 0.94 | 263 | 1.8 | 1.8 | 48.8 | 48.8 |
| 0.98 | 263 | 1.8 | 1.8 | 50.5 | 50.5 |
| 0.74 | 260 | 1.7 | 1.7 | 52.3 | 52.3 |
| 0.95 | 258 | 1.7 | 1.7 | 54.0 | 54.0 |
| 0.99 | 258 | 1.7 | 1.7 | 55.7 | 55.7 |
| 0.59 | 255 | 1.7 | 1.7 | 57.4 | 57.4 |
| 0.81 | 255 | 1.7 | 1.7 | 59.1 | 59.1 |
| 0.8 | 251 | 1.7 | 1.7 | 60.8 | 60.8 |
| 0.96 | 249 | 1.7 | 1.7 | 62.4 | 62.4 |
| 0.67 | 245 | 1.6 | 1.6 | 64.1 | 64.1 |
| 0.79 | 241 | 1.6 | 1.6 | 65.7 | 65.7 |
| 0.75 | 238 | 1.6 | 1.6 | 67.3 | 67.3 |
| 0.82 | 237 | 1.6 | 1.6 | 68.8 | 68.8 |
| 0.63 | 236 | 1.6 | 1.6 | 70.4 | 70.4 |
| 0.64 | 235 | 1.6 | 1.6 | 72.0 | 72.0 |
| 0.88 | 235 | 1.6 | 1.6 | 73.5 | 73.5 |
| 0.61 | 234 | 1.6 | 1.6 | 75.1 | 75.1 |
| 0.62 | 233 | 1.6 | 1.6 | 76.7 | 76.7 |
| 0.58 | 225 | 1.5 | 1.5 | 78.2 | 78.2 |
| 0.73 | 223 | 1.5 | 1.5 | 79.6 | 79.6 |
| 0.66 | 222 | 1.5 | 1.5 | 81.1 | 81.1 |
| 0.68 | 222 | 1.5 | 1.5 | 82.6 | 82.6 |
| 0.6 | 221 | 1.5 | 1.5 | 84.1 | 84.1 |
| 0.76 | 216 | 1.4 | 1.4 | 85.5 | 85.5 |
| 0.78 | 214 | 1.4 | 1.4 | 86.9 | 86.9 |
| 0.7 | 213 | 1.4 | 1.4 | 88.4 | 88.4 |
| 0.46 | 211 | 1.4 | 1.4 | 89.8 | 89.8 |
| 0.72 | 211 | 1.4 | 1.4 | 91.2 | 91.2 |
| 0.65 | 201 | 1.3 | 1.3 | 92.5 | 92.5 |
| 0.71 | 196 | 1.3 | 1.3 | 93.8 | 93.8 |
| 0.69 | 193 | 1.3 | 1.3 | 95.1 | 95.1 |
| 0.47 | 173 | 1.2 | 1.2 | 96.3 | 96.3 |
| 0.45 | 115 | 0.8 | 0.8 | 97.0 | 97.0 |
| 0.41 | 59 | 0.4 | 0.4 | 97.4 | 97.4 |
| 0.4 | 57 | 0.4 | 0.4 | 97.8 | 97.8 |
| 0.42 | 56 | 0.4 | 0.4 | 98.2 | 98.2 |
| 0.37 | 55 | 0.4 | 0.4 | 98.5 | 98.5 |
| 0.39 | 52 | 0.3 | 0.3 | 98.9 | 98.9 |
| 0.38 | 50 | 0.3 | 0.3 | 99.2 | 99.2 |
| 0.43 | 50 | 0.3 | 0.3 | 99.6 | 99.6 |
| 0.44 | 44 | 0.3 | 0.3 | 99.9 | 99.9 |
| 0.36 | 22 | 0.1 | 0.1 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de múmero de proyectos
NumProj=df$number_project
clases= nclass.Sturges(NumProj)
library(questionr)
table <- questionr::freq(NumProj, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 4 | 4365 | 29.1 | 29.1 | 29.1 | 29.1 |
| 3 | 4055 | 27.0 | 27.0 | 56.1 | 56.1 |
| 5 | 2761 | 18.4 | 18.4 | 74.5 | 74.5 |
| 2 | 2388 | 15.9 | 15.9 | 90.5 | 90.5 |
| 6 | 1174 | 7.8 | 7.8 | 98.3 | 98.3 |
| 7 | 256 | 1.7 | 1.7 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de promedio de horas mensuales
Average=df$average_montly_hours
clases= nclass.Sturges(Average)
library(questionr)
table <- questionr::freq(Average, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 135 | 153 | 1.0 | 1.0 | 1.0 | 1.0 |
| 156 | 153 | 1.0 | 1.0 | 2.0 | 2.0 |
| 149 | 148 | 1.0 | 1.0 | 3.0 | 3.0 |
| 151 | 147 | 1.0 | 1.0 | 4.0 | 4.0 |
| 160 | 136 | 0.9 | 0.9 | 4.9 | 4.9 |
| 145 | 134 | 0.9 | 0.9 | 5.8 | 5.8 |
| 140 | 129 | 0.9 | 0.9 | 6.7 | 6.7 |
| 143 | 127 | 0.8 | 0.8 | 7.5 | 7.5 |
| 157 | 126 | 0.8 | 0.8 | 8.4 | 8.4 |
| 257 | 126 | 0.8 | 0.8 | 9.2 | 9.2 |
| 155 | 125 | 0.8 | 0.8 | 10.0 | 10.0 |
| 158 | 124 | 0.8 | 0.8 | 10.9 | 10.9 |
| 245 | 124 | 0.8 | 0.8 | 11.7 | 11.7 |
| 260 | 124 | 0.8 | 0.8 | 12.5 | 12.5 |
| 148 | 123 | 0.8 | 0.8 | 13.3 | 13.3 |
| 137 | 122 | 0.8 | 0.8 | 14.1 | 14.1 |
| 153 | 122 | 0.8 | 0.8 | 15.0 | 15.0 |
| 154 | 121 | 0.8 | 0.8 | 15.8 | 15.8 |
| 159 | 121 | 0.8 | 0.8 | 16.6 | 16.6 |
| 139 | 120 | 0.8 | 0.8 | 17.4 | 17.4 |
| 147 | 118 | 0.8 | 0.8 | 18.2 | 18.2 |
| 141 | 115 | 0.8 | 0.8 | 18.9 | 18.9 |
| 255 | 115 | 0.8 | 0.8 | 19.7 | 19.7 |
| 134 | 114 | 0.8 | 0.8 | 20.4 | 20.4 |
| 254 | 113 | 0.8 | 0.8 | 21.2 | 21.2 |
| 142 | 112 | 0.7 | 0.7 | 21.9 | 21.9 |
| 152 | 112 | 0.7 | 0.7 | 22.7 | 22.7 |
| 224 | 112 | 0.7 | 0.7 | 23.4 | 23.4 |
| 243 | 112 | 0.7 | 0.7 | 24.2 | 24.2 |
| 264 | 111 | 0.7 | 0.7 | 24.9 | 24.9 |
| 146 | 110 | 0.7 | 0.7 | 25.7 | 25.7 |
| 258 | 110 | 0.7 | 0.7 | 26.4 | 26.4 |
| 263 | 110 | 0.7 | 0.7 | 27.1 | 27.1 |
| 150 | 108 | 0.7 | 0.7 | 27.8 | 27.8 |
| 238 | 108 | 0.7 | 0.7 | 28.6 | 28.6 |
| 247 | 108 | 0.7 | 0.7 | 29.3 | 29.3 |
| 266 | 105 | 0.7 | 0.7 | 30.0 | 30.0 |
| 136 | 104 | 0.7 | 0.7 | 30.7 | 30.7 |
| 271 | 104 | 0.7 | 0.7 | 31.4 | 31.4 |
| 144 | 102 | 0.7 | 0.7 | 32.1 | 32.1 |
| 233 | 102 | 0.7 | 0.7 | 32.7 | 32.7 |
| 246 | 102 | 0.7 | 0.7 | 33.4 | 33.4 |
| 261 | 102 | 0.7 | 0.7 | 34.1 | 34.1 |
| 269 | 102 | 0.7 | 0.7 | 34.8 | 34.8 |
| 253 | 101 | 0.7 | 0.7 | 35.4 | 35.4 |
| 132 | 100 | 0.7 | 0.7 | 36.1 | 36.1 |
| 250 | 100 | 0.7 | 0.7 | 36.8 | 36.8 |
| 242 | 98 | 0.7 | 0.7 | 37.4 | 37.4 |
| 244 | 98 | 0.7 | 0.7 | 38.1 | 38.1 |
| 251 | 98 | 0.7 | 0.7 | 38.7 | 38.7 |
| 259 | 98 | 0.7 | 0.7 | 39.4 | 39.4 |
| 232 | 97 | 0.6 | 0.6 | 40.0 | 40.0 |
| 162 | 96 | 0.6 | 0.6 | 40.7 | 40.7 |
| 173 | 96 | 0.6 | 0.6 | 41.3 | 41.3 |
| 192 | 96 | 0.6 | 0.6 | 42.0 | 42.0 |
| 239 | 96 | 0.6 | 0.6 | 42.6 | 42.6 |
| 225 | 95 | 0.6 | 0.6 | 43.2 | 43.2 |
| 167 | 94 | 0.6 | 0.6 | 43.9 | 43.9 |
| 274 | 94 | 0.6 | 0.6 | 44.5 | 44.5 |
| 185 | 93 | 0.6 | 0.6 | 45.1 | 45.1 |
| 223 | 93 | 0.6 | 0.6 | 45.7 | 45.7 |
| 226 | 93 | 0.6 | 0.6 | 46.3 | 46.3 |
| 229 | 93 | 0.6 | 0.6 | 47.0 | 47.0 |
| 240 | 93 | 0.6 | 0.6 | 47.6 | 47.6 |
| 249 | 93 | 0.6 | 0.6 | 48.2 | 48.2 |
| 268 | 93 | 0.6 | 0.6 | 48.8 | 48.8 |
| 270 | 93 | 0.6 | 0.6 | 49.4 | 49.4 |
| 168 | 92 | 0.6 | 0.6 | 50.1 | 50.1 |
| 265 | 91 | 0.6 | 0.6 | 50.7 | 50.7 |
| 237 | 90 | 0.6 | 0.6 | 51.3 | 51.3 |
| 138 | 88 | 0.6 | 0.6 | 51.9 | 51.9 |
| 180 | 88 | 0.6 | 0.6 | 52.4 | 52.4 |
| 267 | 88 | 0.6 | 0.6 | 53.0 | 53.0 |
| 273 | 88 | 0.6 | 0.6 | 53.6 | 53.6 |
| 133 | 87 | 0.6 | 0.6 | 54.2 | 54.2 |
| 161 | 87 | 0.6 | 0.6 | 54.8 | 54.8 |
| 217 | 87 | 0.6 | 0.6 | 55.4 | 55.4 |
| 256 | 87 | 0.6 | 0.6 | 55.9 | 55.9 |
| 169 | 86 | 0.6 | 0.6 | 56.5 | 56.5 |
| 198 | 86 | 0.6 | 0.6 | 57.1 | 57.1 |
| 201 | 86 | 0.6 | 0.6 | 57.7 | 57.7 |
| 248 | 86 | 0.6 | 0.6 | 58.2 | 58.2 |
| 252 | 86 | 0.6 | 0.6 | 58.8 | 58.8 |
| 262 | 86 | 0.6 | 0.6 | 59.4 | 59.4 |
| 272 | 86 | 0.6 | 0.6 | 60.0 | 60.0 |
| 178 | 85 | 0.6 | 0.6 | 60.5 | 60.5 |
| 189 | 85 | 0.6 | 0.6 | 61.1 | 61.1 |
| 219 | 85 | 0.6 | 0.6 | 61.7 | 61.7 |
| 241 | 85 | 0.6 | 0.6 | 62.2 | 62.2 |
| 183 | 84 | 0.6 | 0.6 | 62.8 | 62.8 |
| 222 | 84 | 0.6 | 0.6 | 63.3 | 63.3 |
| 171 | 83 | 0.6 | 0.6 | 63.9 | 63.9 |
| 206 | 83 | 0.6 | 0.6 | 64.4 | 64.4 |
| 236 | 83 | 0.6 | 0.6 | 65.0 | 65.0 |
| 275 | 82 | 0.5 | 0.5 | 65.5 | 65.5 |
| 176 | 81 | 0.5 | 0.5 | 66.1 | 66.1 |
| 177 | 81 | 0.5 | 0.5 | 66.6 | 66.6 |
| 221 | 81 | 0.5 | 0.5 | 67.2 | 67.2 |
| 184 | 80 | 0.5 | 0.5 | 67.7 | 67.7 |
| 191 | 80 | 0.5 | 0.5 | 68.2 | 68.2 |
| 202 | 80 | 0.5 | 0.5 | 68.8 | 68.8 |
| 196 | 79 | 0.5 | 0.5 | 69.3 | 69.3 |
| 199 | 79 | 0.5 | 0.5 | 69.8 | 69.8 |
| 211 | 79 | 0.5 | 0.5 | 70.3 | 70.3 |
| 218 | 79 | 0.5 | 0.5 | 70.9 | 70.9 |
| 164 | 78 | 0.5 | 0.5 | 71.4 | 71.4 |
| 165 | 78 | 0.5 | 0.5 | 71.9 | 71.9 |
| 174 | 78 | 0.5 | 0.5 | 72.4 | 72.4 |
| 181 | 78 | 0.5 | 0.5 | 73.0 | 73.0 |
| 214 | 78 | 0.5 | 0.5 | 73.5 | 73.5 |
| 227 | 77 | 0.5 | 0.5 | 74.0 | 74.0 |
| 231 | 77 | 0.5 | 0.5 | 74.5 | 74.5 |
| 170 | 76 | 0.5 | 0.5 | 75.0 | 75.0 |
| 175 | 76 | 0.5 | 0.5 | 75.5 | 75.5 |
| 186 | 76 | 0.5 | 0.5 | 76.0 | 76.0 |
| 216 | 76 | 0.5 | 0.5 | 76.5 | 76.5 |
| 228 | 76 | 0.5 | 0.5 | 77.0 | 77.0 |
| 235 | 76 | 0.5 | 0.5 | 77.5 | 77.5 |
| 182 | 75 | 0.5 | 0.5 | 78.0 | 78.0 |
| 190 | 75 | 0.5 | 0.5 | 78.5 | 78.5 |
| 234 | 74 | 0.5 | 0.5 | 79.0 | 79.0 |
| 163 | 73 | 0.5 | 0.5 | 79.5 | 79.5 |
| 166 | 73 | 0.5 | 0.5 | 80.0 | 80.0 |
| 179 | 73 | 0.5 | 0.5 | 80.5 | 80.5 |
| 188 | 73 | 0.5 | 0.5 | 81.0 | 81.0 |
| 205 | 73 | 0.5 | 0.5 | 81.5 | 81.5 |
| 127 | 72 | 0.5 | 0.5 | 81.9 | 81.9 |
| 203 | 72 | 0.5 | 0.5 | 82.4 | 82.4 |
| 208 | 72 | 0.5 | 0.5 | 82.9 | 82.9 |
| 209 | 72 | 0.5 | 0.5 | 83.4 | 83.4 |
| 210 | 72 | 0.5 | 0.5 | 83.9 | 83.9 |
| 212 | 72 | 0.5 | 0.5 | 84.3 | 84.3 |
| 194 | 71 | 0.5 | 0.5 | 84.8 | 84.8 |
| 207 | 71 | 0.5 | 0.5 | 85.3 | 85.3 |
| 213 | 71 | 0.5 | 0.5 | 85.8 | 85.8 |
| 172 | 70 | 0.5 | 0.5 | 86.2 | 86.2 |
| 197 | 70 | 0.5 | 0.5 | 86.7 | 86.7 |
| 131 | 69 | 0.5 | 0.5 | 87.2 | 87.2 |
| 187 | 68 | 0.5 | 0.5 | 87.6 | 87.6 |
| 204 | 68 | 0.5 | 0.5 | 88.1 | 88.1 |
| 215 | 68 | 0.5 | 0.5 | 88.5 | 88.5 |
| 193 | 67 | 0.4 | 0.4 | 89.0 | 89.0 |
| 195 | 67 | 0.4 | 0.4 | 89.4 | 89.4 |
| 128 | 65 | 0.4 | 0.4 | 89.8 | 89.8 |
| 220 | 64 | 0.4 | 0.4 | 90.3 | 90.3 |
| 129 | 63 | 0.4 | 0.4 | 90.7 | 90.7 |
| 130 | 59 | 0.4 | 0.4 | 91.1 | 91.1 |
| 230 | 59 | 0.4 | 0.4 | 91.5 | 91.5 |
| 200 | 58 | 0.4 | 0.4 | 91.9 | 91.9 |
| 286 | 50 | 0.3 | 0.3 | 92.2 | 92.2 |
| 282 | 36 | 0.2 | 0.2 | 92.4 | 92.4 |
| 278 | 35 | 0.2 | 0.2 | 92.7 | 92.7 |
| 281 | 34 | 0.2 | 0.2 | 92.9 | 92.9 |
| 285 | 33 | 0.2 | 0.2 | 93.1 | 93.1 |
| 279 | 32 | 0.2 | 0.2 | 93.3 | 93.3 |
| 276 | 30 | 0.2 | 0.2 | 93.5 | 93.5 |
| 287 | 30 | 0.2 | 0.2 | 93.7 | 93.7 |
| 113 | 29 | 0.2 | 0.2 | 93.9 | 93.9 |
| 280 | 29 | 0.2 | 0.2 | 94.1 | 94.1 |
| 104 | 28 | 0.2 | 0.2 | 94.3 | 94.3 |
| 111 | 26 | 0.2 | 0.2 | 94.5 | 94.5 |
| 126 | 25 | 0.2 | 0.2 | 94.6 | 94.6 |
| 283 | 25 | 0.2 | 0.2 | 94.8 | 94.8 |
| 121 | 24 | 0.2 | 0.2 | 95.0 | 95.0 |
| 284 | 24 | 0.2 | 0.2 | 95.1 | 95.1 |
| 301 | 24 | 0.2 | 0.2 | 95.3 | 95.3 |
| 98 | 23 | 0.2 | 0.2 | 95.4 | 95.4 |
| 277 | 21 | 0.1 | 0.1 | 95.6 | 95.6 |
| 296 | 21 | 0.1 | 0.1 | 95.7 | 95.7 |
| 123 | 20 | 0.1 | 0.1 | 95.9 | 95.9 |
| 308 | 20 | 0.1 | 0.1 | 96.0 | 96.0 |
| 100 | 19 | 0.1 | 0.1 | 96.1 | 96.1 |
| 106 | 19 | 0.1 | 0.1 | 96.2 | 96.2 |
| 125 | 19 | 0.1 | 0.1 | 96.4 | 96.4 |
| 289 | 19 | 0.1 | 0.1 | 96.5 | 96.5 |
| 108 | 18 | 0.1 | 0.1 | 96.6 | 96.6 |
| 109 | 18 | 0.1 | 0.1 | 96.7 | 96.7 |
| 117 | 18 | 0.1 | 0.1 | 96.9 | 96.9 |
| 305 | 18 | 0.1 | 0.1 | 97.0 | 97.0 |
| 306 | 18 | 0.1 | 0.1 | 97.1 | 97.1 |
| 310 | 18 | 0.1 | 0.1 | 97.2 | 97.2 |
| 102 | 17 | 0.1 | 0.1 | 97.3 | 97.3 |
| 103 | 17 | 0.1 | 0.1 | 97.4 | 97.4 |
| 105 | 17 | 0.1 | 0.1 | 97.6 | 97.6 |
| 291 | 17 | 0.1 | 0.1 | 97.7 | 97.7 |
| 304 | 17 | 0.1 | 0.1 | 97.8 | 97.8 |
| 101 | 16 | 0.1 | 0.1 | 97.9 | 97.9 |
| 294 | 16 | 0.1 | 0.1 | 98.0 | 98.0 |
| 309 | 16 | 0.1 | 0.1 | 98.1 | 98.1 |
| 114 | 15 | 0.1 | 0.1 | 98.2 | 98.2 |
| 290 | 15 | 0.1 | 0.1 | 98.3 | 98.3 |
| 292 | 15 | 0.1 | 0.1 | 98.4 | 98.4 |
| 97 | 14 | 0.1 | 0.1 | 98.5 | 98.5 |
| 115 | 14 | 0.1 | 0.1 | 98.6 | 98.6 |
| 307 | 14 | 0.1 | 0.1 | 98.7 | 98.7 |
| 124 | 13 | 0.1 | 0.1 | 98.8 | 98.8 |
| 293 | 13 | 0.1 | 0.1 | 98.9 | 98.9 |
| 298 | 13 | 0.1 | 0.1 | 98.9 | 98.9 |
| 110 | 12 | 0.1 | 0.1 | 99.0 | 99.0 |
| 118 | 12 | 0.1 | 0.1 | 99.1 | 99.1 |
| 295 | 12 | 0.1 | 0.1 | 99.2 | 99.2 |
| 99 | 11 | 0.1 | 0.1 | 99.3 | 99.3 |
| 122 | 11 | 0.1 | 0.1 | 99.3 | 99.3 |
| 300 | 11 | 0.1 | 0.1 | 99.4 | 99.4 |
| 107 | 10 | 0.1 | 0.1 | 99.5 | 99.5 |
| 112 | 10 | 0.1 | 0.1 | 99.5 | 99.5 |
| 116 | 10 | 0.1 | 0.1 | 99.6 | 99.6 |
| 119 | 10 | 0.1 | 0.1 | 99.7 | 99.7 |
| 120 | 10 | 0.1 | 0.1 | 99.7 | 99.7 |
| 302 | 8 | 0.1 | 0.1 | 99.8 | 99.8 |
| 297 | 7 | 0.0 | 0.0 | 99.8 | 99.8 |
| 96 | 6 | 0.0 | 0.0 | 99.9 | 99.9 |
| 288 | 6 | 0.0 | 0.0 | 99.9 | 99.9 |
| 299 | 6 | 0.0 | 0.0 | 100.0 | 100.0 |
| 303 | 6 | 0.0 | 0.0 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de tiempo en la compañía
timespend=df$time_spend_company
clases= nclass.Sturges(timespend)
library(questionr)
table <- questionr::freq(timespend, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 3 | 6443 | 43.0 | 43.0 | 43.0 | 43.0 |
| 2 | 3244 | 21.6 | 21.6 | 64.6 | 64.6 |
| 4 | 2557 | 17.0 | 17.0 | 81.6 | 81.6 |
| 5 | 1473 | 9.8 | 9.8 | 91.5 | 91.5 |
| 6 | 718 | 4.8 | 4.8 | 96.2 | 96.2 |
| 10 | 214 | 1.4 | 1.4 | 97.7 | 97.7 |
| 7 | 188 | 1.3 | 1.3 | 98.9 | 98.9 |
| 8 | 162 | 1.1 | 1.1 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de accidentes laborales
workAcc=df$Work_accident
clases= nclass.Sturges(workAcc)
library(questionr)
table <- questionr::freq(workAcc, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 0 | 12830 | 85.5 | 85.5 | 85.5 | 85.5 |
| 1 | 2169 | 14.5 | 14.5 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de left
left=df$left
clases= nclass.Sturges(left)
library(questionr)
table <- questionr::freq(left, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 0 | 11428 | 76.2 | 76.2 | 76.2 | 76.2 |
| 1 | 3571 | 23.8 | 23.8 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de promocion en los últimos 5 años
prom=df$promotion_last_5years
clases= nclass.Sturges(prom)
library(questionr)
table <- questionr::freq(prom, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| 0 | 14680 | 97.9 | 97.9 | 97.9 | 97.9 |
| 1 | 319 | 2.1 | 2.1 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de departamento
dep=df$Department
clases= nclass.Sturges(dep)
library(questionr)
table <- questionr::freq(dep, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| sales | 4140 | 27.6 | 27.6 | 27.6 | 27.6 |
| technical | 2720 | 18.1 | 18.1 | 45.7 | 45.7 |
| support | 2229 | 14.9 | 14.9 | 60.6 | 60.6 |
| IT | 1227 | 8.2 | 8.2 | 68.8 | 68.8 |
| product_mng | 902 | 6.0 | 6.0 | 74.8 | 74.8 |
| marketing | 858 | 5.7 | 5.7 | 80.5 | 80.5 |
| RandD | 787 | 5.2 | 5.2 | 85.8 | 85.8 |
| accounting | 767 | 5.1 | 5.1 | 90.9 | 90.9 |
| hr | 739 | 4.9 | 4.9 | 95.8 | 95.8 |
| management | 630 | 4.2 | 4.2 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
#tabla de frecuencia simple de salario
sal=df$salary
clases= nclass.Sturges(sal)
library(questionr)
table <- questionr::freq(sal, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
| n | % | val% | %cum | val%cum | |
|---|---|---|---|---|---|
| low | 7316 | 48.8 | 48.8 | 48.8 | 48.8 |
| medium | 6446 | 43.0 | 43.0 | 91.8 | 91.8 |
| high | 1237 | 8.2 | 8.2 | 100.0 | 100.0 |
| Total | 14999 | 100.0 | 100.0 | 100.0 | 100.0 |
3.2 Tabla de Frecuencia Agrupada
df <- read_xlsx("HR_Employee_Data.xlsx")
#Tabla de frecuencia agrupada de promedio de horas mensuales
Average = df$average_montly_hours
knitr::kable(head(Average))
| x |
|---|
| 157 |
| 262 |
| 272 |
| 223 |
| 159 |
| 153 |
n_sturges = 1 + log(length(14999))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)
n_clases = 0
if (n_sturgesc%%2 == 0) {
n_clases = n_sturgesf
} else {
n_clases = n_sturgesc
}
R = max(Average) - min(Average)
w = ceiling(R/n_sturges)
bins <- seq(min(Average), min(Average) + w)
bins
## [1] 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
## [19] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
## [37] 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
## [55] 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
## [73] 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
## [91] 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
## [109] 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
## [127] 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
## [145] 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
## [163] 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
## [181] 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
## [199] 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
Promediodehorasmensuales <- cut(Average, bins)
Freq_table <- transform(table(Promediodehorasmensuales), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
| Promediodehorasmensuales | Freq | Rel_Freq | Cum_Freq |
|---|---|---|---|
| (96,97] | 14 | 0.0009338 | 14 |
| (97,98] | 23 | 0.0015340 | 37 |
| (98,99] | 11 | 0.0007337 | 48 |
| (99,100] | 19 | 0.0012673 | 67 |
| (100,101] | 16 | 0.0010672 | 83 |
| (101,102] | 17 | 0.0011339 | 100 |
| (102,103] | 17 | 0.0011339 | 117 |
| (103,104] | 28 | 0.0018675 | 145 |
| (104,105] | 17 | 0.0011339 | 162 |
| (105,106] | 19 | 0.0012673 | 181 |
| (106,107] | 10 | 0.0006670 | 191 |
| (107,108] | 18 | 0.0012006 | 209 |
| (108,109] | 18 | 0.0012006 | 227 |
| (109,110] | 12 | 0.0008004 | 239 |
| (110,111] | 26 | 0.0017341 | 265 |
| (111,112] | 10 | 0.0006670 | 275 |
| (112,113] | 29 | 0.0019342 | 304 |
| (113,114] | 15 | 0.0010005 | 319 |
| (114,115] | 14 | 0.0009338 | 333 |
| (115,116] | 10 | 0.0006670 | 343 |
| (116,117] | 18 | 0.0012006 | 361 |
| (117,118] | 12 | 0.0008004 | 373 |
| (118,119] | 10 | 0.0006670 | 383 |
| (119,120] | 10 | 0.0006670 | 393 |
| (120,121] | 24 | 0.0016007 | 417 |
| (121,122] | 11 | 0.0007337 | 428 |
| (122,123] | 20 | 0.0013340 | 448 |
| (123,124] | 13 | 0.0008671 | 461 |
| (124,125] | 19 | 0.0012673 | 480 |
| (125,126] | 25 | 0.0016674 | 505 |
| (126,127] | 72 | 0.0048022 | 577 |
| (127,128] | 65 | 0.0043354 | 642 |
| (128,129] | 63 | 0.0042020 | 705 |
| (129,130] | 59 | 0.0039352 | 764 |
| (130,131] | 69 | 0.0046021 | 833 |
| (131,132] | 100 | 0.0066698 | 933 |
| (132,133] | 87 | 0.0058027 | 1020 |
| (133,134] | 114 | 0.0076035 | 1134 |
| (134,135] | 153 | 0.0102048 | 1287 |
| (135,136] | 104 | 0.0069366 | 1391 |
| (136,137] | 122 | 0.0081371 | 1513 |
| (137,138] | 88 | 0.0058694 | 1601 |
| (138,139] | 120 | 0.0080037 | 1721 |
| (139,140] | 129 | 0.0086040 | 1850 |
| (140,141] | 115 | 0.0076702 | 1965 |
| (141,142] | 112 | 0.0074702 | 2077 |
| (142,143] | 127 | 0.0084706 | 2204 |
| (143,144] | 102 | 0.0068032 | 2306 |
| (144,145] | 134 | 0.0089375 | 2440 |
| (145,146] | 110 | 0.0073368 | 2550 |
| (146,147] | 118 | 0.0078703 | 2668 |
| (147,148] | 123 | 0.0082038 | 2791 |
| (148,149] | 148 | 0.0098713 | 2939 |
| (149,150] | 108 | 0.0072034 | 3047 |
| (150,151] | 147 | 0.0098046 | 3194 |
| (151,152] | 112 | 0.0074702 | 3306 |
| (152,153] | 122 | 0.0081371 | 3428 |
| (153,154] | 121 | 0.0080704 | 3549 |
| (154,155] | 125 | 0.0083372 | 3674 |
| (155,156] | 153 | 0.0102048 | 3827 |
| (156,157] | 126 | 0.0084039 | 3953 |
| (157,158] | 124 | 0.0082705 | 4077 |
| (158,159] | 121 | 0.0080704 | 4198 |
| (159,160] | 136 | 0.0090709 | 4334 |
| (160,161] | 87 | 0.0058027 | 4421 |
| (161,162] | 96 | 0.0064030 | 4517 |
| (162,163] | 73 | 0.0048689 | 4590 |
| (163,164] | 78 | 0.0052024 | 4668 |
| (164,165] | 78 | 0.0052024 | 4746 |
| (165,166] | 73 | 0.0048689 | 4819 |
| (166,167] | 94 | 0.0062696 | 4913 |
| (167,168] | 92 | 0.0061362 | 5005 |
| (168,169] | 86 | 0.0057360 | 5091 |
| (169,170] | 76 | 0.0050690 | 5167 |
| (170,171] | 83 | 0.0055359 | 5250 |
| (171,172] | 70 | 0.0046688 | 5320 |
| (172,173] | 96 | 0.0064030 | 5416 |
| (173,174] | 78 | 0.0052024 | 5494 |
| (174,175] | 76 | 0.0050690 | 5570 |
| (175,176] | 81 | 0.0054025 | 5651 |
| (176,177] | 81 | 0.0054025 | 5732 |
| (177,178] | 85 | 0.0056693 | 5817 |
| (178,179] | 73 | 0.0048689 | 5890 |
| (179,180] | 88 | 0.0058694 | 5978 |
| (180,181] | 78 | 0.0052024 | 6056 |
| (181,182] | 75 | 0.0050023 | 6131 |
| (182,183] | 84 | 0.0056026 | 6215 |
| (183,184] | 80 | 0.0053358 | 6295 |
| (184,185] | 93 | 0.0062029 | 6388 |
| (185,186] | 76 | 0.0050690 | 6464 |
| (186,187] | 68 | 0.0045354 | 6532 |
| (187,188] | 73 | 0.0048689 | 6605 |
| (188,189] | 85 | 0.0056693 | 6690 |
| (189,190] | 75 | 0.0050023 | 6765 |
| (190,191] | 80 | 0.0053358 | 6845 |
| (191,192] | 96 | 0.0064030 | 6941 |
| (192,193] | 67 | 0.0044688 | 7008 |
| (193,194] | 71 | 0.0047355 | 7079 |
| (194,195] | 67 | 0.0044688 | 7146 |
| (195,196] | 79 | 0.0052691 | 7225 |
| (196,197] | 70 | 0.0046688 | 7295 |
| (197,198] | 86 | 0.0057360 | 7381 |
| (198,199] | 79 | 0.0052691 | 7460 |
| (199,200] | 58 | 0.0038685 | 7518 |
| (200,201] | 86 | 0.0057360 | 7604 |
| (201,202] | 80 | 0.0053358 | 7684 |
| (202,203] | 72 | 0.0048022 | 7756 |
| (203,204] | 68 | 0.0045354 | 7824 |
| (204,205] | 73 | 0.0048689 | 7897 |
| (205,206] | 83 | 0.0055359 | 7980 |
| (206,207] | 71 | 0.0047355 | 8051 |
| (207,208] | 72 | 0.0048022 | 8123 |
| (208,209] | 72 | 0.0048022 | 8195 |
| (209,210] | 72 | 0.0048022 | 8267 |
| (210,211] | 79 | 0.0052691 | 8346 |
| (211,212] | 72 | 0.0048022 | 8418 |
| (212,213] | 71 | 0.0047355 | 8489 |
| (213,214] | 78 | 0.0052024 | 8567 |
| (214,215] | 68 | 0.0045354 | 8635 |
| (215,216] | 76 | 0.0050690 | 8711 |
| (216,217] | 87 | 0.0058027 | 8798 |
| (217,218] | 79 | 0.0052691 | 8877 |
| (218,219] | 85 | 0.0056693 | 8962 |
| (219,220] | 64 | 0.0042687 | 9026 |
| (220,221] | 81 | 0.0054025 | 9107 |
| (221,222] | 84 | 0.0056026 | 9191 |
| (222,223] | 93 | 0.0062029 | 9284 |
| (223,224] | 112 | 0.0074702 | 9396 |
| (224,225] | 95 | 0.0063363 | 9491 |
| (225,226] | 93 | 0.0062029 | 9584 |
| (226,227] | 77 | 0.0051357 | 9661 |
| (227,228] | 76 | 0.0050690 | 9737 |
| (228,229] | 93 | 0.0062029 | 9830 |
| (229,230] | 59 | 0.0039352 | 9889 |
| (230,231] | 77 | 0.0051357 | 9966 |
| (231,232] | 97 | 0.0064697 | 10063 |
| (232,233] | 102 | 0.0068032 | 10165 |
| (233,234] | 74 | 0.0049356 | 10239 |
| (234,235] | 76 | 0.0050690 | 10315 |
| (235,236] | 83 | 0.0055359 | 10398 |
| (236,237] | 90 | 0.0060028 | 10488 |
| (237,238] | 108 | 0.0072034 | 10596 |
| (238,239] | 96 | 0.0064030 | 10692 |
| (239,240] | 93 | 0.0062029 | 10785 |
| (240,241] | 85 | 0.0056693 | 10870 |
| (241,242] | 98 | 0.0065364 | 10968 |
| (242,243] | 112 | 0.0074702 | 11080 |
| (243,244] | 98 | 0.0065364 | 11178 |
| (244,245] | 124 | 0.0082705 | 11302 |
| (245,246] | 102 | 0.0068032 | 11404 |
| (246,247] | 108 | 0.0072034 | 11512 |
| (247,248] | 86 | 0.0057360 | 11598 |
| (248,249] | 93 | 0.0062029 | 11691 |
| (249,250] | 100 | 0.0066698 | 11791 |
| (250,251] | 98 | 0.0065364 | 11889 |
| (251,252] | 86 | 0.0057360 | 11975 |
| (252,253] | 101 | 0.0067365 | 12076 |
| (253,254] | 113 | 0.0075369 | 12189 |
| (254,255] | 115 | 0.0076702 | 12304 |
| (255,256] | 87 | 0.0058027 | 12391 |
| (256,257] | 126 | 0.0084039 | 12517 |
| (257,258] | 110 | 0.0073368 | 12627 |
| (258,259] | 98 | 0.0065364 | 12725 |
| (259,260] | 124 | 0.0082705 | 12849 |
| (260,261] | 102 | 0.0068032 | 12951 |
| (261,262] | 86 | 0.0057360 | 13037 |
| (262,263] | 110 | 0.0073368 | 13147 |
| (263,264] | 111 | 0.0074035 | 13258 |
| (264,265] | 91 | 0.0060695 | 13349 |
| (265,266] | 105 | 0.0070033 | 13454 |
| (266,267] | 88 | 0.0058694 | 13542 |
| (267,268] | 93 | 0.0062029 | 13635 |
| (268,269] | 102 | 0.0068032 | 13737 |
| (269,270] | 93 | 0.0062029 | 13830 |
| (270,271] | 104 | 0.0069366 | 13934 |
| (271,272] | 86 | 0.0057360 | 14020 |
| (272,273] | 88 | 0.0058694 | 14108 |
| (273,274] | 94 | 0.0062696 | 14202 |
| (274,275] | 82 | 0.0054692 | 14284 |
| (275,276] | 30 | 0.0020009 | 14314 |
| (276,277] | 21 | 0.0014007 | 14335 |
| (277,278] | 35 | 0.0023344 | 14370 |
| (278,279] | 32 | 0.0021343 | 14402 |
| (279,280] | 29 | 0.0019342 | 14431 |
| (280,281] | 34 | 0.0022677 | 14465 |
| (281,282] | 36 | 0.0024011 | 14501 |
| (282,283] | 25 | 0.0016674 | 14526 |
| (283,284] | 24 | 0.0016007 | 14550 |
| (284,285] | 33 | 0.0022010 | 14583 |
| (285,286] | 50 | 0.0033349 | 14633 |
| (286,287] | 30 | 0.0020009 | 14663 |
| (287,288] | 6 | 0.0004002 | 14669 |
| (288,289] | 19 | 0.0012673 | 14688 |
| (289,290] | 15 | 0.0010005 | 14703 |
| (290,291] | 17 | 0.0011339 | 14720 |
| (291,292] | 15 | 0.0010005 | 14735 |
| (292,293] | 13 | 0.0008671 | 14748 |
| (293,294] | 16 | 0.0010672 | 14764 |
| (294,295] | 12 | 0.0008004 | 14776 |
| (295,296] | 21 | 0.0014007 | 14797 |
| (296,297] | 7 | 0.0004669 | 14804 |
| (297,298] | 13 | 0.0008671 | 14817 |
| (298,299] | 6 | 0.0004002 | 14823 |
| (299,300] | 11 | 0.0007337 | 14834 |
| (300,301] | 24 | 0.0016007 | 14858 |
| (301,302] | 8 | 0.0005336 | 14866 |
| (302,303] | 6 | 0.0004002 | 14872 |
| (303,304] | 17 | 0.0011339 | 14889 |
| (304,305] | 18 | 0.0012006 | 14907 |
| (305,306] | 18 | 0.0012006 | 14925 |
| (306,307] | 14 | 0.0009338 | 14939 |
| (307,308] | 20 | 0.0013340 | 14959 |
| (308,309] | 16 | 0.0010672 | 14975 |
| (309,310] | 18 | 0.0012006 | 14993 |
#Tabla de frecuencia agrupada de tiempo en la compañía
timespend = df$time_spend_company
knitr::kable(head(timespend))
| x |
|---|
| 3 |
| 6 |
| 4 |
| 5 |
| 3 |
| 3 |
n_sturges = 1 + log(length(14999))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)
n_clases = 0
if (n_sturgesc%%2 == 0) {
n_clases = n_sturgesf
} else {
n_clases = n_sturgesc
}
R = max(timespend) - min(timespend)
w = ceiling(R/n_sturges)
bins <- seq(min(timespend), min(timespend) + w)
bins
## [1] 2 3 4 5 6 7 8 9 10
ts <- cut(timespend, bins)
Freq_table <- transform(table(ts), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
| ts | Freq | Rel_Freq | Cum_Freq |
|---|---|---|---|
| (2,3] | 6443 | 0.5481072 | 6443 |
| (3,4] | 2557 | 0.2175245 | 9000 |
| (4,5] | 1473 | 0.1253084 | 10473 |
| (5,6] | 718 | 0.0610804 | 11191 |
| (6,7] | 188 | 0.0159932 | 11379 |
| (7,8] | 162 | 0.0137814 | 11541 |
| (8,9] | 0 | 0.0000000 | 11541 |
| (9,10] | 214 | 0.0182050 | 11755 |
#Tabla de frecuencia agrupada de número de proyectos
NumProj= df$number_project
knitr::kable(head(NumProj))
| x |
|---|
| 2 |
| 5 |
| 7 |
| 5 |
| 2 |
| 2 |
n_sturges = 1 + log(length(14999))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)
n_clases = 0
if (n_sturgesc%%2 == 0) {
n_clases = n_sturgesf
} else {
n_clases = n_sturgesc
}
R = max(NumProj) - min(NumProj)
w = ceiling(R/n_sturges)
bins <- seq(min(NumProj), min(NumProj) + w)
bins
## [1] 2 3 4 5 6 7
np <- cut(NumProj, bins)
Freq_table <- transform(table(np), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
| np | Freq | Rel_Freq | Cum_Freq |
|---|---|---|---|
| (2,3] | 4055 | 0.3215447 | 4055 |
| (3,4] | 4365 | 0.3461264 | 8420 |
| (4,5] | 2761 | 0.2189358 | 11181 |
| (5,6] | 1174 | 0.0930933 | 12355 |
| (6,7] | 256 | 0.0202997 | 12611 |
3.4 Diagrama de barras
#Departamento vs Número de proyectos
dep= df$Department
NumProj=df$number_project
dt <- data.frame(Departamentos =
c(dep),
NumProy =
c(NumProj))
library(ggplot2)
ggplot(data=dt, aes(x=dep, y= NumProy)) + geom_bar(stat="identity", color= "white", width = 0.8)
#Accidentes laborales vs tiempo en la compañía
workAcc= df$Work_accident
timespend=df$time_spend_company
dt <- data.frame(AccLab =
c(workAcc),
Tiempo =
c(timespend))
library(ggplot2)
ggplot(data=dt, aes(x=AccLab, y= Tiempo)) + geom_bar(stat="identity", color= "white", width = 0.8)
3.9 Media
LastE = df$last_evaluation
NumProj = df$number_project
Average = df$average_montly_hours
timespend =df$time_spend_company
workAcc = df$Work_accident
left = df$left
prom = df$promotion_last_5years
dep = df$Department
sal = df$salary
#Media del nivel de satisfacción
mean(NivelSat)
## [1] 0.6128335
#Media última evaluación
mean(LastE)
## [1] 0.7161017
#Media de número de proyectos
mean(NumProj)
## [1] 3.803054
#Media de media de horas mensuales
mean(Average)
## [1] 201.0503
#Media de tiempo en la compañía
mean(timespend)
## [1] 3.498233
#Media de accidentes en el trabajo
mean(workAcc)
## [1] 0.1446096
#Media de left
mean(left)
## [1] 0.2380825
#Media de promociones en los últimos 5 años
mean(prom)
## [1] 0.02126808
3.10 Mediana
LastE = df$last_evaluation
NumProj = df$number_project
Average = df$average_montly_hours
timespend =df$time_spend_company
workAcc = df$Work_accident
left = df$left
prom = df$promotion_last_5years
dep = df$Department
sal = df$salary
#Mediana nivel de satisfacción
median(NivelSat)
## [1] 0.64
#Mediana última evaluación
median(LastE)
## [1] 0.72
#Mediana número de proyectos
median(NumProj)
## [1] 4
#Mediana de media de horas mensuales
median(Average)
## [1] 200
#Mediana de tiempo en la compañía
median(timespend)
## [1] 3
#Mediana de accidentes en el trabajo
median(workAcc)
## [1] 0
#Mediana de left
median(left)
## [1] 0
#Mediana de promociones en los últimos 5 años
median(prom)
## [1] 0
#Mediana de departamentos
median(dep)
## [1] "sales"
#Mediana de salarios
median(sal)
## [1] "low"
3.11 Moda
#Moda de nivel de satisfacción
f <- data.frame(table(NivelSat))
moda <- f[which.max(f$Freq),1]
moda
## [1] 0.1
## 92 Levels: 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 ... 1
#Moda de última evaluación
f <- data.frame(table(LastE))
moda <- f[which.max(f$Freq),1]
moda
## [1] 0.55
## 65 Levels: 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 ... 1
#Moda de número de proyectos
f <- data.frame(table(NumProj))
moda <- f[which.max(f$Freq),1]
moda
## [1] 4
## Levels: 2 3 4 5 6 7
#Moda de promedio de horas mensuales
f <- data.frame(table(Average))
moda <- f[which.max(f$Freq),1]
moda
## [1] 135
## 215 Levels: 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 ... 310
#Moda de tiempo en la compañía
f <- data.frame(table(timespend))
moda <- f[which.max(f$Freq),1]
moda
## [1] 3
## Levels: 2 3 4 5 6 7 8 10
#Moda de accidentes laborales
f <- data.frame(table(workAcc))
moda <- f[which.max(f$Freq),1]
moda
## [1] 0
## Levels: 0 1
#Moda de left
f <- data.frame(table(left))
moda <- f[which.max(f$Freq),1]
moda
## [1] 0
## Levels: 0 1
#Moda de promociones en los últimos 5 años
f <- data.frame(table(prom))
moda <- f[which.max(f$Freq),1]
moda
## [1] 0
## Levels: 0 1
#Moda de departamentos
f <- data.frame(table(dep))
moda <- f[which.max(f$Freq),1]
moda
## [1] sales
## 10 Levels: accounting hr IT management marketing product_mng RandD ... technical
#Moda de salarios
f <- data.frame(table(sal))
moda <- f[which.max(f$Freq),1]
moda
## [1] low
## Levels: high low medium
3.12 Rango Medio
#Rango medio nivel de satisfacción
Medior= (max(NivelSat)+min(NivelSat))/2
Medior
## [1] 0.545
#Rango medio última evaluación
Medior= (max(LastE)+min(LastE))/2
Medior
## [1] 0.68
#Rango medio número de proyectos
Medior= (max(NumProj)+min(NumProj))/2
Medior
## [1] 4.5
#Rango medio promedio de horas mensuales
Medior= (max(Average)+min(Average))/2
Medior
## [1] 203
#Rango medio tiempo en la compañía
Medior= (max(timespend)+min(timespend))/2
Medior
## [1] 6
#Rango medio accidentes laborales
Medior= (max(workAcc)+min(workAcc))/2
Medior
## [1] 0.5
#Rango medio left
Medior= (max(left)+min(left))/2
Medior
## [1] 0.5
#Rango medio promociones en los últimos 5 años
Medior= (max(prom)+min(prom))/2
Medior
## [1] 0.5
3.13 Cuartiles
#Cuartiles nivel de satisfacción
quantile(NivelSat, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 0.44 0.64 0.82
#Cuartiles última evaluación
quantile(LastE, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 0.56 0.72 0.87
#Cuartiles número de proyectos
quantile(NumProj, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 3 4 5
#Cuartiles promedio de horas mensuales
quantile(Average, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 156 200 245
#Cuartiles tiempo en la compañía
quantile(timespend, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 3 3 4
#Cuartiles accidentes laborales
quantile(workAcc, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 0 0 0
#Cuartiles left
quantile(left, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 0 0 0
#Cuartiles promociones en los últimos 5 años
quantile(prom, c(0.25, 0.50, 0.75))
## 25% 50% 75%
## 0 0 0
3.14 Varianza
#Varianza de nivel de satisfacción
variance <- function (NivelSat) sum((NivelSat-mean(NivelSat))^2)/(length(NivelSat)-1)
variance (NivelSat)
## [1] 0.0618172
#Varianza de última evaluación
variance <- function (LastE) sum((LastE-mean(LastE))^2)/(length(LastE)-1)
variance (LastE)
## [1] 0.02929886
#Varianza de número de proyectos
variance <- function (NumProj) sum((NumProj-mean(NumProj))^2)/(length(NumProj)-1)
variance (NumProj)
## [1] 1.519284
#Varianza de promedio de horas mensuales
variance <- function (Average) sum((Average-mean(Average))^2)/(length(Average)-1)
variance (Average)
## [1] 2494.313
#Varianza de tiempo en la compañía
variance <- function (timespend) sum((timespend-mean(timespend))^2)/(length(timespend)-1)
variance (timespend)
## [1] 2.131998
#Varianza de accidentes laborales
variance <- function (workAcc) sum((workAcc-mean(workAcc))^2)/(length(workAcc)-1)
variance (workAcc)
## [1] 0.1237059
#Varianza de left
variance <- function (left) sum((left-mean(left))^2)/(length(left)-1)
variance (left)
## [1] 0.1814113
#Varianza de promoción en los últimos 5 años
variance <- function (prom) sum((prom-mean(prom))^2)/(length(prom)-1)
variance (prom)
## [1] 0.02081714
3.15 Desviación estándar
#DS nivel de satisfacción
desvia = sqrt(variance(NivelSat))
desvia
## [1] 0.2486307
#DS última evaluación
desvia = sqrt(variance(LastE))
desvia
## [1] 0.1711691
#DS número de proyectos
desvia = sqrt(variance(NumProj))
desvia
## [1] 1.232592
#DS promedio de horas mensuales
desvia = sqrt(variance(Average))
desvia
## [1] 49.9431
#DS tiempo en la compañía
desvia = sqrt(variance(timespend))
desvia
## [1] 1.460136
#DS accidentes laborales
desvia = sqrt(variance(workAcc))
desvia
## [1] 0.3517186
#DS left
desvia = sqrt(variance(left))
desvia
## [1] 0.4259241
#DS promociones en los últimos 5 años
desvia = sqrt(variance(prom))
desvia
## [1] 0.1442815
3.16 Rango
#Rango nivel de satisfacción
rango = max(NivelSat)-min(NivelSat)
rango
## [1] 0.91
#Rango última evaluación
rango = max(LastE)-min(LastE)
rango
## [1] 0.64
#Rango número de proyectos
rango = max(NumProj)-min(NumProj)
rango
## [1] 5
#Rango promedio de horas mensuales
rango = max(Average)-min(Average)
rango
## [1] 214
#Rango tiempo en la compañía
rango = max(timespend)-min(timespend)
rango
## [1] 8
#Rango accidentes laborales
rango = max(workAcc)-min(workAcc)
rango
## [1] 1
#Rango left
rango = max(left)-min(left)
rango
## [1] 1
#Rango promociones en los últimos 5 años
rango = max(prom)-min(prom)
rango
## [1] 1
3.17 Rango Intercuartil
#IQR de nivel de satisfacción
IQR(NivelSat)
## [1] 0.38
#IQR de última evaluación
IQR(LastE)
## [1] 0.31
#IQR de número de proyectos
IQR(NumProj)
## [1] 2
#IQR de promedio de horas mensuales
IQR(Average)
## [1] 89
#IQR de tiempo en la compañía
IQR(timespend)
## [1] 1
#IQR de accidentes laborales
IQR(workAcc)
## [1] 0
#IQR de left
IQR(left)
## [1] 0
#IQR de promociones en los últimos 5 años
IQR(prom)
## [1] 0
3.18 Diagrama de caja y extensión
boxplot(NivelSat, horizontal= TRUE, main= "Diagrama de caja y extensión nivel de satisfacción", col="blue")
boxplot(LastE, horizontal= TRUE, main= "Diagrama de caja y extensión última evaluación", col="green")
boxplot(NumProj, horizontal= TRUE, main= "Diagrama de caja y extensión de número de proyectos", col="blue")
boxplot(Average, horizontal= TRUE, main= "Diagrama de caja y extensión de promedio de horas al mes", col="green")
boxplot(timespend, horizontal= TRUE, main= "Diagrama de caja y extensión de tiempo en la compañía", col="blue")
boxplot(workAcc, horizontal= TRUE, main= "Diagrama de caja y extensión de accidentes laborales", col="green")
boxplot(left, horizontal= TRUE, main= "Diagrama de caja y extensión de left", col="blue")
boxplot(prom, horizontal= TRUE, main= "Diagrama de caja y extensión de promociones en los últimos 5 años", col="green")
Conclusiones
Como resultados de aprendizaje queremos destacar al programa RStudio Cloud como una herramienta de gran utilidad a la hora del procesamiento y análisis de un gran número de datos. Debido a que nos ofrece una gran variedad de opciones a la hora de programar, lo que nos ayuda convertir esos datos en información útil de una manera más sencilla.