Análisis exploratorio de datos (AED)

Para este análisis primero, recodificamos las variables que provienen de la base de datos.
Además se crea la columna anemia que se clasifica con base al siguiente criterio:

Hb < 13 g/dl en hombres y < 12 g/dl en mujeres mayores de 18 años

library(readxl)
dbdrortiz <- read_excel("C:/Users/fidel/OneDrive - CINVESTAV/PROYECTO MDatos/TRABAJOS/Dr. Carlos eduardo Ortiz castañeda lunes 22/dbdrortiz.xlsx")
#View(dbdrortiz)


#Se trabajó con los siguientes paquetes
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.7     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(magrittr)
## 
## Attaching package: 'magrittr'
## 
## The following object is masked from 'package:purrr':
## 
##     set_names
## 
## The following object is masked from 'package:tidyr':
## 
##     extract
library(gtsummary)
library(dlookr)
## 
## Attaching package: 'dlookr'
## 
## The following object is masked from 'package:magrittr':
## 
##     extract
## 
## The following object is masked from 'package:tidyr':
## 
##     extract
## 
## The following object is masked from 'package:base':
## 
##     transform
library(gtable)
library(gt)

#El objetivo de este trabajo tiene el de dicotomizar LA VARIABLE CON BASE A LA HB
#creamos la variable anemia


#dbdrortiz <- dbdrortiz %>% mutate(anemia = case_when(
 # SEXO == 0 & HB <12 ~ "Positivo",
  #SEXO == 1 & HB <13 ~ "Positivo",
  #SEXO == 0|1 & HB > 12 | 13 ~ "Negativo"))

#recodificiación de variables

dbdrort<-dbdrortiz <- dbdrortiz %>% mutate(COMORBIDOS=recode(COMORBIDOS, `0`= "NINGUNO", 
                                                    `1` ="HAS",
                                                    `2` ="DM",
                                                    `3` = "DISLIPIDEMIA",
                                                    `4` = "HIPOTIROIDISMO",
                                                    `5` = "OSTEOPOROSIS",
                                                    `6` = "INSUFICIENCIA CARDIACA",
                                                    `7` = "HIPERURICEMIA",
                                                    `9` = "VIH",
                                                    `10` = "ESTENOSIS DE VEJIGA",
                                                    `11` = "HIPERPARATIROIDISMO",
                                                    `1,11` = "HAS + HIPERPARATIROIDISMO",
                                                    `1,2` = "HAS + DM",
                                                    `1,2,9` = "HAS + DM + VIH",
                                                    `1,3` = "HAS + DISLIPIDEMIA",
                                                    `1,4` = "HAS + HIPOTIROIDISMO",
                                                    `1,5` = "HAS + OSTEOPOROSIS",
                                                    `1,6` = "HAS + INSUF CARDIACA",
                                                    `1,7` = "HAS + HIPERURICEMIA",),
                                  ERC=recode(ERC, `1` = "ESTADIO 1",
                                             `2` = "ESTADIO 2",
                                             `3A` = "ESTADIO 3A",
                                             `3B` = "ESTADIO 3B",
                                             `4` = "ESTADIO 4",
                                             `5` = "ESTADIO 5"),
                                  INMUNOSUPRESORES=recode(INMUNOSUPRESORES, `1` = "PREDNISONA",
                                                          `2` = "INHIBIDOR DE CALCINEURINA",
                                                          `3` = "MICOFENOLATO",
                                                          `4` = "MTOR",
                                                          `5` = "AZATIOPRINA",
                                                          `1,2` = "PREDNISONA + INHIB CALCINEURINA",
                                                          `1,2,3` = "PREDNISONA + INHIB CALCINEURINA + MICOFELONATO",
                                                          `1,2,4` = "PREDNISONA + INHIB CALCINEURINA + MTOR",
                                                          `1,2,5` = "PREDNISONA + INHIB CALCINEURINA + AZATIOPRINA",
                                                          `1,3` = "PREDNISONA + MICOFELONATO",
                                                          `1,3,4` = "PREDNISONA + MICOFELONATO + MTOR",
                                                          `1,4,5` = "PREDNISONA + MTOR + AZATIOPRINA",
                                                          `2,3` = "INHIB CALCINEURINA + MICOFENOLATO",
                                                          `3,4` = "MICOFENOLATO + MTOR"),
                                  AEE=recode(AEE, `1` = "ERITROPOYETINA",
                                             `2` = "DARBEPOETINA",
                                             `3` = "MIRCERA"),
                                  TRANSFUSIONES=recode(TRANSFUSIONES, `1` = "SI"),
                                  TIPO=recode(TIPO,`1` = "TRDVR",
                                              `2` = "TRDVNR",
                                              `3` = "TRDC"),
                                  `FUNCION RETARDADA`=recode(`FUNCION RETARDADA`, `1` = "SI"),
                                  SEXO=recode(SEXO, `0`= "FEMENINO",
                                              `1` = "MASCULINO"),
                                  RESISTENCIA=recode(RESISTENCIA, `0`= "No resistencia", `1`= "Resistencia"))
                                  

dbdrort %>% gt()
EXPEDIENTE EDAD PESO SEXO COMORBIDOS ERC CR U ALBUMINA LEUCOS NEU LINF HB INFECCION INMUNOSUPRESORES AEE DOSIS IECA/ARA DOSIS KDIGO RESISTENCIA TRANSFUSIONES TIEMPO TIPO EDAD DON # FRIA CALIENTE FUNCION RETARDADA Episodios de rechazo Etiologia ERC
TOFA700824/1 51 82.0 MASCULINO HAS + DM ESTADIO 3B 2.07 63.30 3.90 9.48 6.22 1.90 17.6 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 30/30DIAS 1 0.18 No resistencia SE DESCONOCE 7 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HAS,DM
GOPE571117/8 48 57.0 FEMENINO HAS + HIPOTIROIDISMO ESTADIO 3B 1.84 67.40 4.30 6.25 4.28 1.25 12.2 NA PREDNISONA + INHIB CALCINEURINA DARBEPOETINA 30/30DIAS 1 0.26 No resistencia SE DESCONOCE 4 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
RAZA780518/2 44 62.0 FEMENINO HIPOTIROIDISMO ESTADIO 2 0.88 27.30 4.30 8.90 5.90 1.78 12.7 NA PREDNISONA + INHIB CALCINEURINA + AZATIOPRINA DARBEPOETINA 30/30DIAS 0 0.24 No resistencia SE DESCONOCE 17 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
SASM800211/9 42 57.0 FEMENINO NINGUNO ESTADIO 4 2.70 94.50 4.30 10.06 6.10 3.10 12.1 NA PREDNISONA + INHIB CALCINEURINA + MTOR DARBEPOETINA 40/30 DIAS 1 0.35 No resistencia SE DESCONOCE 16 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
GOMJ520219/8 37 70.0 FEMENINO NINGUNO ESTADIO 3B 1.80 41.30 4.50 4.40 2.80 1.15 12.7 NA MICOFENOLATO + MTOR DARBEPOETINA 30/15 DIAS 0 0.42 No resistencia SE DESCONOCE 12 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
PARS770811/2 44 80.0 FEMENINO NINGUNO ESTADIO 3B 1.81 77.60 3.70 5.10 2.60 1.18 9.9 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 40/7DIAS 1 1.00 Resistencia SI 9 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 GLOMERULONEFRITIS POSTESTREPTOCOCICA
GUHM680418/2 53 66.0 FEMENINO HAS + OSTEOPOROSIS ESTADIO 4 2.80 71.60 4.50 7.57 4.33 2.40 10.6 NA MICOFENOLATO + MTOR DARBEPOETINA 40/7DIAS 1 1.20 Resistencia SI 14 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 PREECLAMPSIA
PIRR530714/9 68 51.0 FEMENINO HAS ESTADIO 2 0.86 34.40 4.00 3.00 2.01 0.31 8.8 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 40/7DIAS 1 1.50 Resistencia SI 1 TRDC SE DESCONOCE 1 6.9444444444444434E-2 30 SI 0 GEFYS
FOTM600928/9 61 53.0 FEMENINO HAS + DM ESTADIO 3B 1.88 44.00 3.80 4.80 2.00 1.73 11.4 NA INHIB CALCINEURINA + MICOFENOLATO DARBEPOETINA 60/7DIAS 1 2.20 No resistencia SI 9 TRDVNR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HAS,DM
AEPP 540524/7 26 78.0 MASCULINO NINGUNO ESTADIO 3B 3.22 163.90 4.50 6.30 4.90 0.69 12.4 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 30/7DIAS 0 0.76 No resistencia SE DESCONOCE 1 TRDVR SE DESCONOCE 2 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 GEFYS
MACP810228/ 42 65.0 MASCULINO NINGUNO ESTADIO 3B 2.50 87.00 3.80 4.90 3.30 0.86 9.6 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 40/7DIAS 1 1.20 Resistencia SI 3 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
SEHG630729/2 58 48.5 FEMENINO HAS ESTADIO 3A 1.20 71.20 2.80 6.90 6.07 0.32 7.0 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 40/7DIAS 0 1.60 Resistencia SI 5 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HAS
SAAA590522/7 29 66.0 MASCULINO NINGUNO ESTADIO 3A 1.70 40.40 4.50 8.60 6.90 1.20 12.3 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 30/30DIAS 1 0.90 No resistencia SE DESCONOCE 11 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
SEGN701015/3 52 68.0 FEMENINO HAS ESTADIO 5 3.70 77.60 3.30 9.40 6.80 1.80 11.5 NA PREDNISONA + INHIB CALCINEURINA + AZATIOPRINA DARBEPOETINA 30/7DIAS 1 0.88 No resistencia SE DESCONOCE 21 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 HAS
GASF650121/7 33 50.0 FEMENINO HAS + INSUF CARDIACA ESTADIO 5 11.50 176.00 3.20 6.80 4.90 1.60 7.6 NA PREDNISONA MIRCERA 75/7DIAS 1 6.00 Resistencia SI 10 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SI 0 VEJIGA NEUROGENICA
GAHR790316/2 43 53.0 FEMENINO NINGUNO ESTADIO 2 1.05 17.30 4.60 4.70 2.50 1.50 11.2 NA MICOFENOLATO + MTOR DARBEPOETINA 30/30DIAS 0 1.10 No resistencia SE DESCONOCE 12 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
GUMJ480709/1 73 78.0 MASCULINO NINGUNO ESTADIO 3B 1.80 62.00 4.20 4.60 2.60 1.20 12.5 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO ERITROPOYETINA 4000/30DIAS 0 51.00 No resistencia SE DESCONOCE 3 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 AMILOIDOSIS
FABI770502/3 37 64.0 FEMENINO NINGUNO ESTADIO 3A 1.20 33.00 4.40 5.80 4.10 0.99 11.0 NA INHIB CALCINEURINA + MICOFENOLATO DARBEPOETINA 30/30DIAS 0 0.23 No resistencia SE DESCONOCE 8 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 DESCONOCE
TANG730922/2 48 62.0 FEMENINO HAS + HIPERURICEMIA ESTADIO 4 3.00 66.00 3.60 3.40 1.70 0.95 7.8 NA PREDNISONA + INHIB CALCINEURINA DARBEPOETINA 40/7DIAS 1 1.20 Resistencia SI 24 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 HIPOPLASIA RENAL
TAMF521218/8 29 69.0 FEMENINO NINGUNO ESTADIO 4 3.50 100.00 3.80 8.70 4.80 3.50 9.3 NA PREDNISONA + MTOR + AZATIOPRINA ERITROPOYETINA 6000/7DIAS 1 86.00 No resistencia SI 5 TRDVNR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 GLOMERULONEFRITIS NO ESPECIFICADA
LEPI670921/7 23 60.0 MASCULINO NINGUNO ESTADIO 3B 2.60 96.00 4.27 8.10 6.10 1.90 12.6 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 40/7DIAS 0 1.30 No resistencia SE DESCONOCE 16 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
MEGG940105/1 22 72.0 MASCULINO NINGUNO ESTADIO 3B 2.20 62.00 4.20 6.30 3.40 1.90 12.3 NA PREDNISONA + MTOR + AZATIOPRINA DARBEPOETINA 30/30DIAS 1 0.20 No resistencia SE DESCONOCE 10 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
DANR760117/2 46 56.0 FEMENINO HIPERURICEMIA ESTADIO 3B 1.60 77.00 4.10 4.30 3.40 0.38 9.1 NA PREDNISONA + MTOR + AZATIOPRINA DARBEPOETINA 40/7DIAS 0 1.40 Resistencia SI 12 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 ERPAD
MESF680104/ 51 78.0 MASCULINO NINGUNO ESTADIO 4 4.10 94.00 3.70 5.50 5.10 1.06 11.8 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 40/15DIAS 0 0.50 No resistencia SE DESCONOCE 7 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
MATA630110/7 28 69.5 MASCULINO NINGUNO ESTADIO 3B 2.40 45.80 3.60 6.30 3.20 2.50 12.5 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 40/15DIAS 0 0.57 No resistencia SE DESCONOCE 9 TRDVR SE DESCONOCE 2 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
MOQL641209/8 29 56.0 FEMENINO NINGUNO ESTADIO 2 0.90 15.00 4.30 5.00 2.90 1.60 12.1 NA MICOFENOLATO + MTOR DARBEPOETINA 30/15DIAS 0 0.53 No resistencia SE DESCONOCE 11 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
MEOE640215/3 49 57.0 FEMENINO HIPERURICEMIA ESTADIO 4 2.70 94.00 3.20 11.90 10.20 0.79 11.2 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 40/15DIAS 0 0.70 No resistencia SE DESCONOCE 4 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 LITIASIS REAL
GAHR790316/2 43 58.0 FEMENINO NINGUNO ESTADIO 2 1.05 17.33 4.60 4.70 2.50 1.60 13.2 NA MICOFENOLATO + MTOR DARBEPOETINA 30/15DIAS 0 0.51 No resistencia SE DESCONOCE 12 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
HUBL620315/2 60 68.0 FEMENINO HAS + DM ESTADIO 4 3.10 118.00 3.70 6.68 4.80 0.97 8.0 NA PREDNISONA + MICOFELONATO MIRCERA 50/15DIAS 1 1.40 Resistencia SI 26 TRDVNR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
VABH670604/8 30 50.0 FEMENINO HAS ESTADIO 2 1.20 57.00 4.40 5.40 3.80 1.30 11.3 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 30/30DIAS 0 0.30 No resistencia SE DESCONOCE 14 TRDVR 47 AÑOS 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HAS
AICF461004/8 31 53.0 FEMENINO HAS ESTADIO 2 1.00 44.00 4.30 4.70 7.50 1.78 11.5 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 30/15DIAS 1 0.56 No resistencia SE DESCONOCE 22 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
CUMF731231/1 48 68.0 MASCULINO HAS + DM + VIH ESTADIO 3B 1.60 64.00 4.20 9.70 7.40 1.50 10.0 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 40/30DIAS 0 0.29 No resistencia SI 14 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
EISM710304/ 27 59.0 FEMENINO HAS ESTADIO 3B 1.46 68.00 3.90 10.50 7.80 1.30 11.7 NA PREDNISONA + INHIB CALCINEURINA + AZATIOPRINA MIRCERA 75/15DIAS 0 2.50 No resistencia SI 5 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 GLOMERULONEFRITIS POSTESTREPTOCOCICA
GAFA651229/8 32 50.0 FEMENINO HAS ESTADIO 5 9.70 170.00 4.50 6.10 3.50 1.90 5.0 NA PREDNISONA + MICOFELONATO DARBEPOETINA 40/7DIAS 1 1.60 Resistencia SE DESCONOCE 14 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 GLOMERULONEFRITIS ASOCIADA A INFECCION
GAAJ761224/9 45 59.0 FEMENINO HAS ESTADIO 2 0.85 34.00 4.00 5.10 2.40 2.10 13.8 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 40/15DIAS 0 0.67 No resistencia SE DESCONOCE 11 TRDC 17 AÑOS 2 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 GLOMERULONEFRITIS ASOCIADA A INFECCION
GACC810218/1 41 82.0 MASCULINO HAS ESTADIO 5 4.70 94.00 3.80 7.30 5.60 1.90 10.6 NA PREDNISONA + MTOR + AZATIOPRINA DARBEPOETINA 80/7DIAS 1 1.90 Resistencia SI 26 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 HIPOPLASIA RENAL
GAHR721122/2 49 78.0 MASCULINO HAS + DM ESTADIO 1 0.87 37.40 3.70 7.00 4.50 1.70 15.1 NA PREDNISONA + MTOR + AZATIOPRINA DARBEPOETINA 30/15DIAS 0 0.38 No resistencia SI 18 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
FOEA551118/9 65 67.0 FEMENINO NINGUNO ESTADIO 3B 1.30 32.10 4.00 5.30 3.50 1.25 13.0 NA PREDNISONA + MTOR + AZATIOPRINA DARBEPOETINA 40/15DIAS 0 0.59 No resistencia SE DESCONOCE 16 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
MAOJ730171/5 48 69.0 FEMENINO NINGUNO ESTADIO 2 1.00 33.10 4.20 9.20 7.60 0.87 12.4 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 30/15DIAS 0 0.43 No resistencia SE DESCONOCE 7 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
MAMH720913/1 49 78.0 MASCULINO HAS ESTADIO 2 1.09 49.80 4.50 7.90 6.11 1.01 12.8 NA INHIB CALCINEURINA + MICOFENOLATO DARBEPOETINA 40/15DIAS 1 0.51 No resistencia SE DESCONOCE 5 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
LAEA551215/8 35 57.0 FEMENINO HAS ESTADIO 3B 2.05 43.00 3.90 7.80 6.00 1.48 14.5 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 30/15DIAS 0 0.52 No resistencia SE DESCONOCE 17 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
MEJL850831/7 18 52.0 MASCULINO ESTENOSIS DE VEJIGA ESTADIO 4 3.20 102.00 4.10 5.30 3.90 0.78 10.2 NA PREDNISONA + MICOFELONATO DARBEPOETINA 30/7DIAS 1 1.10 Resistencia SE DESCONOCE 3 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 AGENESIA RENAL
SABJ721023/1 49 47.0 MASCULINO NINGUNO ESTADIO 3B 1.90 83.60 4.10 6.50 4.60 1.30 10.2 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 30/7DIAS 1 0.63 No resistencia SI 5 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 DESCONOCE
PERS790829/2 42 78.0 FEMENINO NINGUNO ESTADIO 4 2.16 65.00 4.20 6.70 4.40 1.80 12.1 NA PREDNISONA + MTOR + AZATIOPRINA DARBEPOETINA 40/30DIAS 0 0.25 No resistencia SI 20 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 DESCONOCE
QUPR830621/1 39 90.0 MASCULINO HAS + HIPERPARATIROIDISMO ESTADIO 5 9.70 159.40 4.00 12.60 8.50 2.20 8.4 1 PREDNISONA MIRCERA 75/15DIAS 1 1.60 Resistencia SI 20 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 HAS
SEGJ561119/3 50 57.0 FEMENINO NINGUNO ESTADIO 1 0.74 32.10 4.40 8.90 4.50 3.20 10.8 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 30/15DIAS 0 0.52 No resistencia SE DESCONOCE 22 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 DESCONOCE
PESL740912/ 47 56.0 FEMENINO HAS ESTADIO 3B 1.90 45.30 4.00 4.40 2.60 1.04 13.1 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 40/15DIAS 1 0.71 No resistencia SE DESCONOCE 5 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 DESCONOCE
GAPM650628/ 29 58.0 MASCULINO HAS ESTADIO 4 2.60 60.35 4.70 3.20 1.82 1.80 13.1 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 30/15DIAS 0 0.51 No resistencia SE DESCONOCE 1 TRDVR SE DESCONOCE 2 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 HIPOPLASIA RENAL
VACE631030/7 27 73.5 MASCULINO HAS + DISLIPIDEMIA ESTADIO 4 2.90 93.90 3.90 8.10 68.90 1.38 14.2 NA PREDNISONA + MICOFELONATO + MTOR DARBEPOETINA 30/15DIAS 1 0.41 No resistencia SE DESCONOCE 13 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 1 AGENESIA RENAL
GIHS680418/2 53 66.0 FEMENINO HAS + OSTEOPOROSIS ESTADIO 4 2.80 71.60 4.50 7.57 4.33 2.40 9.6 NA MICOFENOLATO + MTOR DARBEPOETINA 40/7DIAS 1 1.20 No resistencia SI 14 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 PREECLAMPSIA
PIAR530714/9 68 51.0 FEMENINO HAS ESTADIO 2 0.86 34.40 4.00 3.00 2.01 0.31 10.8 NA PREDNISONA + INHIB CALCINEURINA + MICOFELONATO DARBEPOETINA 40/7DIAS 1 1.50 No resistencia SI 1 TRDC SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 GEFYS
DITR760117/2 46 56.0 FEMENINO HIPERURICEMIA ESTADIO 3B 1.60 77.00 4.10 4.30 3.40 0.38 10.1 NA PREDNISONA + MTOR + AZATIOPRINA DARBEPOETINA 40/7DIAS 0 1.40 No resistencia SI 12 TRDVR SE DESCONOCE 1 SE DESCONOCE SE DESCONOCE SE DESCONOCE 0 ERPAD
#ACONTINUACIÓN SE MUESTRA LA BASE DE DATO:

Reporte de variables en total: Frecuencias y conteos (En total) de las variables que se someterán a análisis estadístico

dbdrort %>% select(EDAD, PESO, SEXO, COMORBIDOS, ERC, CR, U, ALBUMINA, LEUCOS,  
                   NEU, LINF, HB, INFECCION, INMUNOSUPRESORES, AEE,
                   DOSIS, `IECA/ARA`, `DOSIS KDIGO`, RESISTENCIA,
                   TRANSFUSIONES, TIEMPO, TIPO, `EDAD DON`, `#`, FRIA, CALIENTE,
                   `FUNCION RETARDADA`, `Episodios de rechazo`, `Etiologia ERC`) %>% tbl_summary()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic N = 521
EDAD 44 (32, 49)
PESO 62 (56, 70)
SEXO
FEMENINO 34 (65%)
MASCULINO 18 (35%)
COMORBIDOS
ESTENOSIS DE VEJIGA 1 (1.9%)
HAS 14 (27%)
HAS + DISLIPIDEMIA 1 (1.9%)
HAS + DM 4 (7.7%)
HAS + DM + VIH 1 (1.9%)
HAS + HIPERPARATIROIDISMO 1 (1.9%)
HAS + HIPERURICEMIA 1 (1.9%)
HAS + HIPOTIROIDISMO 1 (1.9%)
HAS + INSUF CARDIACA 1 (1.9%)
HAS + OSTEOPOROSIS 2 (3.8%)
HIPERURICEMIA 3 (5.8%)
HIPOTIROIDISMO 1 (1.9%)
NINGUNO 21 (40%)
ERC
ESTADIO 1 2 (3.8%)
ESTADIO 2 11 (21%)
ESTADIO 3A 3 (5.8%)
ESTADIO 3B 19 (37%)
ESTADIO 4 12 (23%)
ESTADIO 5 5 (9.6%)
CR 1.89 (1.20, 2.80)
U 64 (41, 89)
ALBUMINA 4.10 (3.80, 4.32)
LEUCOS 6.30 (4.88, 8.10)
NEU 4.36 (3.13, 6.08)
LINF 1.43 (1.01, 1.83)
HB 11.50 (10.07, 12.53)
INFECCION 1 (100%)
Unknown 51
INMUNOSUPRESORES
INHIB CALCINEURINA + MICOFENOLATO 3 (5.8%)
MICOFENOLATO + MTOR 6 (12%)
PREDNISONA 2 (3.8%)
PREDNISONA + INHIB CALCINEURINA 2 (3.8%)
PREDNISONA + INHIB CALCINEURINA + AZATIOPRINA 3 (5.8%)
PREDNISONA + INHIB CALCINEURINA + MICOFELONATO 15 (29%)
PREDNISONA + INHIB CALCINEURINA + MTOR 1 (1.9%)
PREDNISONA + MICOFELONATO 3 (5.8%)
PREDNISONA + MICOFELONATO + MTOR 9 (17%)
PREDNISONA + MTOR + AZATIOPRINA 8 (15%)
AEE
DARBEPOETINA 46 (88%)
ERITROPOYETINA 2 (3.8%)
MIRCERA 4 (7.7%)
DOSIS
30/15 DIAS 1 (1.9%)
30/15DIAS 9 (17%)
30/30DIAS 8 (15%)
30/7DIAS 4 (7.7%)
40/15DIAS 7 (13%)
40/30 DIAS 1 (1.9%)
40/30DIAS 2 (3.8%)
40/7DIAS 12 (23%)
4000/30DIAS 1 (1.9%)
50/15DIAS 1 (1.9%)
60/7DIAS 1 (1.9%)
6000/7DIAS 1 (1.9%)
75/15DIAS 2 (3.8%)
75/7DIAS 1 (1.9%)
80/7DIAS 1 (1.9%)
IECA/ARA 26 (50%)
DOSIS KDIGO 0.71 (0.48, 1.40)
RESISTENCIA
No resistencia 39 (75%)
Resistencia 13 (25%)
TRANSFUSIONES
SE DESCONOCE 31 (60%)
SI 21 (40%)
TIEMPO 11 (5, 16)
TIPO
TRDC 16 (31%)
TRDVNR 3 (5.8%)
TRDVR 33 (63%)
EDAD DON
17 AÑOS 1 (1.9%)
47 AÑOS 1 (1.9%)
SE DESCONOCE 50 (96%)
#
1 48 (92%)
2 4 (7.7%)
FRIA
6.9444444444444434E-2 1 (1.9%)
SE DESCONOCE 51 (98%)
CALIENTE
30 1 (1.9%)
SE DESCONOCE 51 (98%)
FUNCION RETARDADA
SE DESCONOCE 50 (96%)
SI 2 (3.8%)
Episodios de rechazo 10 (19%)
Etiologia ERC
AGENESIA RENAL 2 (3.8%)
AMILOIDOSIS 1 (1.9%)
DESCONOCE 19 (37%)
ERPAD 2 (3.8%)
GEFYS 3 (5.8%)
GLOMERULONEFRITIS ASOCIADA A INFECCION 2 (3.8%)
GLOMERULONEFRITIS NO ESPECIFICADA 1 (1.9%)
GLOMERULONEFRITIS POSTESTREPTOCOCICA 2 (3.8%)
HAS 4 (7.7%)
HAS,DM 2 (3.8%)
HIPOPLASIA RENAL 10 (19%)
LITIASIS REAL 1 (1.9%)
PREECLAMPSIA 2 (3.8%)
VEJIGA NEUROGENICA 1 (1.9%)
1 Median (IQR); n (%)

Análisis de variables demográficas

Distribución edad y sexo

#EDA

#graficas 
#DISTRIBUCIÓN EDAD y SEXO TOTAL + PESO en un boxplot

#ANTES HACEMOS DIAGNÓSTICO DE LA DATA:
library(dlookr)
#normalitytest

dbdrort %>% group_by(SEXO) %>%   plot_normality(EDAD)

dbdrort %>% group_by(SEXO) %>%  normality(EDAD)
## # A tibble: 2 × 5
##   variable SEXO      statistic p_value sample
##   <chr>    <chr>         <dbl>   <dbl>  <dbl>
## 1 EDAD     FEMENINO      0.961   0.253     34
## 2 EDAD     MASCULINO     0.920   0.131     18
#statistics: median, iqr and p value wilcoxon test

dbdrort %>% select(EDAD,SEXO) %>% tbl_summary(by=SEXO) %>% add_p()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic FEMENINO, N = 341 MASCULINO, N = 181 p-value2
EDAD 46 (37, 52) 40 (27, 49) 0.073
1 Median (IQR)
2 Wilcoxon rank sum test
library(ggpubr)
# Basic histogram plot with mean line and marginal rug

gghistogram(dbdrort, x = "EDAD", bins = 30, 
            fill = "#0073C2FF", color = "#0073C2FF",
            add = "median", rug = TRUE)
## Warning: geom_vline(): Ignoring `mapping` because `xintercept` was provided.
## Warning: geom_vline(): Ignoring `data` because `xintercept` was provided.

# Change outline and fill colors by groups ("SEXO")
# Use a custom palette
fig1histograma<-gghistogram(dbdrort, x = "EDAD", bins = 30,
            add = "mean", rug = TRUE,
            color = "SEXO", fill = "SEXO",
            palette = c("#0073C2FF", "#FC4E07"))


fig1histograma

La edad, de pendiendo de sexo se distribuye cumpliendo el supuesto de normalidad (p > 0.05)

Con base a la dicotomización para la variable anemia

se encontró lo siguiente:

#EDA

#FIGURA RESISTENCIA AEE

RESISTENCIA <- dbdrort %>%
  group_by(RESISTENCIA) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))

ggplot(RESISTENCIA, aes(x = RESISTENCIA, y = prop, fill= RESISTENCIA)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = prop), vjust = -0.3, fontface=2, size= 6) + 
  theme_pubclean() + ylab("%") + xlab ("RESISTENCIA")+
  theme(text = element_text(size = 16, face="bold"), axis.text = element_text(size = 16, face="bold"),
        legend.text = element_text(size = 12),)+ scale_fill_brewer(palette="Dark2")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))+theme(legend.position = "none")

dbdrort %>% select(RESISTENCIA) %>% tbl_summary()
Characteristic N = 521
RESISTENCIA
No resistencia 39 (75%)
Resistencia 13 (25%)
1 n (%)

Tabla con todas las variables y RESISTENCIA A AEE

Esta tabla incluye pruebas estadísticas

## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PESO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'CR':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'U':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ALBUMINA':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LEUCOS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'NEU':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LINF':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'HB':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'INFECCION', p-value omitted:
## Error in stats::fisher.test(c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, : 'x' and 'y' must have at least 2 levels
## Warning for variable 'DOSIS KDIGO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TIEMPO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
Characteristic No resistencia, N = 391 Resistencia, N = 131 p-value2
EDAD 44 (30, 49) 44 (39, 53) 0.6
PESO 62 (57, 70) 62 (51, 68) 0.5
SEXO >0.9
FEMENINO 25 (64%) 9 (69%)
MASCULINO 14 (36%) 4 (31%)
COMORBIDOS 0.068
ESTENOSIS DE VEJIGA 0 (0%) 1 (7.7%)
HAS 10 (26%) 4 (31%)
HAS + DISLIPIDEMIA 1 (2.6%) 0 (0%)
HAS + DM 3 (7.7%) 1 (7.7%)
HAS + DM + VIH 1 (2.6%) 0 (0%)
HAS + HIPERPARATIROIDISMO 0 (0%) 1 (7.7%)
HAS + HIPERURICEMIA 0 (0%) 1 (7.7%)
HAS + HIPOTIROIDISMO 1 (2.6%) 0 (0%)
HAS + INSUF CARDIACA 0 (0%) 1 (7.7%)
HAS + OSTEOPOROSIS 1 (2.6%) 1 (7.7%)
HIPERURICEMIA 2 (5.1%) 1 (7.7%)
HIPOTIROIDISMO 1 (2.6%) 0 (0%)
NINGUNO 19 (49%) 2 (15%)
ERC 0.046
ESTADIO 1 2 (5.1%) 0 (0%)
ESTADIO 2 10 (26%) 1 (7.7%)
ESTADIO 3A 2 (5.1%) 1 (7.7%)
ESTADIO 3B 16 (41%) 3 (23%)
ESTADIO 4 8 (21%) 4 (31%)
ESTADIO 5 1 (2.6%) 4 (31%)
CR 1.80 (1.07, 2.50) 3.00 (1.81, 4.70) 0.011
U 57 (36, 74) 87 (72, 118) <0.001
ALBUMINA 4.20 (3.90, 4.40) 3.80 (3.70, 4.10) 0.026
LEUCOS 6.30 (4.90, 8.65) 6.10 (4.90, 6.90) 0.3
NEU 4.50 (3.05, 6.11) 3.90 (3.30, 4.90) 0.4
LINF 1.50 (1.18, 1.80) 0.97 (0.78, 1.90) 0.14
HB 12.20 (11.25, 12.75) 8.80 (7.80, 9.90) <0.001
INFECCION 0 (NA%) 1 (100%)
Unknown 39 12
INMUNOSUPRESORES 0.027
INHIB CALCINEURINA + MICOFENOLATO 3 (7.7%) 0 (0%)
MICOFENOLATO + MTOR 5 (13%) 1 (7.7%)
PREDNISONA 0 (0%) 2 (15%)
PREDNISONA + INHIB CALCINEURINA 1 (2.6%) 1 (7.7%)
PREDNISONA + INHIB CALCINEURINA + AZATIOPRINA 3 (7.7%) 0 (0%)
PREDNISONA + INHIB CALCINEURINA + MICOFELONATO 13 (33%) 2 (15%)
PREDNISONA + INHIB CALCINEURINA + MTOR 1 (2.6%) 0 (0%)
PREDNISONA + MICOFELONATO 0 (0%) 3 (23%)
PREDNISONA + MICOFELONATO + MTOR 7 (18%) 2 (15%)
PREDNISONA + MTOR + AZATIOPRINA 6 (15%) 2 (15%)
AEE 0.10
DARBEPOETINA 36 (92%) 10 (77%)
ERITROPOYETINA 2 (5.1%) 0 (0%)
MIRCERA 1 (2.6%) 3 (23%)
DOSIS <0.001
30/15 DIAS 1 (2.6%) 0 (0%)
30/15DIAS 9 (23%) 0 (0%)
30/30DIAS 8 (21%) 0 (0%)
30/7DIAS 3 (7.7%) 1 (7.7%)
40/15DIAS 7 (18%) 0 (0%)
40/30 DIAS 1 (2.6%) 0 (0%)
40/30DIAS 2 (5.1%) 0 (0%)
40/7DIAS 4 (10%) 8 (62%)
4000/30DIAS 1 (2.6%) 0 (0%)
50/15DIAS 0 (0%) 1 (7.7%)
60/7DIAS 1 (2.6%) 0 (0%)
6000/7DIAS 1 (2.6%) 0 (0%)
75/15DIAS 1 (2.6%) 1 (7.7%)
75/7DIAS 0 (0%) 1 (7.7%)
80/7DIAS 0 (0%) 1 (7.7%)
IECA/ARA 15 (38%) 11 (85%) 0.004
DOSIS KDIGO 0.53 (0.40, 0.89) 1.40 (1.20, 1.60) <0.001
TRANSFUSIONES <0.001
SE DESCONOCE 29 (74%) 2 (15%)
SI 10 (26%) 11 (85%)
TIEMPO 11 (5, 15) 12 (5, 20) 0.6
TIPO >0.9
TRDC 12 (31%) 4 (31%)
TRDVNR 2 (5.1%) 1 (7.7%)
TRDVR 25 (64%) 8 (62%)
EDAD DON >0.9
17 AÑOS 1 (2.6%) 0 (0%)
47 AÑOS 1 (2.6%) 0 (0%)
SE DESCONOCE 37 (95%) 13 (100%)
# 0.6
1 35 (90%) 13 (100%)
2 4 (10%) 0 (0%)
FRIA 0.3
6.9444444444444434E-2 0 (0%) 1 (7.7%)
SE DESCONOCE 39 (100%) 12 (92%)
CALIENTE 0.3
30 0 (0%) 1 (7.7%)
SE DESCONOCE 39 (100%) 12 (92%)
FUNCION RETARDADA 0.059
SE DESCONOCE 39 (100%) 11 (85%)
SI 0 (0%) 2 (15%)
Episodios de rechazo 7 (18%) 3 (23%) 0.7
Etiologia ERC 0.11
AGENESIA RENAL 1 (2.6%) 1 (7.7%)
AMILOIDOSIS 1 (2.6%) 0 (0%)
DESCONOCE 18 (46%) 1 (7.7%)
ERPAD 1 (2.6%) 1 (7.7%)
GEFYS 2 (5.1%) 1 (7.7%)
GLOMERULONEFRITIS ASOCIADA A INFECCION 1 (2.6%) 1 (7.7%)
GLOMERULONEFRITIS NO ESPECIFICADA 1 (2.6%) 0 (0%)
GLOMERULONEFRITIS POSTESTREPTOCOCICA 1 (2.6%) 1 (7.7%)
HAS 2 (5.1%) 2 (15%)
HAS,DM 2 (5.1%) 0 (0%)
HIPOPLASIA RENAL 7 (18%) 3 (23%)
LITIASIS REAL 1 (2.6%) 0 (0%)
PREECLAMPSIA 1 (2.6%) 1 (7.7%)
VEJIGA NEUROGENICA 0 (0%) 1 (7.7%)
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test

Total de transplantados con anemia y uso de AEE

Objetivo 1

dbRESISAEE <- dbdrort %>%
  group_by(RESISTENCIA,AEE) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))
## `summarise()` has grouped output by 'RESISTENCIA'. You can override using the
## `.groups` argument.
dbRESISAEE
## # A tibble: 5 × 4
## # Groups:   RESISTENCIA [2]
##   RESISTENCIA    AEE            counts  prop
##   <chr>          <chr>           <int> <dbl>
## 1 No resistencia DARBEPOETINA       36  92.3
## 2 No resistencia ERITROPOYETINA      2   5.1
## 3 No resistencia MIRCERA             1   2.6
## 4 Resistencia    DARBEPOETINA       10  76.9
## 5 Resistencia    MIRCERA             3  23.1
dbdrort %>% select(RESISTENCIA, AEE) %>% tbl_summary(by=RESISTENCIA) %>% add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic No resistencia, N = 391 Resistencia, N = 131 p-value2
AEE 0.10
DARBEPOETINA 36 (92%) 10 (77%)
ERITROPOYETINA 2 (5.1%) 0 (0%)
MIRCERA 1 (2.6%) 3 (23%)
1 n (%)
2 Fisher's exact test
#Representación gráfica

library(dplyr) 
library(ggpubr)
theme_set(theme_pubclean())

dbRESIAEE <- dbRESISAEE %>%
  arrange(AEE, desc(RESISTENCIA)) %>%
  mutate(lab_ypos = cumsum(counts) - 0.5 * counts) 
head(dbRESIAEE, 4)
## # A tibble: 4 × 5
## # Groups:   RESISTENCIA [2]
##   RESISTENCIA    AEE            counts  prop lab_ypos
##   <chr>          <chr>           <int> <dbl>    <dbl>
## 1 Resistencia    DARBEPOETINA       10  76.9      5  
## 2 No resistencia DARBEPOETINA       36  92.3     18  
## 3 No resistencia ERITROPOYETINA      2   5.1     37  
## 4 Resistencia    MIRCERA             3  23.1     11.5
# Create stacked bar graphs with labels
ggplot(dbRESIAEE, aes(x = AEE, y = counts)) +
  geom_bar(aes(color = RESISTENCIA, fill = RESISTENCIA), stat = "identity")+ 
  scale_color_manual(values = c("#0073C2FF", "#EFC000FF"))+
  scale_fill_manual(values = c("#0073C2FF", "#EFC000FF")) 

Objetivo 2: Describir las características bioquímicas en RTR con anemia y resistencia a AEE

#prevalencia de resistencia a AEE en los pacientes con anemia

prevresistencia<-dbdrort %>% select(AEE,CR,U,
                             ALBUMINA, LEUCOS, NEU,
                             LINF, HB, RESISTENCIA)

RESISTENCIA <- prevresistencia %>%
  group_by(RESISTENCIA) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))

ggplot(RESISTENCIA, aes(x = RESISTENCIA, y = prop, fill= RESISTENCIA)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = prop), vjust = -0.3, fontface=2, size= 6) + 
  theme_pubclean() + ylab("%") + xlab ("RESISTENCIA A AEE")+
  theme(text = element_text(size = 16, face="bold"), axis.text = element_text(size = 16, face="bold"),
        legend.text = element_text(size = 12),)+ scale_fill_brewer(palette="Dark2")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))+theme(legend.position = "none")

#PREVALENCIA RESISTENCIA Y ANEMIA
prevresistenciaanemia<-dbdrort %>% select(RESISTENCIA)

prevresistenciaanemia %>% tbl_summary()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic N = 521
RESISTENCIA
No resistencia 39 (75%)
Resistencia 13 (25%)
1 n (%)
dbanemiaRESISTENCIA <- prevresistenciaanemia %>%
  group_by(RESISTENCIA) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))

dbanemiaRESISTENCIA
## # A tibble: 2 × 3
##   RESISTENCIA    counts  prop
##   <chr>           <int> <dbl>
## 1 No resistencia     39    75
## 2 Resistencia        13    25
#Representación gráfica

library(dplyr) 
library(ggpubr)
theme_set(theme_pubclean())

dbanemiaRESIS <- dbanemiaRESISTENCIA %>%
  arrange(RESISTENCIA) %>%
  mutate(lab_ypos = cumsum(counts) - 0.5 * counts) 
head(dbanemiaRESISTENCIA, 4)
## # A tibble: 2 × 3
##   RESISTENCIA    counts  prop
##   <chr>           <int> <dbl>
## 1 No resistencia     39    75
## 2 Resistencia        13    25
# Create stacked bar graphs with labels
ggplot(dbanemiaRESIS, aes(x = RESISTENCIA, y = counts)) +
  geom_bar(aes(color = RESISTENCIA, fill = RESISTENCIA), stat = "identity")+ 
  scale_color_manual(values = c("#0073C2FF", "#EFC000FF"))+
  scale_fill_manual(values = c("#0073C2FF", "#EFC000FF"))

#Filtrar anemia y resistentes a AEE (son 13 pacientes)

dbdrort %>% select(AEE,CR,U,
                             ALBUMINA, LEUCOS, NEU,
                             LINF, HB, RESISTENCIA) %>% tbl_summary(by= RESISTENCIA)
Characteristic No resistencia, N = 391 Resistencia, N = 131
AEE
DARBEPOETINA 36 (92%) 10 (77%)
ERITROPOYETINA 2 (5.1%) 0 (0%)
MIRCERA 1 (2.6%) 3 (23%)
CR 1.80 (1.07, 2.50) 3.00 (1.81, 4.70)
U 57 (36, 74) 87 (72, 118)
ALBUMINA 4.20 (3.90, 4.40) 3.80 (3.70, 4.10)
LEUCOS 6.30 (4.90, 8.65) 6.10 (4.90, 6.90)
NEU 4.50 (3.05, 6.11) 3.90 (3.30, 4.90)
LINF 1.50 (1.18, 1.80) 0.97 (0.78, 1.90)
HB 12.20 (11.25, 12.75) 8.80 (7.80, 9.90)
1 n (%); Median (IQR)
#hacer graficos de boxplot con su respectiva significancia estadistica
library(ggpubr)

#CR
CRbp <- dbdrort %>% select(CR, RESISTENCIA) %>% mutate(RESISTENCIA = factor(RESISTENCIA, levels=c("No resistencia", "Resistencia")))

CRplot <- ggboxplot(CRbp, x = "RESISTENCIA", y = "CR",
          color = "RESISTENCIA", palette = "Paired",
          add = "jitter")+ stat_compare_means()+ theme(legend.position = "none")+ xlab("")

#U

Ubp <-dbdrort %>% select(U, RESISTENCIA) %>% mutate(RESISTENCIA = factor(RESISTENCIA, levels=c("No resistencia", "Resistencia")))

Uplot <- ggboxplot(Ubp, x = "RESISTENCIA", y = "U",
          color = "RESISTENCIA", palette = "Paired",
          add = "jitter")+ stat_compare_means()+ theme(legend.position = "none")+ xlab("")

#ALBUMINA

ALBbp<-dbdrort %>% select(ALBUMINA, RESISTENCIA) %>% mutate(RESISTENCIA = factor(RESISTENCIA, levels=c("No resistencia", "Resistencia")))

ALBplot <- ggboxplot(ALBbp, x = "RESISTENCIA", y = "ALBUMINA",
          color = "RESISTENCIA", palette = "Paired",
          add = "jitter")+ stat_compare_means()+ theme(legend.position = "none")+ xlab("")

#LEUCOS

LEUbp<-dbdrort %>% select(LEUCOS, RESISTENCIA) %>% mutate(RESISTENCIA = factor(RESISTENCIA, levels=c("No resistencia", "Resistencia")))

LEUplot <- ggboxplot(LEUbp, x = "RESISTENCIA", y = "LEUCOS",
          color = "RESISTENCIA", palette = "Paired",
          add = "jitter")+ stat_compare_means()+ theme(legend.position = "none")+ xlab("")

#NEU

NEUbp<-dbdrort %>% select(NEU, RESISTENCIA) %>%  mutate(RESISTENCIA = factor(RESISTENCIA, levels=c("No resistencia", "Resistencia")))

NEUplot <- ggboxplot(NEUbp, x = "RESISTENCIA", y = "NEU",
          color = "RESISTENCIA", palette = "Paired",
          add = "jitter")+ stat_compare_means()+ theme(legend.position = "none")+ xlab("")

#LINF

LINFbp <- dbdrort %>% select(LINF, RESISTENCIA) %>%  mutate(RESISTENCIA = factor(RESISTENCIA, levels=c("No resistencia", "Resistencia")))

LINFplot <- ggboxplot(LINFbp, x = "RESISTENCIA", y = "LINF",
          color = "RESISTENCIA", palette = "Paired",
          add = "jitter")+ stat_compare_means()+ theme(legend.position = "none")+ xlab("")

#HB

HBbp <- dbdrort %>% select(HB, RESISTENCIA) %>% mutate(RESISTENCIA = factor(RESISTENCIA, levels=c("No resistencia", "Resistencia")))

HBplot <- ggboxplot(HBbp, x = "RESISTENCIA", y = "HB",
          color = "RESISTENCIA", palette = "Paired",
          add = "jitter")+ stat_compare_means()+ theme(legend.position = "none")+ xlab("")


#HACER UN SOLO GRAFICO CON COWPLOT

library(cowplot)
## 
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggpubr':
## 
##     get_legend
BIOQbp<-plot_grid(CRplot, Uplot, ALBplot, LEUplot,NEUplot,LINFplot, HBplot,
          labels = c('A', 'B','C','D','E', "F", "G"), 
          label_size = 12, nrow=4, ncol=2)
BIOQbp

Objetivo 3:Describir las principales características demográficas en RTR con anemia y resistencia a AEE

demodb<-dbdrort %>% select(EDAD, PESO, SEXO, COMORBIDOS, INMUNOSUPRESORES, AEE,
                   DOSIS, `IECA/ARA`, `DOSIS KDIGO`, RESISTENCIA,
                   TRANSFUSIONES, TIEMPO, TIPO, `EDAD DON`, `#`, FRIA, CALIENTE,
                   `FUNCION RETARDADA`, `Episodios de rechazo`, `Etiologia ERC`) %>% tbl_summary(by= RESISTENCIA)

demodb %>% add_p()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PESO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'DOSIS KDIGO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TIEMPO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
Characteristic No resistencia, N = 391 Resistencia, N = 131 p-value2
EDAD 44 (30, 49) 44 (39, 53) 0.6
PESO 62 (57, 70) 62 (51, 68) 0.5
SEXO >0.9
FEMENINO 25 (64%) 9 (69%)
MASCULINO 14 (36%) 4 (31%)
COMORBIDOS 0.068
ESTENOSIS DE VEJIGA 0 (0%) 1 (7.7%)
HAS 10 (26%) 4 (31%)
HAS + DISLIPIDEMIA 1 (2.6%) 0 (0%)
HAS + DM 3 (7.7%) 1 (7.7%)
HAS + DM + VIH 1 (2.6%) 0 (0%)
HAS + HIPERPARATIROIDISMO 0 (0%) 1 (7.7%)
HAS + HIPERURICEMIA 0 (0%) 1 (7.7%)
HAS + HIPOTIROIDISMO 1 (2.6%) 0 (0%)
HAS + INSUF CARDIACA 0 (0%) 1 (7.7%)
HAS + OSTEOPOROSIS 1 (2.6%) 1 (7.7%)
HIPERURICEMIA 2 (5.1%) 1 (7.7%)
HIPOTIROIDISMO 1 (2.6%) 0 (0%)
NINGUNO 19 (49%) 2 (15%)
INMUNOSUPRESORES 0.027
INHIB CALCINEURINA + MICOFENOLATO 3 (7.7%) 0 (0%)
MICOFENOLATO + MTOR 5 (13%) 1 (7.7%)
PREDNISONA 0 (0%) 2 (15%)
PREDNISONA + INHIB CALCINEURINA 1 (2.6%) 1 (7.7%)
PREDNISONA + INHIB CALCINEURINA + AZATIOPRINA 3 (7.7%) 0 (0%)
PREDNISONA + INHIB CALCINEURINA + MICOFELONATO 13 (33%) 2 (15%)
PREDNISONA + INHIB CALCINEURINA + MTOR 1 (2.6%) 0 (0%)
PREDNISONA + MICOFELONATO 0 (0%) 3 (23%)
PREDNISONA + MICOFELONATO + MTOR 7 (18%) 2 (15%)
PREDNISONA + MTOR + AZATIOPRINA 6 (15%) 2 (15%)
AEE 0.10
DARBEPOETINA 36 (92%) 10 (77%)
ERITROPOYETINA 2 (5.1%) 0 (0%)
MIRCERA 1 (2.6%) 3 (23%)
DOSIS <0.001
30/15 DIAS 1 (2.6%) 0 (0%)
30/15DIAS 9 (23%) 0 (0%)
30/30DIAS 8 (21%) 0 (0%)
30/7DIAS 3 (7.7%) 1 (7.7%)
40/15DIAS 7 (18%) 0 (0%)
40/30 DIAS 1 (2.6%) 0 (0%)
40/30DIAS 2 (5.1%) 0 (0%)
40/7DIAS 4 (10%) 8 (62%)
4000/30DIAS 1 (2.6%) 0 (0%)
50/15DIAS 0 (0%) 1 (7.7%)
60/7DIAS 1 (2.6%) 0 (0%)
6000/7DIAS 1 (2.6%) 0 (0%)
75/15DIAS 1 (2.6%) 1 (7.7%)
75/7DIAS 0 (0%) 1 (7.7%)
80/7DIAS 0 (0%) 1 (7.7%)
IECA/ARA 15 (38%) 11 (85%) 0.004
DOSIS KDIGO 0.53 (0.40, 0.89) 1.40 (1.20, 1.60) <0.001
TRANSFUSIONES <0.001
SE DESCONOCE 29 (74%) 2 (15%)
SI 10 (26%) 11 (85%)
TIEMPO 11 (5, 15) 12 (5, 20) 0.6
TIPO >0.9
TRDC 12 (31%) 4 (31%)
TRDVNR 2 (5.1%) 1 (7.7%)
TRDVR 25 (64%) 8 (62%)
EDAD DON >0.9
17 AÑOS 1 (2.6%) 0 (0%)
47 AÑOS 1 (2.6%) 0 (0%)
SE DESCONOCE 37 (95%) 13 (100%)
# 0.6
1 35 (90%) 13 (100%)
2 4 (10%) 0 (0%)
FRIA 0.3
6.9444444444444434E-2 0 (0%) 1 (7.7%)
SE DESCONOCE 39 (100%) 12 (92%)
CALIENTE 0.3
30 0 (0%) 1 (7.7%)
SE DESCONOCE 39 (100%) 12 (92%)
FUNCION RETARDADA 0.059
SE DESCONOCE 39 (100%) 11 (85%)
SI 0 (0%) 2 (15%)
Episodios de rechazo 7 (18%) 3 (23%) 0.7
Etiologia ERC 0.11
AGENESIA RENAL 1 (2.6%) 1 (7.7%)
AMILOIDOSIS 1 (2.6%) 0 (0%)
DESCONOCE 18 (46%) 1 (7.7%)
ERPAD 1 (2.6%) 1 (7.7%)
GEFYS 2 (5.1%) 1 (7.7%)
GLOMERULONEFRITIS ASOCIADA A INFECCION 1 (2.6%) 1 (7.7%)
GLOMERULONEFRITIS NO ESPECIFICADA 1 (2.6%) 0 (0%)
GLOMERULONEFRITIS POSTESTREPTOCOCICA 1 (2.6%) 1 (7.7%)
HAS 2 (5.1%) 2 (15%)
HAS,DM 2 (5.1%) 0 (0%)
HIPOPLASIA RENAL 7 (18%) 3 (23%)
LITIASIS REAL 1 (2.6%) 0 (0%)
PREECLAMPSIA 1 (2.6%) 1 (7.7%)
VEJIGA NEUROGENICA 0 (0%) 1 (7.7%)
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test
#Histogramas edad y sexo anemia y resistencia a AEE


demoagesexdb<-dbdrort %>% select(EDAD, SEXO,  RESISTENCIA,
                   ) %>% tbl_summary(by= RESISTENCIA)

demoagesexdb %>% add_p()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
Characteristic No resistencia, N = 391 Resistencia, N = 131 p-value2
EDAD 44 (30, 49) 44 (39, 53) 0.6
SEXO >0.9
FEMENINO 25 (64%) 9 (69%)
MASCULINO 14 (36%) 4 (31%)
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Fisher's exact test
demodb<-dbdrort %>% select(EDAD, SEXO,  RESISTENCIA) %>%  filter(RESISTENCIA!="No resistencia")


# Basic histogram plot with mean line and marginal rug

gghistogram(demodb, x = "EDAD", bins = 30, 
            fill = "#0073C2FF", color = "#0073C2FF",
            add = "median", rug = TRUE)

# Change outline and fill colors by groups ("SEXO")
# Use a custom palette
fig1histogramaANEMIAYRESISTENCIA<-gghistogram(demodb, x = "EDAD", bins = 30,
            add = "mean", rug = TRUE,
            color = "SEXO", fill = "SEXO",
            palette = c("#0073C2FF", "#FC4E07"))


fig1histogramaANEMIAYRESISTENCIA

demodb<-dbdrort %>% select(SEXO, EDAD, RESISTENCIA) %>% tbl_summary(by=RESISTENCIA) %>% add_p()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
demodb
Characteristic No resistencia, N = 391 Resistencia, N = 131 p-value2
SEXO >0.9
FEMENINO 25 (64%) 9 (69%)
MASCULINO 14 (36%) 4 (31%)
EDAD 44 (30, 49) 44 (39, 53) 0.6
1 n (%); Median (IQR)
2 Fisher's exact test; Wilcoxon rank sum test
#Plot comorbilidades
comorbdb<-dbdrort %>% select(COMORBIDOS, RESISTENCIA) %>%  filter(RESISTENCIA!="No resistencia")

comorb <- comorbdb %>%
  group_by(COMORBIDOS) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))

ggplot(comorb, aes(x = COMORBIDOS, y = prop, fill= COMORBIDOS)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = prop), vjust = -0.3, fontface=2, size= 6) + 
  theme_pubclean() + ylab("%") + xlab ("Comorbilidades")+
  theme(text = element_text(size = 16, face="bold"), axis.text = element_text(size = 16, face="bold"),
        legend.text = element_text(size = 12),)+ scale_fill_brewer(palette="Paired")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))+theme(legend.position = "none")

 dbdrort%>% select(COMORBIDOS, RESISTENCIA) %>% 
   tbl_summary(by=RESISTENCIA) %>% add_p() %>% add_overall()
Characteristic Overall, N = 521 No resistencia, N = 391 Resistencia, N = 131 p-value2
COMORBIDOS 0.068
ESTENOSIS DE VEJIGA 1 (1.9%) 0 (0%) 1 (7.7%)
HAS 14 (27%) 10 (26%) 4 (31%)
HAS + DISLIPIDEMIA 1 (1.9%) 1 (2.6%) 0 (0%)
HAS + DM 4 (7.7%) 3 (7.7%) 1 (7.7%)
HAS + DM + VIH 1 (1.9%) 1 (2.6%) 0 (0%)
HAS + HIPERPARATIROIDISMO 1 (1.9%) 0 (0%) 1 (7.7%)
HAS + HIPERURICEMIA 1 (1.9%) 0 (0%) 1 (7.7%)
HAS + HIPOTIROIDISMO 1 (1.9%) 1 (2.6%) 0 (0%)
HAS + INSUF CARDIACA 1 (1.9%) 0 (0%) 1 (7.7%)
HAS + OSTEOPOROSIS 2 (3.8%) 1 (2.6%) 1 (7.7%)
HIPERURICEMIA 3 (5.8%) 2 (5.1%) 1 (7.7%)
HIPOTIROIDISMO 1 (1.9%) 1 (2.6%) 0 (0%)
NINGUNO 21 (40%) 19 (49%) 2 (15%)
1 n (%)
2 Fisher's exact test
#INMUNOSUPRESORES   

inmunodb<-dbdrort %>% select(INMUNOSUPRESORES, RESISTENCIA) %>%  filter(RESISTENCIA!="No resistencia")

inmuno <- inmunodb %>%
  group_by(INMUNOSUPRESORES) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))

plotimm<-ggplot(inmuno, aes(x = INMUNOSUPRESORES, y = prop, fill= INMUNOSUPRESORES)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = prop), vjust = -0.3, fontface=2, size= 6) + 
  theme_pubclean() + ylab("%") + xlab ("Inmunosupresores")+
  theme(text = element_text(size = 16, face="bold"), axis.text = element_text(size = 16, face="bold"),
        legend.text = element_text(size = 12),)+ scale_fill_brewer(palette="Paired")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))+theme(legend.position = "none")
plotimm

#AEE en general

AEEdb<-dbdrort %>% select(AEE, RESISTENCIA)

AEEdb %>% tbl_summary()
Characteristic N = 521
AEE
DARBEPOETINA 46 (88%)
ERITROPOYETINA 2 (3.8%)
MIRCERA 4 (7.7%)
RESISTENCIA
No resistencia 39 (75%)
Resistencia 13 (25%)
1 n (%)
AEE <-AEEdb %>%
  group_by(AEE) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))

ggplot(AEE, aes(x = AEE, y = prop, fill= AEE)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = prop), vjust = -0.3, fontface=2, size= 6) + 
  theme_pubclean() + ylab("%") + xlab ("AEE")+
  theme(text = element_text(size = 16, face="bold"), axis.text = element_text(size = 16, face="bold"),
        legend.text = element_text(size = 12),)+ scale_fill_brewer(palette="Paired")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))+theme(legend.position = "none")

AEEdb %>% tbl_summary(by= RESISTENCIA) %>% add_p() %>% add_overall()
Characteristic Overall, N = 521 No resistencia, N = 391 Resistencia, N = 131 p-value2
AEE 0.10
DARBEPOETINA 46 (88%) 36 (92%) 10 (77%)
ERITROPOYETINA 2 (3.8%) 2 (5.1%) 0 (0%)
MIRCERA 4 (7.7%) 1 (2.6%) 3 (23%)
1 n (%)
2 Fisher's exact test
#AEE en anemia
AEEdb<-dbdrort %>% select(AEE, RESISTENCIA) %>%  filter(RESISTENCIA!="No resistencia")

AEE <-AEEdb %>%
  group_by(AEE) %>%
  summarise(counts = n()) %>% 
  mutate(prop = round(counts*100/sum(counts), 1))

ggplot(AEE, aes(x = AEE, y = prop, fill= AEE)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = prop), vjust = -0.3, fontface=2, size= 6) + 
  theme_pubclean() + ylab("%") + xlab ("AEE")+
  theme(text = element_text(size = 16, face="bold"), axis.text = element_text(size = 16, face="bold"),
        legend.text = element_text(size = 12),)+ scale_fill_brewer(palette="Paired")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))+theme(legend.position = "none")

demodb<-dbdrort %>% select(
                   DOSIS, `IECA/ARA`, `DOSIS KDIGO`, RESISTENCIA,
                   TRANSFUSIONES, TIEMPO, TIPO, `EDAD DON`, `#`, FRIA, CALIENTE,
                   `FUNCION RETARDADA`, `Episodios de rechazo`, `Etiologia ERC`) %>% tbl_summary(by= RESISTENCIA)

demodb %>% add_p()
## Warning for variable 'DOSIS KDIGO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TIEMPO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
Characteristic No resistencia, N = 391 Resistencia, N = 131 p-value2
DOSIS <0.001
30/15 DIAS 1 (2.6%) 0 (0%)
30/15DIAS 9 (23%) 0 (0%)
30/30DIAS 8 (21%) 0 (0%)
30/7DIAS 3 (7.7%) 1 (7.7%)
40/15DIAS 7 (18%) 0 (0%)
40/30 DIAS 1 (2.6%) 0 (0%)
40/30DIAS 2 (5.1%) 0 (0%)
40/7DIAS 4 (10%) 8 (62%)
4000/30DIAS 1 (2.6%) 0 (0%)
50/15DIAS 0 (0%) 1 (7.7%)
60/7DIAS 1 (2.6%) 0 (0%)
6000/7DIAS 1 (2.6%) 0 (0%)
75/15DIAS 1 (2.6%) 1 (7.7%)
75/7DIAS 0 (0%) 1 (7.7%)
80/7DIAS 0 (0%) 1 (7.7%)
IECA/ARA 15 (38%) 11 (85%) 0.004
DOSIS KDIGO 0.53 (0.40, 0.89) 1.40 (1.20, 1.60) <0.001
TRANSFUSIONES <0.001
SE DESCONOCE 29 (74%) 2 (15%)
SI 10 (26%) 11 (85%)
TIEMPO 11 (5, 15) 12 (5, 20) 0.6
TIPO >0.9
TRDC 12 (31%) 4 (31%)
TRDVNR 2 (5.1%) 1 (7.7%)
TRDVR 25 (64%) 8 (62%)
EDAD DON >0.9
17 AÑOS 1 (2.6%) 0 (0%)
47 AÑOS 1 (2.6%) 0 (0%)
SE DESCONOCE 37 (95%) 13 (100%)
# 0.6
1 35 (90%) 13 (100%)
2 4 (10%) 0 (0%)
FRIA 0.3
6.9444444444444434E-2 0 (0%) 1 (7.7%)
SE DESCONOCE 39 (100%) 12 (92%)
CALIENTE 0.3
30 0 (0%) 1 (7.7%)
SE DESCONOCE 39 (100%) 12 (92%)
FUNCION RETARDADA 0.059
SE DESCONOCE 39 (100%) 11 (85%)
SI 0 (0%) 2 (15%)
Episodios de rechazo 7 (18%) 3 (23%) 0.7
Etiologia ERC 0.11
AGENESIA RENAL 1 (2.6%) 1 (7.7%)
AMILOIDOSIS 1 (2.6%) 0 (0%)
DESCONOCE 18 (46%) 1 (7.7%)
ERPAD 1 (2.6%) 1 (7.7%)
GEFYS 2 (5.1%) 1 (7.7%)
GLOMERULONEFRITIS ASOCIADA A INFECCION 1 (2.6%) 1 (7.7%)
GLOMERULONEFRITIS NO ESPECIFICADA 1 (2.6%) 0 (0%)
GLOMERULONEFRITIS POSTESTREPTOCOCICA 1 (2.6%) 1 (7.7%)
HAS 2 (5.1%) 2 (15%)
HAS,DM 2 (5.1%) 0 (0%)
HIPOPLASIA RENAL 7 (18%) 3 (23%)
LITIASIS REAL 1 (2.6%) 0 (0%)
PREECLAMPSIA 1 (2.6%) 1 (7.7%)
VEJIGA NEUROGENICA 0 (0%) 1 (7.7%)
1 n (%); Median (IQR)
2 Fisher's exact test; Pearson's Chi-squared test; Wilcoxon rank sum test

Regresión lógistica

library(finalfit)
library(broom)

dborresi<-dbdrort %>% select(EDAD,SEXO,AEE, RESISTENCIA, CR, U, LEUCOS, NEU,LINF,INFECCION,INMUNOSUPRESORES,`IECA/ARA`, `DOSIS KDIGO`, TRANSFUSIONES,DOSIS)

#dicotomizar variable

dborresi<-dborresi %>% mutate(resior = ifelse(RESISTENCIA == "Resistencia", 
                                               '1', '0'))

#dborresi  



dborresi$resior = as.numeric(dborresi$resior)

#explanatory <- c("IECA/ARA", "DOSIS KDIGO", "TRANSFUSIONES")
#dependent <- "resior"



#tablelr <- dborresi %>% finalfit(dependent, explanatory, dependent_label_prefix = "")

#tablelr


#dborresi %>% 
 # or_plot(dependent, explanatory, 
  #        breaks = c(0.5,0,0.5),
   #       table_text_size = 5)


  #modelo



model <- glm(resior ~ AEE+EDAD+SEXO+CR+U, family = "binomial", data = dborresi)

summary(model)
## 
## Call:
## glm(formula = resior ~ AEE + EDAD + SEXO + CR + U, family = "binomial", 
##     data = dborresi)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.30479  -0.63750  -0.34809   0.02218   2.06446  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         -6.78663    2.67147  -2.540   0.0111 *
## AEEERITROPOYETINA  -17.09153 2784.44006  -0.006   0.9951  
## AEEMIRCERA           0.56912    2.25782   0.252   0.8010  
## EDAD                 0.06247    0.04216   1.481   0.1385  
## SEXOMASCULINO       -0.57031    1.03422  -0.551   0.5813  
## CR                   0.39873    0.47285   0.843   0.3991  
## U                    0.02894    0.02039   1.419   0.1559  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 58.483  on 51  degrees of freedom
## Residual deviance: 39.540  on 45  degrees of freedom
## AIC: 53.54
## 
## Number of Fisher Scoring iterations: 16
mv_reg <- glm(resior ~ `IECA/ARA`+`DOSIS KDIGO`+TRANSFUSIONES, family = "binomial", data = dborresi)

summary(mv_reg)
## 
## Call:
## glm(formula = resior ~ `IECA/ARA` + `DOSIS KDIGO` + TRANSFUSIONES, 
##     family = "binomial", data = dborresi)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6094  -0.5483  -0.1957   0.1576   2.0096  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -3.92206    1.07107  -3.662  0.00025 ***
## `IECA/ARA`       2.12199    0.94370   2.249  0.02454 *  
## `DOSIS KDIGO`   -0.04791    0.05818  -0.823  0.41026    
## TRANSFUSIONESSI  2.80532    0.92061   3.047  0.00231 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 58.483  on 51  degrees of freedom
## Residual deviance: 36.571  on 48  degrees of freedom
## AIC: 44.571
## 
## Number of Fisher Scoring iterations: 6
library(stringr)
library(dplyr)
library(gtsummary)
library(purrr)


## define variables of interest 
explanatory_vars <- c("`IECA/ARA`","`DOSIS KDIGO`","TRANSFUSIONES")


explanatory_vars %>% str_c("resior ~ ", .)
## [1] "resior ~ `IECA/ARA`"    "resior ~ `DOSIS KDIGO`" "resior ~ TRANSFUSIONES"
## run a regression with all variables of interest 
mv_reg <- explanatory_vars %>%  ## begin with vector of explanatory column names
  str_c(collapse = "+") %>%     ## combine all names of the variables of interest separated by a plus
  str_c("resior ~ ", .) %>%    ## combine the names of variables of interest with outcome in formula style
  glm(family = "binomial",      ## define type of glm as logistic,
      data = dborresi)          ## define your dataset
mv_reg
## 
## Call:  glm(formula = ., family = "binomial", data = dborresi)
## 
## Coefficients:
##     (Intercept)       `IECA/ARA`    `DOSIS KDIGO`  TRANSFUSIONESSI  
##        -3.92206          2.12199         -0.04791          2.80532  
## 
## Degrees of Freedom: 51 Total (i.e. Null);  48 Residual
## Null Deviance:       58.48 
## Residual Deviance: 36.57     AIC: 44.57
## choose a model using forward selection based on AIC
## you can also do "backward" or "both" by adjusting the direction
final_mv_reg <- mv_reg %>%
  step(direction = "forward", trace = FALSE)

final_mv_reg
## 
## Call:  glm(formula = resior ~ `IECA/ARA` + `DOSIS KDIGO` + TRANSFUSIONES, 
##     family = "binomial", data = dborresi)
## 
## Coefficients:
##     (Intercept)       `IECA/ARA`    `DOSIS KDIGO`  TRANSFUSIONESSI  
##        -3.92206          2.12199         -0.04791          2.80532  
## 
## Degrees of Freedom: 51 Total (i.e. Null);  48 Residual
## Null Deviance:       58.48 
## Residual Deviance: 36.57     AIC: 44.57
mv_tab_base <- final_mv_reg %>% 
  broom::tidy(exponentiate = TRUE, conf.int = TRUE) %>%  ## get a tidy dataframe of estimates 
  mutate(across(where(is.numeric), round, digits = 2))          ## round 

## show results table of final regression 
mv_tab <- tbl_regression(final_mv_reg, exponentiate = TRUE)

mv_tab
Characteristic OR1 95% CI1 p-value
IECA/ARA 8.35 1.52, 70.4 0.025
DOSIS KDIGO 0.95 0.4
TRANSFUSIONES
SE DESCONOCE
SI 16.5 3.21, 135 0.002
1 OR = Odds Ratio, CI = Confidence Interval