IT204 - Limits

Definitions and Properties

Dr Robert Batzinger
Instructor Emeritus

Payap University
Chiang Mai, Thailand
15-Aug-2022

0.1 Agenda

  • Rates of change

  • Finding limits graphically and numerically

  • Evaluating limits analytically

  • Continuity and one-sided limits

  • Sandwich theorem

  • Infinite limits

1 Rates of change

1.1 Average rate of change

Given \(y = f(x)\):

\[\frac{\Delta y}{\Delta x} = \frac{f(x_2)-f(x_1)}{x_2 - x_1} = \frac{f(x_1+h) - f(x_1)}{h},h \ne 0\] Assuming the curve is continuous:

  • As the step get smaller the value becomes closer to the real value.

  • Approaching from the left or from the right, closes on the same value.


1.2 Estimating rate of change at a point on the curve

1.3 The effects around a relative maximum or minima

1.4 Behaviour around point of inflection

1.5 Behavoir near discontinuous point

1.6 Behavior near asymptote

1.7 Modeling functions with large \(|x|\)

1.8 Modeling functions with large \(|x|\)

1.9 Angular asymtopes

::: columns ::: {.column width=“50%”}

::: ::: columns ::: {.column width=“50%”}

::: :::

1.9.1 Calculations: Polynomial division

\[y = \frac{2x^2-3}{7x+4}\]

\[\begin{matrix} \frac{2x^2-3}{7x+4} &=&\frac{2x}{7} &+& -\frac{8}{49}& &,& R = \frac{-115}{49(7x+4)}\\ Long\ division &\dots &\dots& \dots & \dots &\dots &\dots\\ 7x+4& | & 2x^2 & & &-& 3\\ & | & -2x^2 &+& \frac{8x}{7} & & \\ & |& & & \frac{-8x}{7} &+&\frac{32}{49}\\ & |& & & & &\frac{-115}{49}\\ \end{matrix}\]

1.10 Sandwich between other equations


1.10.1 Another sandwich

\[1-\frac{x^2}{4} \le u(x) \le 1 +\frac{x^2}{2}\] \[\lim_{x\rightarrow 0} \left(1-\frac{x^2}{4}\right) =1, \quad\lim_{x\rightarrow 0} \left(1-\frac{x^2}{2}\right) =1,\] \[\therefore \lim_{x\rightarrow 0} u(x) = 1\]

2 Sandwich theorem

\[Given\ g(x) \le f(x) \le h(x)\]

\[if \ \lim_{x\rightarrow c} g(x) = \lim_{x\rightarrow c} h(x) = L\] \[\therefore f(x) = L\] # Finding limits graphically and numerically

\[\lim_{x\rightarrow a}\frac{x^2 - a^2}{x^4 - a^4} = \lim_{x\rightarrow a}\frac{x^2 - a^2}{(x^2 - a^2)(x^2 + a^2)} = \lim_{x\rightarrow a}\frac{1}{x^2 + a^2}\approx \frac{1}{2a^2}\]

2.1 Definition

\[\lim_{x\rightarrow x_0} f(x) = L\] \[0 \lt |x - x_0| < \delta\quad \Rightarrow\quad |f(x) - L| < \epsilon\]

2.2 Limit Rules

Assuming \(\lim_{x\rightarrow c} f(x) = L,\quad \lim_{x\rightarrow c} g(x) = M\)

  1. Sum Rule: \(\lim_{x\rightarrow c} \left(f(x) + g(x)\right) = L + M\)

  2. Difference Rule: \(\lim_{x\rightarrow c} \left(f(x) - g(x)\right) = L - M\)

  3. Product Rule: \(\lim_{x\rightarrow c} \left(f(x) \times g(x)\right) = L \times M\)

  4. Constant Multiple Rule: \(\lim_{x\rightarrow c} \left(k f(x)\right) = k \times L\)

  5. Quotient Rule: \(\lim_{x\rightarrow c} \left(f(x) / g(x)\right) = L / M; \quad M \ne 0\)

  6. Power Rule: \(\lim_{x\rightarrow c} \left(f(x)\right)^{r/s} = L^{r/s}\)

3 Evaluating limits analytically

\[\lim_{x\rightarrow 5} \left(\frac{x-5}{\color{red}{x^2-25}}\right) = \lim_{x\rightarrow 5} \left(\frac{\color{red}{x-5}}{\color{red}{(x-5)}(x+5)}\right) = \lim_{x\rightarrow 5} \frac{1}{x+5}\]

4 Continuity and one-sided limits

  • Continuity: left and right sides

\[\lim_{x\rightarrow a} = f(a);\quad \lim_{x\rightarrow b} = f(b)\]

4.1 Asymptotes

5 Discontinuity

6 Infinite limits

\[As\ x \rightarrow \infty\]

  • Reduce the equation to its simplest terms
  • The term of the highest power is the most significant and the other terms can be ignored
  • Change for patterns of oscillations and repeated asymptotes.