Definitions and Properties
Dr Robert Batzinger
Instructor Emeritus
Payap University
Chiang Mai, Thailand
15-Aug-2022
Rates of change
Finding limits graphically and numerically
Evaluating limits analytically
Continuity and one-sided limits
Sandwich theorem
Infinite limits
Given \(y = f(x)\):
\[\frac{\Delta y}{\Delta x} = \frac{f(x_2)-f(x_1)}{x_2 - x_1} = \frac{f(x_1+h) - f(x_1)}{h},h \ne 0\] Assuming the curve is continuous:
As the step get smaller the value becomes closer to the real value.
Approaching from the left or from the right, closes on the same value.
::: columns ::: {.column width=“50%”}
::: ::: columns ::: {.column width=“50%”}
::: :::
\[y = \frac{2x^2-3}{7x+4}\]
\[\begin{matrix} \frac{2x^2-3}{7x+4} &=&\frac{2x}{7} &+& -\frac{8}{49}& &,& R = \frac{-115}{49(7x+4)}\\ Long\ division &\dots &\dots& \dots & \dots &\dots &\dots\\ 7x+4& | & 2x^2 & & &-& 3\\ & | & -2x^2 &+& \frac{8x}{7} & & \\ & |& & & \frac{-8x}{7} &+&\frac{32}{49}\\ & |& & & & &\frac{-115}{49}\\ \end{matrix}\]\[1-\frac{x^2}{4} \le u(x) \le 1 +\frac{x^2}{2}\] \[\lim_{x\rightarrow 0} \left(1-\frac{x^2}{4}\right) =1, \quad\lim_{x\rightarrow 0} \left(1-\frac{x^2}{2}\right) =1,\] \[\therefore \lim_{x\rightarrow 0} u(x) = 1\]
\[Given\ g(x) \le f(x) \le h(x)\]
\[if \ \lim_{x\rightarrow c} g(x) = \lim_{x\rightarrow c} h(x) = L\] \[\therefore f(x) = L\] # Finding limits graphically and numerically
\[\lim_{x\rightarrow a}\frac{x^2 - a^2}{x^4 - a^4} = \lim_{x\rightarrow a}\frac{x^2 - a^2}{(x^2 - a^2)(x^2 + a^2)} = \lim_{x\rightarrow a}\frac{1}{x^2 + a^2}\approx \frac{1}{2a^2}\]
\[\lim_{x\rightarrow x_0} f(x) = L\] \[0 \lt |x - x_0| < \delta\quad \Rightarrow\quad |f(x) - L| < \epsilon\]
Assuming \(\lim_{x\rightarrow c} f(x) = L,\quad \lim_{x\rightarrow c} g(x) = M\)
Sum Rule: \(\lim_{x\rightarrow c} \left(f(x) + g(x)\right) = L + M\)
Difference Rule: \(\lim_{x\rightarrow c} \left(f(x) - g(x)\right) = L - M\)
Product Rule: \(\lim_{x\rightarrow c} \left(f(x) \times g(x)\right) = L \times M\)
Constant Multiple Rule: \(\lim_{x\rightarrow c} \left(k f(x)\right) = k \times L\)
Quotient Rule: \(\lim_{x\rightarrow c} \left(f(x) / g(x)\right) = L / M; \quad M \ne 0\)
Power Rule: \(\lim_{x\rightarrow c} \left(f(x)\right)^{r/s} = L^{r/s}\)
\[\lim_{x\rightarrow 5} \left(\frac{x-5}{\color{red}{x^2-25}}\right) = \lim_{x\rightarrow 5} \left(\frac{\color{red}{x-5}}{\color{red}{(x-5)}(x+5)}\right) = \lim_{x\rightarrow 5} \frac{1}{x+5}\]
\[\lim_{x\rightarrow a} = f(a);\quad \lim_{x\rightarrow b} = f(b)\]
\[As\ x \rightarrow \infty\]
PYU IT204 2022/1: Calculus ….. [2]