N2 = 600
baseline_probability2 = 0.2
main_effect21 = 0.4
main_effect22 = 0.1
f21 <- sample(c(T,F), N2, replace=TRUE)
f22 <- sample(c(T,F), N2, replace=TRUE)
y2 <- rbinom(N2, 1, baseline_probability2)
y2[f21==T] <- rbinom(length(y2[f21==T]),
1, main_effect21)
y2[f22==T] <- rbinom(length(y2[f22==T]),
1, main_effect22)
sim2 = data.frame(y = y2, f1 = f21, f2 = f22)
sim3 = sim2 %>% sample_n(100)
m2.1 <- stan_glm(y ~ f1+f2, data = sim2,
family="binomial",
prior = normal(
location = posterior1_location[2:3],
scale = posterior1_scale[2:3]))
m2.2 <- stan_glm(y ~ f1+f2,
data = sim2,
family="binomial")
m3.1 <- stan_glm(y ~ f1+f2, data = sim3,
family="binomial",
prior = normal(
location = posterior1_location[2:3],
scale = posterior1_scale[2:3]))
m3.2 <- stan_glm(y ~ f1+f2, data = sim3,
family="binomial")