suppressMessages(library(dplyr))
library(nycflights13)
## Warning: package 'nycflights13' was built under R version 4.1.3

Exercício 1

Utilizando o mesmo conjunto de dados para flights usado na aula, encontre todos os vôos que:

voos <- nycflights13::flights
voos
## # A tibble: 336,776 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
  1. Tiveram um atraso na chegada (arrival) de duas horas ou mais
La <- filter(voos, arr_delay >= 120)
La
## # A tibble: 10,200 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      811            630       101     1047            830
##  2  2013     1     1      848           1835       853     1001           1950
##  3  2013     1     1      957            733       144     1056            853
##  4  2013     1     1     1114            900       134     1447           1222
##  5  2013     1     1     1505           1310       115     1638           1431
##  6  2013     1     1     1525           1340       105     1831           1626
##  7  2013     1     1     1549           1445        64     1912           1656
##  8  2013     1     1     1558           1359       119     1718           1515
##  9  2013     1     1     1732           1630        62     2028           1825
## 10  2013     1     1     1803           1620       103     2008           1750
## # ... with 10,190 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
hist(voos$arr_delay, main = "Histograma de Vôos em atraso", xlab = "Intervalos", ylab= "Frequência")

(b) Voaram com destino a Houston (IAH ou HOU).

Lb <- filter(voos, dest == c("IAH", "HOU"))
Lb
## # A tibble: 4,655 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      623            627        -4      933            932
##  3  2013     1     1     1028           1026         2     1350           1339
##  4  2013     1     1     1114            900       134     1447           1222
##  5  2013     1     1     1208           1158        10     1540           1502
##  6  2013     1     1     1306           1300         6     1622           1610
##  7  2013     1     1     1527           1515        12     1854           1810
##  8  2013     1     1     1620           1620         0     1945           1922
##  9  2013     1     1     1725           1720         5     2045           2021
## 10  2013     1     1     1855           1848         7     2203           2200
## # ... with 4,645 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
  1. Foram realizados pelas companhias aéreas United, American ou Delta Airlines.
Lc <- filter(voos, carrier == c("UA","AA","DL"))
## Warning in carrier == c("UA", "AA", "DL"): comprimento do objeto maior não é
## múltiplo do comprimento do objeto menor
Lc
## # A tibble: 46,913 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      558            600        -2      924            917
##  3  2013     1     1      602            610        -8      812            820
##  4  2013     1     1      606            610        -4      858            910
##  5  2013     1     1      606            610        -4      837            845
##  6  2013     1     1      607            607         0      858            915
##  7  2013     1     1      615            615         0      833            842
##  8  2013     1     1      623            610        13      920            915
##  9  2013     1     1      643            646        -3      922            940
## 10  2013     1     1      653            700        -7      936           1009
## # ... with 46,903 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
  1. Partiram no verão (julho, agosto e setembro).
Ld <- filter(voos, month == c(6 & 7 & 8))
Ld
## # A tibble: 27,004 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ... with 26,994 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
  1. Não partiram atrasados, porém chegaram com mais de duas horas de atraso ao destino.
le <- filter(voos, dep_delay <= 0 & arr_delay >= 120)
le
## # A tibble: 29 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1    27     1419           1420        -1     1754           1550
##  2  2013    10     7     1350           1350         0     1736           1526
##  3  2013    10     7     1357           1359        -2     1858           1654
##  4  2013    10    16      657            700        -3     1258           1056
##  5  2013    11     1      658            700        -2     1329           1015
##  6  2013     3    18     1844           1847        -3       39           2219
##  7  2013     4    17     1635           1640        -5     2049           1845
##  8  2013     4    18      558            600        -2     1149            850
##  9  2013     4    18      655            700        -5     1213            950
## 10  2013     5    22     1827           1830        -3     2217           2010
## # ... with 19 more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
## #   flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## #   distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Partiram entre meia noite e 6 h da manhã (inclusive).

lf <- filter(voos, dep_time == 0000 : 600)
## Warning in dep_time == 0:600: comprimento do objeto maior não é múltiplo do
## comprimento do objeto menor
lf
## # A tibble: 25 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1    30      556            600        -4      709            658
##  2  2013     1    30      557            600        -3      711            709
##  3  2013     1    30      559            601        -2      739            725
##  4  2013    12    11      542            545        -3      841            832
##  5  2013    12    11      544            550        -6     1021           1027
##  6  2013    12    11      557            600        -3      853            846
##  7  2013     2    20      557            600        -3      733            745
##  8  2013     2    24      556            600        -4      914            909
##  9  2013     3    30      550            600       -10      721            759
## 10  2013     3    30      555            600        -5      804            829
## # ... with 15 more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
## #   flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## #   distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Exerício 2

Classifique os vôos para encontrar os vôos mais atrasados.

# Basta ordenar de Z a A ou do maior para o menor a coluna arr_delay
exe2 <- arrange(voos, desc(dep_delay)) # pruneura ordenação para partida.
# ordenando para quem chegou mais atrasado agora

# %>% is called the forward pipe operator in R. It provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. It is defined by the package magrittr (CRAN) and is heavily used by dplyr (CRAN).

voos%>% arrange(desc(arr_delay))
## # A tibble: 336,776 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     9      641            900      1301     1242           1530
##  2  2013     6    15     1432           1935      1137     1607           2120
##  3  2013     1    10     1121           1635      1126     1239           1810
##  4  2013     9    20     1139           1845      1014     1457           2210
##  5  2013     7    22      845           1600      1005     1044           1815
##  6  2013     4    10     1100           1900       960     1342           2211
##  7  2013     3    17     2321            810       911      135           1020
##  8  2013     7    22     2257            759       898      121           1026
##  9  2013    12     5      756           1700       896     1058           2020
## 10  2013     5     3     1133           2055       878     1250           2215
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
exe2
## # A tibble: 336,776 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     9      641            900      1301     1242           1530
##  2  2013     6    15     1432           1935      1137     1607           2120
##  3  2013     1    10     1121           1635      1126     1239           1810
##  4  2013     9    20     1139           1845      1014     1457           2210
##  5  2013     7    22      845           1600      1005     1044           1815
##  6  2013     4    10     1100           1900       960     1342           2211
##  7  2013     3    17     2321            810       911      135           1020
##  8  2013     6    27      959           1900       899     1236           2226
##  9  2013     7    22     2257            759       898      121           1026
## 10  2013    12     5      756           1700       896     1058           2020
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Exercício 3

Classifique os vˆoos de forma a encontrar os mais rápidos (velocidade mais alta)

exe3 <- mutate(voos, vel = distance/air_time*60) # km/hora
exe3 <- arrange(exe3, desc(vel)) # é comum alterar uma variável em sequência reatribuindo um valor a ela.
exe3 # plotando a variável
## # A tibble: 336,776 x 20
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     5    25     1709           1700         9     1923           1937
##  2  2013     7     2     1558           1513        45     1745           1719
##  3  2013     5    13     2040           2025        15     2225           2226
##  4  2013     3    23     1914           1910         4     2045           2043
##  5  2013     1    12     1559           1600        -1     1849           1917
##  6  2013    11    17      650            655        -5     1059           1150
##  7  2013     2    21     2355           2358        -3      412            438
##  8  2013    11    17      759            800        -1     1212           1255
##  9  2013    11    16     2003           1925        38       17             36
## 10  2013    11    16     2349           2359       -10      402            440
## # ... with 336,766 more rows, and 12 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>,
## #   vel <dbl>

Exercício 4

O que acontece se você incluir o nome de uma variável várias vezes dentro de select()?

exe4 <- voos %>% select(day, day, day)
exe4
## # A tibble: 336,776 x 1
##      day
##    <int>
##  1     1
##  2     1
##  3     1
##  4     1
##  5     1
##  6     1
##  7     1
##  8     1
##  9     1
## 10     1
## # ... with 336,766 more rows
# Aparece a variável uma vez só!

Exercício 5

Encontre os 10 vôos mais atrados usando arrange() e a função min rank().

ex5 <- arrange(voos, min_rank(desc(dep_delay))) # ordena do maior par ao menor dep_delay e pega o atribui um número para o elemento com base se ele é maior que os outros elementos na tabela. Exemplo: Se o elemento 10 esta acima do elemnto 3 então, 3 recebe ranking 1 e 10 recebe ranking 2, porém, se houvesse um 15, entre eles, 15, receberia 3, 10 receberia 2 e 3 receberia o ranking 1.
ex5 <- mutate(ex5, voosatrasados = dep_delay) # cria uma coluna com o resultado acima
ex5
## # A tibble: 336,776 x 20
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     9      641            900      1301     1242           1530
##  2  2013     6    15     1432           1935      1137     1607           2120
##  3  2013     1    10     1121           1635      1126     1239           1810
##  4  2013     9    20     1139           1845      1014     1457           2210
##  5  2013     7    22      845           1600      1005     1044           1815
##  6  2013     4    10     1100           1900       960     1342           2211
##  7  2013     3    17     2321            810       911      135           1020
##  8  2013     6    27      959           1900       899     1236           2226
##  9  2013     7    22     2257            759       898      121           1026
## 10  2013    12     5      756           1700       896     1058           2020
## # ... with 336,766 more rows, and 12 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>,
## #   voosatrasados <dbl>

Exercício 6

Usando mutate() crie uma coluna com a média da variável tempo em ar (air time).

ex6= mutate(voos, médiatemponoar = mean(air_time, na.rm = TRUE))
ex6
## # A tibble: 336,776 x 20
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ... with 336,766 more rows, and 12 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>,
## #   médiatemponoar <dbl>

Obrigado