Preliminaries

library(readr)
library(tidyverse)
library(corrplot)
library(lavaan)
library(rstatix)
library(GGally)

Predictors_18 <- read_csv("Predictors_18.csv")
Mediator_36 <- read_csv("Mediator_36.csv")
Outcomes60_formatted <- read_csv("Outcomes60_formatted.csv")

Combine datasets

full <- full_join(Outcomes60_formatted, Mediator_36, by="Blind_ID")
full <- full_join(full, Predictors_18, by="Blind_ID") %>%
  rename(
    ELI = CELF_ELI_standard_score,
    RLI = CELF_RLI_standard_score, 
    WAI = WAI_Total, 
    ERRNI = ERRNI_comps, 
    logRT = meanlogRT, 
    Vocab = VocabTotal
  )

Get descriptive stats

full %>%
  get_summary_stats(type="common")

Get joint distributions

full %>%
  dplyr::select("logCTC", "logAWC", "logRT", "Vocab", "LUI_Total", "ELI", "RLI", "WAI", "ERRNI") %>%
  ggpairs()

Two participants with exceptionally low LUI score (see scatterplots above). We’ll fit model with and without them.

full2 <- full %>%
  filter(LUI_Total > 100)
full2 %>%
  dplyr::select("logCTC", "logAWC", "logRT", "Vocab", "LUI_Total", "ELI", "RLI", "WAI", "ERRNI") %>%
  ggpairs()

Correlation Plot

full %>%
  dplyr::select("logCTC", "logAWC", "logRT", "Vocab", "LUI_Total", "ELI", "RLI", "WAI", "ERRNI") %>%
  cor(use="pairwise.complete.obs") %>%
  corrplot()

With two participants removed

full2 %>%
  dplyr::select("logCTC", "logAWC", "logRT", "Vocab", "LUI_Total", "ELI", "RLI", "WAI", "ERRNI") %>%
  cor(use="pairwise.complete.obs") %>%
  corrplot()

Include all observations

Direct effects can be seen in the regressions. Indirect effects and total effects are in the defined parameters blocked EERNI_CTC_I = indirect effect of CTC (through LUI) on ERRNI, etc. EERNI_CTC_T = total effect direct effect + indirect effect. I used bootstrapped standard errors because indirect effects have non-normal sampling distributions.

model <- '
# direct effects
ERRNI ~ b11*logCTC + b12*logAWC + b13*logRT + b14*Vocab + b15*LUI_Total
WAI ~ c11*logCTC + c12*logAWC + c13*logRT + c14*Vocab + c15*LUI_Total
RLI ~  d11*logCTC + d12*logAWC + d13*logRT + d14*Vocab + d15*LUI_Total
ELI ~ e11*logCTC + e12*logAWC + e13*logRT +  e14*Vocab +  e15*LUI_Total

# mediators
LUI_Total ~ f1*logCTC + f2*logAWC + f3*logRT + f4*Vocab 

# cov
ERRNI ~~ WAI
ERRNI ~~ ELI
ERRNI ~~ RLI
WAI ~~ ELI
WAI ~~ RLI
RLI ~~ ELI

# indirect effects
ERRNI_CTC_I :=  b15*f1 
ERRNI_AWC_I :=  b15*f2 
ERRNI_RT_I :=   b15*f3 
ERRNI_Vocab_I :=  b15*f4

WAI_CTC_I :=  c15*f1 
WAI_AWC_I :=  c15*f2 
WAI_RT_I :=   c15*f3 
WAI_Vocab_I :=  c15*f4

RLI_CTC_I :=  d15*f1 
RLI_AWC_I :=  d15*f2 
RLI_RT_I :=   d15*f3 
RLI_Vocab_I :=  d15*f4

ELI_CTC_I :=  e15*f1 
ELI_AWC_I :=  e15*f2 
ELI_RT_I :=   e15*f3 
ELI_Vocab_I :=  e15*f4

# total effects
ERRNI_CTC_T :=  b11 + (b15*f1) 
ERRNI_AWC_T :=  b12 + (b15*f2) 
ERRNI_RT_T :=   b13 + (b15*f3) 
ERRNI_Vocab_T := b14 + (b15*f4)

WAI_CTC_T :=  c11 + (c15*f1) 
WAI_AWC_T :=  c12 + (c15*f2) 
WAI_RT_T :=   c13 + (c15*f3) 
WAI_Vocab_T :=  c14 + (c15*f4)

RLI_CTC_T :=  d11 + (d15*f1) 
RLI_AWC_T :=  d12 + (d15*f2) 
RLI_RT_T :=   d13 + (d15*f3) 
RLI_Vocab_T :=  d14 + (d15*f4)

ELI_CTC_T := e11 + (e15*f1) 
ELI_AWC_T := e12 + (e15*f2) 
ELI_RT_T :=  e13 + (e15*f3) 
ELI_Vocab_T := e14 + (e15*f4)
'

#m1 <- sem(model, data=full, missing="ml", se="bootstrap", bootstrap=9999)
#write_rds(m1, "models/m1.rds" )
m1 <- read_rds("models/m1.rds")

summarise model, get

summary(m1, standardized=TRUE)
## lavaan 0.6-12 ended normally after 219 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        40
## 
##   Number of observations                            85
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             9999
##   Number of successful bootstrap draws            9999
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   ERRNI ~                                                                 
##     logCTC   (b11)    -0.211    0.350   -0.602    0.547    -0.211   -0.090
##     logAWC   (b12)    -0.061    0.384   -0.160    0.873    -0.061   -0.022
##     logRT    (b13)    -2.031    0.706   -2.877    0.004    -2.031   -0.297
##     Vocab    (b14)     0.002    0.002    0.904    0.366     0.002    0.139
##     LUI_Totl (b15)     0.010    0.010    1.030    0.303     0.010    0.141
##   WAI ~                                                                   
##     logCTC   (c11)    -0.465    1.814   -0.256    0.798    -0.465   -0.050
##     logAWC   (c12)     2.476    2.033    1.218    0.223     2.476    0.223
##     logRT    (c13)    -3.049    3.325   -0.917    0.359    -3.049   -0.111
##     Vocab    (c14)    -0.004    0.006   -0.691    0.489    -0.004   -0.085
##     LUI_Totl (c15)     0.085    0.043    1.973    0.048     0.085    0.298
##   RLI ~                                                                   
##     logCTC   (d11)     1.713    3.925    0.436    0.663     1.713    0.068
##     logAWC   (d12)    -4.337    4.261   -1.018    0.309    -4.337   -0.144
##     logRT    (d13)   -20.666    7.566   -2.731    0.006   -20.666   -0.279
##     Vocab    (d14)    -0.015    0.017   -0.887    0.375    -0.015   -0.115
##     LUI_Totl (d15)     0.286    0.131    2.187    0.029     0.286    0.370
##   ELI ~                                                                   
##     logCTC   (e11)     0.926    2.990    0.310    0.757     0.926    0.045
##     logAWC   (e12)    -0.383    3.581   -0.107    0.915    -0.383   -0.016
##     logRT    (e13)   -10.306    5.350   -1.927    0.054   -10.306   -0.170
##     Vocab    (e14)     0.022    0.012    1.797    0.072     0.022    0.209
##     LUI_Totl (e15)     0.270    0.090    3.019    0.003     0.270    0.428
##   LUI_Total ~                                                             
##     logCTC    (f1)     1.938    4.709    0.412    0.681     1.938    0.059
##     logAWC    (f2)     6.755    5.581    1.210    0.226     6.755    0.173
##     logRT     (f3)    -5.027    8.134   -0.618    0.537    -5.027   -0.052
##     Vocab     (f4)     0.068    0.019    3.584    0.000     0.068    0.404
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##  .ERRNI ~~                                                                
##    .WAI                1.801    0.638    2.822    0.005     1.801    0.357
##    .ELI                1.195    0.974    1.227    0.220     1.195    0.129
##    .RLI                2.871    1.403    2.047    0.041     2.871    0.218
##  .WAI ~~                                                                  
##    .ELI               10.646    3.961    2.687    0.007    10.646    0.287
##    .RLI               22.886    5.341    4.285    0.000    22.886    0.435
##  .RLI ~~                                                                  
##    .ELI               43.463   10.924    3.979    0.000    43.463    0.449
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI             14.010    5.299    2.644    0.008    14.010   11.468
##    .WAI               15.142   22.466    0.674    0.500    15.142    3.103
##    .RLI              236.439   64.122    3.687    0.000   236.439   17.870
##    .ELI              132.924   45.703    2.908    0.004   132.924   12.289
##    .LUI_Total         86.082   66.028    1.304    0.192    86.082    5.025
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI              1.262    0.197    6.395    0.000     1.262    0.846
##    .WAI               20.154    2.620    7.692    0.000    20.154    0.846
##    .RLI              137.217   18.986    7.227    0.000   137.217    0.784
##    .ELI               68.216    9.694    7.037    0.000    68.216    0.583
##    .LUI_Total        212.691   53.656    3.964    0.000   212.691    0.725
## 
## Defined Parameters:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##     ERRNI_CTC_I        0.020    0.066    0.298    0.766     0.020    0.008
##     ERRNI_AWC_I        0.068    0.106    0.646    0.518     0.068    0.025
##     ERRNI_RT_I        -0.051    0.123   -0.411    0.681    -0.051   -0.007
##     ERRNI_Vocab_I      0.001    0.001    0.943    0.346     0.001    0.057
##     WAI_CTC_I          0.164    0.423    0.388    0.698     0.164    0.018
##     WAI_AWC_I          0.573    0.680    0.842    0.400     0.573    0.052
##     WAI_RT_I          -0.426    0.779   -0.547    0.584    -0.426   -0.016
##     WAI_Vocab_I        0.006    0.004    1.467    0.142     0.006    0.120
##     RLI_CTC_I          0.554    1.410    0.393    0.695     0.554    0.022
##     RLI_AWC_I          1.930    2.148    0.898    0.369     1.930    0.064
##     RLI_RT_I          -1.436    2.523   -0.569    0.569    -1.436   -0.019
##     RLI_Vocab_I        0.020    0.012    1.605    0.109     0.020    0.149
##     ELI_CTC_I          0.524    1.291    0.406    0.685     0.524    0.025
##     ELI_AWC_I          1.827    1.889    0.967    0.334     1.827    0.074
##     ELI_RT_I          -1.359    2.318   -0.586    0.558    -1.359   -0.022
##     ELI_Vocab_I        0.018    0.010    1.881    0.060     0.018    0.173
##     ERRNI_CTC_T       -0.191    0.354   -0.540    0.589    -0.191   -0.082
##     ERRNI_AWC_T        0.007    0.388    0.018    0.986     0.007    0.002
##     ERRNI_RT_T        -2.082    0.707   -2.945    0.003    -2.082   -0.304
##     ERRNI_Vocab_T      0.002    0.002    1.367    0.172     0.002    0.196
##     WAI_CTC_T         -0.300    1.838   -0.163    0.870    -0.300   -0.032
##     WAI_AWC_T          3.049    1.985    1.536    0.125     3.049    0.275
##     WAI_RT_T          -3.475    3.414   -1.018    0.309    -3.475   -0.127
##     WAI_Vocab_T        0.002    0.006    0.302    0.762     0.002    0.035
##     RLI_CTC_T          2.266    4.214    0.538    0.591     2.266    0.089
##     RLI_AWC_T         -2.407    4.580   -0.526    0.599    -2.407   -0.080
##     RLI_RT_T         -22.103    8.137   -2.716    0.007   -22.103   -0.298
##     RLI_Vocab_T        0.004    0.017    0.267    0.789     0.004    0.034
##     ELI_CTC_T          1.450    3.030    0.479    0.632     1.450    0.070
##     ELI_AWC_T          1.444    3.654    0.395    0.693     1.444    0.059
##     ELI_RT_T         -11.665    5.243   -2.225    0.026   -11.665   -0.192
##     ELI_Vocab_T        0.041    0.013    3.222    0.001     0.041    0.382

Marginally significant direct effect of RT on ELI, significant effect on RLI and EERNI. Nothing on WAI. No indirect effects of vocab. Some total effects, but hard to know what to make of those. Not much going on CTC or AWC.

Since we have very little power, try cutting those paths.

model2 <- '
# direct effects
ERRNI ~ b13*logRT + b14*Vocab + b15*LUI_Total
WAI ~  c13*logRT + c14*Vocab + c15*LUI_Total
RLI ~  d13*logRT + d14*Vocab + d15*LUI_Total
ELI ~  e13*logRT +  e14*Vocab +  e15*LUI_Total

# mediators
LUI_Total ~  f3*logRT + f4*Vocab 

# cov
ERRNI ~~ WAI
ERRNI ~~ ELI
ERRNI ~~ RLI
WAI ~~ ELI
WAI ~~ RLI
RLI ~~ ELI

# indirect effects
ERRNI_RT_I :=   b15*f3 
ERRNI_Vocab_I :=  b15*f4

WAI_RT_I :=   c15*f3 
WAI_Vocab_I :=  c15*f4

RLI_RT_I :=   d15*f3 
RLI_Vocab_I :=  d15*f4

ELI_RT_I :=   e15*f3 
ELI_Vocab_I :=  e15*f4

# total effects
ERRNI_RT_T :=   b13 + (b15*f3) 
ERRNI_Vocab_T := b14 + (b15*f4)

WAI_RT_T :=   c13 + (c15*f3) 
WAI_Vocab_T :=  c14 + (c15*f4)

RLI_RT_T :=   d13 + (d15*f3) 
RLI_Vocab_T :=  d14 + (d15*f4)

ELI_RT_T :=  e13 + (e15*f3) 
ELI_Vocab_T := e14 + (e15*f4)
'

#m2 <- sem(model2, full, missing="ml", se="bootstrap", bootstrap=9999)

#write_rds(m2, "models/m2.rds")
m2 <-read_rds("models/m2.rds")
summary(m2, standardized=TRUE)
## lavaan 0.6-12 ended normally after 156 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##   Number of observations                            85
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             9999
##   Number of successful bootstrap draws            9999
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   ERRNI ~                                                                 
##     logRT    (b13)    -1.878    0.722   -2.600    0.009    -1.878   -0.274
##     Vocab    (b14)     0.001    0.002    0.801    0.423     0.001    0.115
##     LUI_Totl (b15)     0.008    0.010    0.807    0.420     0.008    0.113
##   WAI ~                                                                   
##     logRT    (c13)    -2.857    2.829   -1.010    0.313    -2.857   -0.104
##     Vocab    (c14)    -0.004    0.006   -0.734    0.463    -0.004   -0.091
##     LUI_Totl (c15)     0.098    0.040    2.471    0.013     0.098    0.346
##   RLI ~                                                                   
##     logRT    (d13)   -21.604    7.585   -2.848    0.004   -21.604   -0.293
##     Vocab    (d14)    -0.013    0.017   -0.744    0.457    -0.013   -0.097
##     LUI_Totl (d15)     0.257    0.131    1.955    0.051     0.257    0.334
##   ELI ~                                                                   
##     logRT    (e13)   -10.880    5.168   -2.105    0.035   -10.880   -0.179
##     Vocab    (e14)     0.024    0.012    2.055    0.040     0.024    0.222
##     LUI_Totl (e15)     0.273    0.085    3.232    0.001     0.273    0.433
##   LUI_Total ~                                                             
##     logRT     (f3)    -7.517    7.499   -1.002    0.316    -7.517   -0.078
##     Vocab     (f4)     0.076    0.017    4.594    0.000     0.076    0.451
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##  .ERRNI ~~                                                                
##    .WAI                1.734    0.662    2.621    0.009     1.734    0.335
##    .ELI                1.183    0.995    1.189    0.235     1.183    0.127
##    .RLI                2.954    1.439    2.052    0.040     2.954    0.222
##  .WAI ~~                                                                  
##    .ELI               10.771    4.240    2.540    0.011    10.771    0.284
##    .RLI               21.611    5.480    3.944    0.000    21.611    0.400
##  .RLI ~~                                                                  
##    .ELI               43.268   10.745    4.027    0.000    43.268    0.444
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI             11.375    5.059    2.249    0.025    11.375    9.311
##    .WAI               32.883   19.346    1.700    0.089    32.883    6.739
##    .RLI              215.546   56.035    3.847    0.000   215.546   16.362
##    .ELI              138.371   37.150    3.725    0.000   138.371   12.791
##    .LUI_Total        179.057   50.708    3.531    0.000   179.057   10.455
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI              1.276    0.194    6.568    0.000     1.276    0.855
##    .WAI               20.988    2.775    7.564    0.000    20.988    0.881
##    .RLI              138.818   19.118    7.261    0.000   138.818    0.800
##    .ELI               68.342    9.549    7.157    0.000    68.342    0.584
##    .LUI_Total        225.746   55.974    4.033    0.000   225.746    0.770
## 
## Defined Parameters:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##     ERRNI_RT_I        -0.061    0.117   -0.521    0.602    -0.061   -0.009
##     ERRNI_Vocab_I      0.001    0.001    0.781    0.435     0.001    0.051
##     WAI_RT_I          -0.740    0.807   -0.917    0.359    -0.740   -0.027
##     WAI_Vocab_I        0.008    0.004    1.919    0.055     0.008    0.156
##     RLI_RT_I          -1.929    2.118   -0.911    0.362    -1.929   -0.026
##     RLI_Vocab_I        0.020    0.012    1.649    0.099     0.020    0.151
##     ELI_RT_I          -2.054    2.087   -0.984    0.325    -2.054   -0.034
##     ELI_Vocab_I        0.021    0.009    2.197    0.028     0.021    0.195
##     ERRNI_RT_T        -1.939    0.709   -2.735    0.006    -1.939   -0.283
##     ERRNI_Vocab_T      0.002    0.002    1.254    0.210     0.002    0.166
##     WAI_RT_T          -3.597    2.773   -1.297    0.195    -3.597   -0.131
##     WAI_Vocab_T        0.003    0.005    0.576    0.565     0.003    0.065
##     RLI_RT_T         -23.534    7.924   -2.970    0.003   -23.534   -0.319
##     RLI_Vocab_T        0.007    0.016    0.445    0.656     0.007    0.054
##     ELI_RT_T         -12.934    5.083   -2.545    0.011   -12.934   -0.213
##     ELI_Vocab_T        0.045    0.011    3.926    0.000     0.045    0.418

When those other parameters are removed, clear effects for LWL RT on the outcomes. Marginally significant effects of vocabulary through LUI.

Refit models to dataset with two low LUI scores removed.

#m3 <- sem(model, data=full2, missing="ml", se="bootstrap", bootstrap=9999)
#m4 <- sem(model2, data=full2, missing="ml", se="bootstrap", bootstrap=9999)

#write_rds(m3, "models/m3.rds")
#write_rds(m4, "models/m4.rds")

m3 <- read_rds("models/m3.rds")
m4 <- read_rds("models/m4.rds")
summary(m3, standardized=TRUE)
## lavaan 0.6-12 ended normally after 217 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        40
## 
##   Number of observations                            78
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             9999
##   Number of successful bootstrap draws            9999
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   ERRNI ~                                                                 
##     logCTC   (b11)    -0.131    0.377   -0.349    0.727    -0.131   -0.058
##     logAWC   (b12)    -0.118    0.411   -0.288    0.773    -0.118   -0.043
##     logRT    (b13)    -2.134    0.736   -2.900    0.004    -2.134   -0.318
##     Vocab    (b14)     0.003    0.002    1.248    0.212     0.003    0.206
##     LUI_Totl (b15)    -0.001    0.012   -0.111    0.912    -0.001   -0.015
##   WAI ~                                                                   
##     logCTC   (c11)     0.161    1.857    0.087    0.931     0.161    0.019
##     logAWC   (c12)     2.071    2.073    0.999    0.318     2.071    0.199
##     logRT    (c13)    -3.093    3.489   -0.887    0.375    -3.093   -0.121
##     Vocab    (c14)    -0.003    0.006   -0.517    0.605    -0.003   -0.071
##     LUI_Totl (c15)     0.025    0.043    0.573    0.567     0.025    0.075
##   RLI ~                                                                   
##     logCTC   (d11)     2.484    4.232    0.587    0.557     2.484    0.108
##     logAWC   (d12)    -4.715    4.307   -1.095    0.274    -4.715   -0.170
##     logRT    (d13)   -26.493    7.734   -3.426    0.001   -26.493   -0.388
##     Vocab    (d14)    -0.016    0.018   -0.882    0.378    -0.016   -0.127
##     LUI_Totl (d15)     0.107    0.121    0.885    0.376     0.107    0.121
##   ELI ~                                                                   
##     logCTC   (e11)     1.842    2.887    0.638    0.524     1.842    0.105
##     logAWC   (e12)    -0.565    3.395   -0.166    0.868    -0.565   -0.027
##     logRT    (e13)   -11.753    5.422   -2.168    0.030   -11.753   -0.225
##     Vocab    (e14)     0.028    0.012    2.250    0.024     0.028    0.296
##     LUI_Totl (e15)     0.109    0.071    1.536    0.124     0.109    0.161
##   LUI_Total ~                                                             
##     logCTC    (f1)     4.251    4.023    1.057    0.291     4.251    0.163
##     logAWC    (f2)     3.002    4.666    0.643    0.520     3.002    0.096
##     logRT     (f3)    -5.942    8.084   -0.735    0.462    -5.942   -0.077
##     Vocab     (f4)     0.051    0.014    3.590    0.000     0.051    0.366
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##  .ERRNI ~~                                                                
##    .WAI                1.737    0.712    2.438    0.015     1.737    0.347
##    .ELI                0.264    0.988    0.267    0.789     0.264    0.031
##    .RLI                1.998    1.417    1.410    0.159     1.998    0.160
##  .WAI ~~                                                                  
##    .ELI                7.224    3.723    1.940    0.052     7.224    0.209
##    .RLI               20.195    5.337    3.784    0.000    20.195    0.404
##  .RLI ~~                                                                  
##    .ELI               32.108    9.601    3.344    0.001    32.108    0.372
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI             16.264    5.534    2.939    0.003    16.264   13.338
##    .WAI               23.837   22.512    1.059    0.290    23.837    5.122
##    .RLI              299.614   63.058    4.751    0.000   299.614   24.192
##    .ELI              160.636   43.655    3.680    0.000   160.636   16.940
##    .LUI_Total        117.012   64.375    1.818    0.069   117.012    8.348
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI              1.246    0.212    5.871    0.000     1.246    0.838
##    .WAI               20.045    2.693    7.443    0.000    20.045    0.926
##    .RLI              124.613   17.485    7.127    0.000   124.613    0.812
##    .ELI               59.711    8.816    6.773    0.000    59.711    0.664
##    .LUI_Total        139.310   18.532    7.517    0.000   139.310    0.709
## 
## Defined Parameters:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##     ERRNI_CTC_I       -0.006    0.071   -0.080    0.937    -0.006   -0.003
##     ERRNI_AWC_I       -0.004    0.067   -0.060    0.952    -0.004   -0.001
##     ERRNI_RT_I         0.008    0.123    0.065    0.948     0.008    0.001
##     ERRNI_Vocab_I     -0.000    0.001   -0.107    0.915    -0.000   -0.006
##     WAI_CTC_I          0.105    0.255    0.412    0.680     0.105    0.012
##     WAI_AWC_I          0.074    0.292    0.254    0.799     0.074    0.007
##     WAI_RT_I          -0.147    0.505   -0.291    0.771    -0.147   -0.006
##     WAI_Vocab_I        0.001    0.002    0.544    0.586     0.001    0.027
##     RLI_CTC_I          0.455    0.773    0.589    0.556     0.455    0.020
##     RLI_AWC_I          0.321    0.870    0.370    0.712     0.321    0.012
##     RLI_RT_I          -0.636    1.516   -0.420    0.675    -0.636   -0.009
##     RLI_Vocab_I        0.005    0.007    0.838    0.402     0.005    0.044
##     ELI_CTC_I          0.464    0.569    0.816    0.415     0.464    0.026
##     ELI_AWC_I          0.328    0.711    0.461    0.645     0.328    0.015
##     ELI_RT_I          -0.649    1.153   -0.562    0.574    -0.649   -0.012
##     ELI_Vocab_I        0.006    0.004    1.316    0.188     0.006    0.059
##     ERRNI_CTC_T       -0.137    0.365   -0.375    0.707    -0.137   -0.061
##     ERRNI_AWC_T       -0.122    0.410   -0.298    0.765    -0.122   -0.045
##     ERRNI_RT_T        -2.126    0.729   -2.918    0.004    -2.126   -0.316
##     ERRNI_Vocab_T      0.002    0.002    1.292    0.196     0.002    0.200
##     WAI_CTC_T          0.267    1.837    0.145    0.885     0.267    0.031
##     WAI_AWC_T          2.146    2.027    1.058    0.290     2.146    0.206
##     WAI_RT_T          -3.240    3.523   -0.920    0.358    -3.240   -0.126
##     WAI_Vocab_T       -0.002    0.006   -0.354    0.723    -0.002   -0.044
##     RLI_CTC_T          2.939    4.218    0.697    0.486     2.939    0.128
##     RLI_AWC_T         -4.394    4.331   -1.014    0.310    -4.394   -0.158
##     RLI_RT_T         -27.129    8.033   -3.377    0.001   -27.129   -0.397
##     RLI_Vocab_T       -0.010    0.016   -0.629    0.529    -0.010   -0.082
##     ELI_CTC_T          2.306    2.892    0.797    0.425     2.306    0.131
##     ELI_AWC_T         -0.237    3.300   -0.072    0.943    -0.237   -0.011
##     ELI_RT_T         -12.401    5.463   -2.270    0.023   -12.401   -0.237
##     ELI_Vocab_T        0.034    0.012    2.851    0.004     0.034    0.355

No indirect effects of vocab, though direct effect on ELI.

summary(m4, standardized=TRUE )
## lavaan 0.6-12 ended normally after 149 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##   Number of observations                            78
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             9999
##   Number of successful bootstrap draws            9999
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   ERRNI ~                                                                 
##     logRT    (b13)    -2.038    0.727   -2.803    0.005    -2.038   -0.303
##     Vocab    (b14)     0.002    0.002    1.251    0.211     0.002    0.191
##     LUI_Totl (b15)    -0.004    0.012   -0.306    0.760    -0.004   -0.041
##   WAI ~                                                                   
##     logRT    (c13)    -3.280    2.807   -1.168    0.243    -3.280   -0.128
##     Vocab    (c14)    -0.003    0.006   -0.460    0.646    -0.003   -0.064
##     LUI_Totl (c15)     0.044    0.041    1.060    0.289     0.044    0.131
##   RLI ~                                                                   
##     logRT    (d13)   -28.065    7.593   -3.696    0.000   -28.065   -0.411
##     Vocab    (d14)    -0.013    0.017   -0.729    0.466    -0.013   -0.102
##     LUI_Totl (d15)     0.091    0.120    0.753    0.451     0.091    0.103
##   ELI ~                                                                   
##     logRT    (e13)   -13.043    5.211   -2.503    0.012   -13.043   -0.249
##     Vocab    (e14)     0.030    0.012    2.602    0.009     0.030    0.321
##     LUI_Totl (e15)     0.122    0.066    1.841    0.066     0.122    0.180
##   LUI_Total ~                                                             
##     logRT     (f3)    -9.650    7.380   -1.307    0.191    -9.650   -0.125
##     Vocab     (f4)     0.061    0.013    4.686    0.000     0.061    0.436
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##  .ERRNI ~~                                                                
##    .WAI                1.645    0.736    2.236    0.025     1.645    0.321
##    .ELI                0.207    1.007    0.206    0.837     0.207    0.024
##    .RLI                2.082    1.452    1.434    0.152     2.082    0.165
##  .WAI ~~                                                                  
##    .ELI                7.618    4.084    1.865    0.062     7.618    0.215
##    .RLI               19.103    5.500    3.473    0.001    19.103    0.371
##  .RLI ~~                                                                  
##    .ELI               32.082    9.601    3.342    0.001    32.082    0.368
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI             13.977    5.135    2.722    0.006    13.977   11.463
##    .WAI               43.400   18.860    2.301    0.021    43.400    9.326
##    .RLI              282.343   54.865    5.146    0.000   282.343   22.797
##    .ELI              173.454   36.097    4.805    0.000   173.454   18.288
##    .LUI_Total        196.470   49.619    3.960    0.000   196.470   14.017
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .ERRNI              1.257    0.208    6.041    0.000     1.257    0.845
##    .WAI               20.938    2.886    7.254    0.000    20.938    0.967
##    .RLI              126.604   18.094    6.997    0.000   126.604    0.825
##    .ELI               60.171    8.888    6.770    0.000    60.171    0.669
##    .LUI_Total        148.938   20.259    7.352    0.000   148.938    0.758
## 
## Defined Parameters:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##     ERRNI_RT_I         0.034    0.137    0.249    0.803     0.034    0.005
##     ERRNI_Vocab_I     -0.000    0.001   -0.293    0.770    -0.000   -0.018
##     WAI_RT_I          -0.421    0.613   -0.687    0.492    -0.421   -0.016
##     WAI_Vocab_I        0.003    0.003    1.025    0.305     0.003    0.057
##     RLI_RT_I          -0.876    1.587   -0.552    0.581    -0.876   -0.013
##     RLI_Vocab_I        0.006    0.007    0.745    0.456     0.006    0.045
##     ELI_RT_I          -1.174    1.185   -0.991    0.322    -1.174   -0.022
##     ELI_Vocab_I        0.007    0.005    1.631    0.103     0.007    0.078
##     ERRNI_RT_T        -2.004    0.729   -2.750    0.006    -2.004   -0.298
##     ERRNI_Vocab_T      0.002    0.002    1.247    0.212     0.002    0.173
##     WAI_RT_T          -3.700    2.849   -1.299    0.194    -3.700   -0.144
##     WAI_Vocab_T       -0.000    0.006   -0.058    0.954    -0.000   -0.007
##     RLI_RT_T         -28.941    7.723   -3.747    0.000   -28.941   -0.424
##     RLI_Vocab_T       -0.007    0.015   -0.469    0.639    -0.007   -0.057
##     ELI_RT_T         -14.217    5.265   -2.700    0.007   -14.217   -0.272
##     ELI_Vocab_T        0.038    0.011    3.418    0.001     0.038    0.399

Still no indirect effects of vocab.

sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server x64 (build 17763)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Dutch_Netherlands.1252  LC_CTYPE=Dutch_Netherlands.1252   
## [3] LC_MONETARY=Dutch_Netherlands.1252 LC_NUMERIC=C                      
## [5] LC_TIME=Dutch_Netherlands.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices datasets  utils     methods   base     
## 
## other attached packages:
##  [1] GGally_2.1.2    rstatix_0.7.0   lavaan_0.6-12   corrplot_0.92  
##  [5] forcats_0.5.1   stringr_1.4.0   dplyr_1.0.9     purrr_0.3.4    
##  [9] tidyr_1.2.0     tibble_3.1.8    ggplot2_3.3.6   tidyverse_1.3.2
## [13] readr_2.1.2    
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.4.4          sass_0.4.2          bit64_4.0.5        
##  [4] vroom_1.5.7         jsonlite_1.8.0      carData_3.0-5      
##  [7] modelr_0.1.8        bslib_0.4.0         assertthat_0.2.1   
## [10] highr_0.9           stats4_4.1.3        renv_0.15.4        
## [13] googlesheets4_1.0.1 cellranger_1.1.0    yaml_2.3.5         
## [16] pbivnorm_0.6.0      pillar_1.8.0        backports_1.4.1    
## [19] glue_1.6.2          digest_0.6.29       RColorBrewer_1.1-3 
## [22] rvest_1.0.2         colorspace_2.0-3    htmltools_0.5.3    
## [25] plyr_1.8.7          pkgconfig_2.0.3     broom_1.0.0        
## [28] haven_2.5.0         scales_1.2.0        tzdb_0.3.0         
## [31] googledrive_2.0.0   farver_2.1.1        generics_0.1.3     
## [34] car_3.1-0           ellipsis_0.3.2      cachem_1.0.6       
## [37] withr_2.5.0         cli_3.3.0           mnormt_2.1.0       
## [40] magrittr_2.0.3      crayon_1.5.1        readxl_1.4.0       
## [43] evaluate_0.16       fs_1.5.2            fansi_1.0.3        
## [46] xml2_1.3.3          tools_4.1.3         hms_1.1.1          
## [49] gargle_1.2.0        lifecycle_1.0.1     munsell_0.5.0      
## [52] reprex_2.0.2        compiler_4.1.3      jquerylib_0.1.4    
## [55] rlang_1.0.4         grid_4.1.3          rstudioapi_0.13    
## [58] labeling_0.4.2      rmarkdown_2.16      gtable_0.3.0       
## [61] reshape_0.8.9       abind_1.4-5         DBI_1.1.3          
## [64] R6_2.5.1            lubridate_1.8.0     knitr_1.39         
## [67] bit_4.0.4           fastmap_1.1.0       utf8_1.2.2         
## [70] stringi_1.7.6       parallel_4.1.3      Rcpp_1.0.9         
## [73] vctrs_0.4.1         dbplyr_2.2.1        tidyselect_1.1.2   
## [76] xfun_0.32