Species Distribution Model in R based on the tutorial from weecology at Youtube titled “Introduction to Species Distribution Modeling using R

1. CURRENT ENVIRONTMENTAL DATA

2. CURRENT PRECIPITATION

3. HOODED WARB IN ENVIRONMENTAL SPACE

4. LOGISTIC REGRESSION MODEL

## 
## Call:
## glm(formula = present ~ tmin + precip, family = binomial(link = "logit"), 
##     data = hooded_warb_data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6098  -0.5055  -0.2265  -0.1149   2.3704  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -6.1321879  0.1817786  -33.73   <2e-16 ***
## tmin         0.0115134  0.0009303   12.38   <2e-16 ***
## precip       0.0410928  0.0019430   21.15   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5773.6  on 5688  degrees of freedom
## Residual deviance: 3886.1  on 5686  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 3892.1
## 
## Number of Fisher Scoring iterations: 6

5. EVALUATION MODEL SUMMARY

## class          : ModelEvaluation 
## n presences    : 1167 
## n absences     : 4522 
## AUC            : 0.881917 
## cor            : 0.5326416 
## max TPR+TNR at : -1.429259

6. PREDICTION MODEL [ROC CURVE]

7. PREDICTION MAP - PROBABILITY OF PRESENCE

8. PREDICTION OF REGIONS THE SPECIES WILL LIKELY TO EXIST WITH THRESHOLD ABOVE 50%

9. PREDICTION OF REGIONS THE SPECIES WILL LIKELY TO EXIST WITH TWEAKED THRESHOLD + PRESENCE DATA

10. FORECASTED AREA

11. FORECASTED AREA WITH THRESHOLD

12. FORECASTED CHANGES OF PROBABILITY OF OCCURRENCE